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Abstract

The task of Visual Place Recognition (VPR) aims to
match a query image against references from an extensive
database of images from different places, relying solely on
visual cues. State-of-the-art pipelines focus on the aggre-
gation of features extracted from a deep backbone, in order
to form a global descriptor for each image. In this con-
text, we introduce SALAD (Sinkhorn Algorithm for Locally
Aggregated Descriptors), which reformulates NetVLAD’s
soft-assignment of local features to clusters as an optimal
transport problem. In SALAD, we consider both feature-
to-cluster and cluster-to-feature relations and we also in-
troduce a ‘dustbin’ cluster, designed to selectively discard
features deemed non-informative, enhancing the overall de-
scriptor quality. Additionally, we leverage and fine-tune
DINOv2 as a backbone, which provides enhanced descrip-
tion power for the local features, and dramatically reduces
the required training time. As a result, our single-stage
method not only surpasses single-stage baselines in pub-
lic VPR datasets, but also surpasses two-stage methods that
add a re-ranking with significantly higher cost. Code and
models are available at https://github.com/serizba/salad.

1. Introduction

Recognizing a place solely from images becomes a chal-
lenging task when scenes undergo substantial changes in
their structure or appearance. Such capability is referred
to in the scientific and technical literature as visual place
recognition (and by its acronym VPR), and is essential
for agents to navigate and understand their surroundings
autonomously in a wide array of applications, such as
robotics [12–14, 22, 29] or augmented reality [19]. Specifi-
cally, it is present in simultaneous localization and mapping
[9, 10] and absolute pose estimation [25, 44] pipelines.

In practice, VPR is framed as an image retrieval problem,
wherein typically a query image serves as the input and the
goal is to obtain an ordered list of top-k matches against
a pre-existing database of geo-localized reference images.
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Figure 1. Illustration of a VPR baseline (left) and our contri-
bution (right). The left column outlines a typical VPR baseline, a
ResNet backbone followed by NetVLAD aggregation [4]. On the
right column, we replace ResNet with a partially fine-tuned DI-
NOv2 [41] backbone, and incorporate SALAD, our novel optimal
transport aggregation using the Sinkhorn Algorithm. Our model
achieves unprecedented state-of-the-art results on common VPR
benchmarks.

Images are represented as an aggregation of appearance pat-
tern descriptors, which are subsequently compared via near-
est neighbour. The effectiveness of this matching relies on
generating discriminative per-image descriptors that exhibit
robust performance even for challenging variations such as
fluctuating illumination, structural transformations, tempo-
ral changes, weather and seasonal shifts. Most recent re-
search on VPR have thus focused on the two key compo-
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nents of this general pipeline, namely the deep neural back-
bones for feature extraction and methods for aggregating
such features.

For years, ResNet-based neural networks have been the
predominant backbones for feature extraction [4, 23, 45].
Recently, given the success of Vision Transformer (ViT)
for different computer vision tasks [17, 21, 30, 33], some
methods have introduced ViT in the field of VPR [58, 65].
AnyLoc [28] proposed to leverage foundation models, us-
ing DINOv2 [41] as a feature extractor for VPR. However,
AnyLoc uses DINOv2 ‘as is’, while we show in this paper
that fine-tuning the model for VPR brings a significant in-
crease in performance.

Regarding aggregation, NetVLAD [4], the learned coun-
terpart to the traditional handcrafted VLAD [26], is among
the most popular choices. Alternative methods include
pooling layers like GeM [45] or learned global aggregation,
like the recent MixVPR [2]. In this paper, we propose op-
timal transport aggregation, setting a new state of the art in
VPR.

As a summary, in this work, we present a single-stage
approach to VPR that obtains state-of-the-art results in the
most common benchmarks. To achieve this, we present two
key contributions:

• First, we propose SALAD (Sinkhorn Algorithm for
Locally Aggregated Descriptors), a reformulation of the
feature-to-cluster assignment problem through the lens of
optimal transport, allowing more effective distribution of
local features into the global descriptor bins. To further
improve the discriminative power of the aggregated de-
scriptor, we let the network discard uninformative fea-
tures by introducing a ‘dustbin’ mechanism.

• Secondly, we integrate the representational power of
foundation models into VPR, using DINOv2 as the back-
bone for feature extraction. Unlike previous approaches
that utilized DINOv2 in its pre-trained form, our method
involves fine-tuning the model specifically for the task.
This fine-tuning process converges extremely fast, in just
four epochs, and allows DINOv2 to capture more rele-
vant and distinctive features pertinent to place recogni-
tion tasks.

The fusion of these two novel components results in DI-
NOv2 SALAD, which can be efficiently trained in less than
one hour and sets unprecedented recall in VPR benchmarks,
with 75.0% Recall@1 in MSLS Challenge and 76.0% in
Nordland. All of this with a single-stage pipeline, without
requiring expensive post-processing steps and with an infer-
ence speed of less than 3 ms per image.

2. Related Work

The significant research efforts on VPR have been exhaus-
tively compiled in a number of surveys and tutorials over

the years [19, 36, 37, 49, 64]. Current research addresses a
wide variety of topics, such as novel loss functions [5, 31],
image sequences [20, 60], extreme viewpoint changes [32]
or text features [24]. In this section, we focus on work re-
lated to feature extraction and aggregation, as there lie our
contributions.

Early approaches to VPR used either aggregations of
handcrafted local features [3, 15, 26] or global descrip-
tors [39, 53]. In both cases, geometric [18] and tempo-
ral [18, 38] consistency was sometimes enforced for en-
hanced performance. With the emergence of deep neural
networks, features pre-trained for recognition tasks, with-
out fine-tuning, showed a significant performance boost
over handcrafted ones [54]. However, training or fine-
tuning specifically for VPR tasks using contrastive or triplet
losses [40] offers an additional improvement and is standard
nowadays.

NetVLAD [4] is the most popular architecture explicitly
designed for VPR, mimicking the VLAD aggregation [26]
but jointly learning from data both convolutional features
and cluster centroids. Radenović et al. [45] proposed the
Generalized Mean Pooling (GeM) to aggregate feature ac-
tivations, also a popular baseline due to its simplicity and
competitive performance. In addition to these, several other
alternatives have been proposed in the literature. For exam-
ple, Teichmann et al. [56] aggregates regions instead of lo-
cal features. Recently, MixVPR [2] has presented the best
results in the literature by combining deep features with a
MLP layer.

A notable trend in VPR has been the adoption of a two-
stage approach to enhance retrieval accuracy [11, 23, 47, 50,
55, 65]. After a first stage with any of the methods presented
in the previous paragraph, the top retrieved candidates are
re-ranked attending to the un-aggregated local features, ei-
ther assessing the geometric consistency to the query image
or predicting their similarity. This re-ranking stage adds a
considerable overhead, which is why it is only applied to
a few candidates, but generally improves the performance.
Re-ranking is out of the scope of our research but, notably,
we outperform all baselines that employ re-ranking even if
our model does not include such stage (and hence it is sub-
stantially faster).

Optimal transport has found a significant number of ap-
plications in graphics and computer vision [8]. Specif-
ically, related to our research, it has been used for im-
age retrieval [43], image matching [61] and feature match-
ing [48, 52]. Recently, Zhang et al. [63] used optimal trans-
port at the re-ranking stage in a retrieval pipeline. However,
ours is the first work that proposes the formulation of local
feature aggregation from an optimal transport perspective.
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Figure 2. Overview of our method. First, the DINOv2 backbone extracts local features and a global token from an input image. Then, a
small MLP, score projection, computes a score matrix for feature-to-cluster and dustbin relationships. The optimal transport module uses
the Sinkhorn algorithm to transform this matrix into an assignment, and subsequently, dimensionality-reduced features are aggregated into
the final descriptor based on this assignment and concatenated with the global token.

3. Method

DINOv2 SALAD is based on NetVLAD, but we propose to
use and fine-tune the DINOv2 backbone (Sec. 3.1) and pro-
pose a novel module (SALAD) for the assignment (Sec. 3.2)
and aggregation (Sec. 3.3) of features.

3.1. Local Feature Extraction

Effective local feature extraction lies in striking a balance:
features must be robust enough to withstand substantial
changes in appearance, such as those between seasons or
from day to night, yet they should retain sufficient informa-
tion on local structure to enable accurate matching.

Inspired by the success of ViT architectures in many
computer vision tasks and by AnyLoc [28], that leverages
the exceptional representational capabilities of foundation
models [7], we adopt DINOv2 [41] as our backbone. How-
ever, differently from AnyLoc, we use a supervised pipeline
and include the backbone in the end-to-end training for the
specific task, yielding improved performance.

DINOv2 adopts a ViT architecture that initially divides
an input image I ∈ Rh×w×c into p × p × c patches,
with p = 14. These patches are sequentially projected
with transformer blocks, resulting in the output tokens
{t1, . . . , tn, tn+1}, ti ∈ Rd, where n = hw/p2 is the
number of input patches and there is an additional global
token tn+1 that aggregates class information. Although
the DINOv2’s authors reported that fine-tuning the model
only brings dim improvements, we found that at least for
VPR there are substantial gains in selectively unfreezing
and training the last blocks of the encoder.

3.2. Assignment

In NetVLAD, a global descriptor is formed by assigning a
set of features to a set of clusters, {C1, . . . , Cj , . . . , Cm},
and then aggregating all features that belong to each clus-
ter. For the assignment, NetVLAD computes a score matrix
S ∈ Rn×m

>0 , where the element in its ith row and jth column,
si,j ∈ R>0, represents the cost of assigning a feature to a
cluster Cj . In other words, S quantifies the affinity of each
feature to each clusters. While SALAD draws inspiration
from NetVLAD, we identify several crucial aspects in their
assignment and propose alternatives to address these.

Reduce assignment priors. When building the score
matrix S, NetVLAD introduces certain priors. Specifically,
it initializes the linear layer that computes S with centroids
derived from k-means. While this may accelerate the train-
ing, it introduces inductive bias and potentially makes the
model more susceptible to local minima. In contrast, we
propose to learn each row si of the score matrix from scratch
with two fully connected layers initialized randomly:

si = Ws2(σ(Ws1(ti) + bs1)) + bs2 (1)

where Ws1 , Ws2 and bs1 , bs2 are the weights and biases
of the layers, and σ is a non-linear activation function.

Discard uninformative features. Some features, such
as those representing the sky, might contain negligible in-
formation for VPR. NetVLAD does not account for this,
and the contribution of all features is preserved in the final
descriptor. Contrary, we follow recent works on keypoint
matching and introduce a ‘dustbin’ where non-informative
features are assigned to. For that, we augment the score ma-
trix, from S to S̄ = [S, s̄i,m+1] ∈ Rn×m+1

>0 , by appending
the column s̄i,m+1 representing the feature-to-dustbin rela-
tion. As in SuperGlue [48], this score is modeled with a
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single learnable parameter z ∈ R:

s̄i,m+1 = z1n (2)

being 1n = [1, . . . , 1]
> ∈ Rn a n-dimensional vector of

ones.
Optimal assignment. The original NetVLAD assign-

ment computes a per-row softmax over S to obtain the dis-
tribution of each feature’s mass across the clusters. How-
ever, this approach only considers the feature-to-cluster re-
lationship and overlooks the reverse –the cluster-to-feature
relation. For this reason, we reformulate the assignment
as an optimal transport problem where the features’ mass,
µ = 1n, must be effectively distributed among the clusters
or the ‘dustbin’, κ = [1>m, n − m]>. We follow Super-
Glue [48] and use the Sinkhorn Algorithm [16, 51] to obtain
the assignment P̄ ∈ Rn×(m+1) such that

P̄1m+1 = µ and P̄>1n = κ. (3)

This algorithm finds the optimal transport assignment be-
tween distributions µ and κ iteratively normalizing rows
and columns from exp

(
S̄
)
. Finally, we drop the dustbin

column to obtain the assignment P =
[
p∗,1, . . . ,p∗,m

]
,

where p∗,j stands for the jth column of P.

3.3. Aggregation

Once the feature assignment in our SALAD framework is
computed as detailed in Sec. 3.2, we focus on the aggre-
gation of these assigned features to form the final global
descriptor. The aggregation process in NetVLAD involves
combining all features assigned to each cluster Cj . How-
ever, we introduce three variations:

Dimensionality reduction. To efficiently manage the
final descriptor size, we first reduce the dimensionality of
the tokens from Rd to Rl. This is achieved by processing
the features through two fully connected layers, precisely
adjusting the size of the feature vectors while retaining the
essential information from the task.

fi = Wf2(σ(Wf1(ti) + bf1)) + bf1 (4)

Aggregation. Based on the assignment matrix derived
using the Sinkhorn Algorithm, each feature is aggregated
into its assigned cluster. Differently from NetVLAD, we
do not subtract the centroids to get the residuals. We di-
rectly aggregate these features with a summation, reducing
the incorporated priors about the aggregation. Viewing the
resulting VLAD vector as a matrix V ∈ Rm×l, each ele-
ment Vj,k ∈ R is computed as follows:

Vj,k =

n∑
i=1

Pi,k · fi,k (5)

where fi,k corresponds to the kth dimension of fi, with k ∈
{1, . . . , l}.

Global token. To include global information about the
scene not easily incorporated into local features, we also
incorporate a scene descriptor g computed as:

g = Wg2(σ(Wg1(tn+1) + bg1)) + bg1 (6)

where tn+1 is the global token from DINOv2. We then con-
catenate g with V flattened. Following NetVLAD, we do
an L2 intra-normalization and an entire L2 normalization of
this vector, which yields the final global descriptor.

4. Experiments
To rigorously evaluate the effectiveness of our proposed
contributions, we conducted exhaustive experiments fol-
lowing standard evaluation protocols.

4.1. Implementation Details

We ground our training and evaluation setups on the pub-
licly provided framework by MixVPR1.

For the architecture, we opt for a pretrained DINOv2-B
backbone, targeting a balance between computational ef-
ficiency and representational capacity. We only fine-tune
the final 4 layers of the encoder, which significantly en-
hances the performance without markedly increasing train-
ing time. For the fully connected layers, the weights of the
hidden layers Ws1 , Wf1 and Wg1 have 512 neurons and
use ReLU for the activation function σ. To optimize feature
handling, we employ a dimensionality reduction, compress-
ing feature token dimensions from d = 768 to l = 128,
and the global to 256. We use m = 64 clusters, result-
ing in a global descriptor of size 128 × 64 + 256. We also
report results with smaller descriptors, with size 512 + 32
(m = 15, l = 32), and 2048 + 64 (m = 32, l = 64).

We train on GSV-Cities [1], a large dataset of urban
locations collected from Google Street View. Given the
impressive representation power of DINOv2, our pipeline
achieves training convergence within just 4 epochs. Us-
ing a batch size of 60 places, each represented by 4 im-
ages, the training is completed in 30 minutes on a single
NVIDIA RTX 3090. We use the multi-similarity loss [59]
and AdamW [35] for the optimization, with an initial learn-
ing rate set to 6e−5. To ensure an effective learning rate, we
linearly decay the initial rate at every iteration so at the end
of the training is 20% of the initial value. We use a dropout
rate of 0.3 on the score projection and dimensionality reduc-
tion neurons. As our model is agnostic to the image input
size (as long as it can be divided in 14 × 14 patches), we
evaluate on images of size 322×322 but train on 224×224
to speedup training time.

1https://github.com/amaralibey/MixVPR
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Method MSLS Challenge MSLS Val NordLand Pitts250k-test SPED
Desc. size Latency (ms) R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

NetVLAD [4] 32768 1.41 35.1 47.4 82.6 89.6 32.6 47.1 90.5 96.2 78.7 88.3
GeM [45]† 1024 1.14 49.7 64.2 78.2 86.6 21.6 37.3 87.0 94.4 66.7 83.4
Conv-AP [1] 8192 1.22 54.2 66.6 83.1 90.3 42.7 58.9 92.9 97.7 79.2 88.6
CosPlace [5] 2048 2.59 67.2 78.0 87.4 93.0 44.2 59.7 92.1 97.5 80.1 89.6
MixVPR [2] 4096 1.37 64.0 75.9 88.0 92.7 58.4 74.6 94.6 98.3 85.2 92.1
EigenPlaces [6] 2048 2.65 67.4 77.1 89.3 93.7 54.4 68.8 94.1 98.0 69.9 82.9
DINOv2 SALAD 512 + 32 2.33 70.8 83.6 89.3 94.9 61.2 78.9 93.0 97.4 88.5 94.7
DINOv2 SALAD 2048 + 64 2.35 73.7 85.9 90.5 95.4 70.4 85.7 94.8 98.3 89.5 94.9
DINOv2 SALAD 8192 + 256 2.41 75.0 88.8 92.2 96.4 76.0 89.2 95.1 98.5 92.1 96.2

Table 1. Comparison against single-stage baselines. We compare DINOv2 SALAD against two popular baselines [4, 45] and the four
baselines that show best results in recent literature [1, 2, 5, 6]. Our slim version already obtains state-of-the-art results in all metrics. Our
full model outperforms all previous results by a significant margin. Note, in particular, the large improvement in the most challenging
benchmarks, MSLS Challenge and NordLand. † We reproduced GeM results training during 80 epochs following MixVPR training
pipeline.

Method Desc. size Memory (GB) Latency (ms) MSLS Challenge MSLS Val
Global Local Retrieval Reranking R@1 R@5 R@10 R@1 R@5 R@10

Patch-NetVLAD [23] 4096 2826× 4096 908.30 9.55 8377.17 48.1 57.6 60.5 79.5 86.2 87.7
TransVPR [58] 256 1200× 256 22.72 6.27 1757.70 63.9 74.0 77.5 86.8 91.2 92.4
R2Former [65] 256 500× 131 4.7 8.88 202.37 73.0 85.9 88.8 89.7 95.0 96.2
DINOv2 SALAD (ours) 8192 + 256 0.0 0.63 2.41 0.0 75.0 88.8 91.3 92.2 96.4 97.0

Table 2. Comparison against baselines with re-ranking. We compare our single-stage DINOv2 SALAD with methods that perform a re-
ranking stage to improve performance. Without using re-ranking, our DINOv2 SALAD outperforms all other methods while being orders
of magnitude faster and more memory-efficient. Latency metrics obtained from [65] using a RTX A5000. Latency for DINOv2 SALAD
was computed using a RTX 3090. Memory footprint is calculated on the MSLS Val dataset, which includes around 18, 000 images.

Method Desc. size SF-XL Test v1 SF-XL Test v2
CosPlace [5] 2048 76.4 88.8
EigenPlaces [6] 2048 84.1 90.8
DINOv2 SALAD 8192 + 256 88.6 94.8

Table 3. Results on SF-XL. (R@1) Our DINOv2 SALAD
achieves unprecedented results on SF-XL despite never seeing any
single image of San Francisco during VPR finetuning.

To validate our experiments and select the hyperparam-
eters, we monitored the recall in the Pittsburg30k-test [57].
We observed that, in the long run, most configurations per-
form similarly, but rapid convergence on a few epochs is
more sensitive to the hyperparameters.

4.2. Results

We benchmarked our model against several single-stage
baselines, namely NetVLAD [4] and GeM [45] as two rep-
resentative tradicional baselines, and Conv-AP [1], Cos-
Place [5], MixVPR [2] and EigenPlaces [6] as the four
most recent and best performing baselines in the literature.
The evaluation spanned a diverse array of well-established
datasets: MSLS Validation and Challenge [60], which are
comprised of dashcam images; Pittsburgh250k-test [57],
featuring urban scenarios; SPED [14], a collection from
surveillance cameras; NordLand, notable for its seasonal
variations from images captured from the front of a train
traversing Norway; and SF-XL [5], a large urban dataset to

evaluate VPR at scale. We use Recall@k (R@k) as the met-
ric for all our experiments, as it is standard in related work.
We use evaluation data and code from MixVPR [2], which
considers retrieval as correct if an image at less than 25 me-
ters (or two frames for Nordland) from the query is among
the top-k predicted candidates.

As shown in Table 1, our model outperforms all previous
methods on all datasets and all metrics. Even the smaller
512 + 32 version already surpasses previous models with
bigger descriptors on most datasets. It is worth highlighting
the metrics saturation observed in MSLS Val, Pitts250k-test
and SPED, and on the other hand the challenging nature
of MSLS Challenge and NordLand. The MSLS Challenge
dataset, with its diversity, extensive size and closed labels,
and NordLand, with its extreme sample similarity and sea-
sonal shifts, emerge then as key benchmarks for assessing
VPR performance. Although our DINOv2 SALAD shows
a significant improvement on all benchmarks, it is precisely
in MSLS Challenge and NordLand where we obtain the
most substantial recall increases, with +7.6%,+11.7% and
+17.6%,+14.6% for R@1, R@5 respectively over the sec-
ond best. For SF-XL, as shown in Table 3, our method also
achieves the best results to date. This is remarkable, con-
sidering that the previous state of the art was trained on this
dataset, whereas our method never used any image of San
Francisco when it was fine-tuned.

In Table 2, we compare our DINOv2 SALAD method,
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Method MSLS Challenge MSLS Val NordLand Pitts250k-test SPED
Desc. size R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ResNet NetVLAD [4] 32768 35.1 47.4 51.7 82.6 89.6 92.0 32.6 47.1 53.3 90.5 96.2 97.4 78.7 88.3 91.4
DINOv2 AnyLoc [28] 49152 42.2 53.5 58.1 68.7 78.2 81.8 16.1 25.4 30.4 87.2 94.4 96.5 85.3 94.4 95.4
ResNet SALAD 8192 57.4 70.8 74.9 83.2 89.5 91.8 33.3 49.6 55.8 91.4 96.9 97.9 75.0 86.7 89.8
ConvNext [34] SALAD 8192 63.9 75.2 80.1 85.5 92.4 94.5 47.8 64.3 70.3 93.9 97.9 98.8 83.5 90.9 92.9
DINOv2 GeM 4096 62.6 78.3 83.0 85.4 93.9 95.0 35.4 52.5 59.6 89.5 96.5 98.0 83.0 92.1 93.9
DINOv2 MixVPR 4096 72.1 85.0 88.3 90.0 95.1 96.0 63.6 80.1 84.6 94.6 98.3 99.3 89.8 94.9 96.1
DINOv2 NetVLAD 24576 75.8 86.5 89.8 92.4 95.9 96.9 71.8 86.5 90.1 95.6 98.7 99.3 90.8 95.7 96.7
DINOv2 NetVLAD (dim. red.) 8192 73.3 85.6 88.3 90.1 95.4 96.8 70.1 86.5 90.2 95.4 98.4 99.1 90.6 95.4 96.7
DINOv2 SALAD (ours) 8192 + 256 75.0 88.8 91.3 92.2 96.4 97.0 76.0 89.2 92.0 95.1 98.5 99.1 92.1 96.2 96.5

Table 4. Ablations. The first two rows correspond to two baselines in the literature [4, 28], the rest to different aggregations appended to
DINOv2 including our DINOv2 SALAD. Note that only DINO NetVLAD, with a significantly bigger descriptor size than ours, is able to
show competitive results. We outperform all the rest DINOv2 baselines of similar descriptor sizes by a large margin.

which solely operates on a single retrieval stage, against
the leading two-stage Visual Place Recognition (VPR) tech-
niques. In this comparison, we include the best per-
forming models in the literature, namely R2Former [65],
TransVPR [58], and Patch-NetVLAD [23], which incor-
porate a re-ranking refinement. Note how our DINOv2
SALAD, despite being orders of magnitude faster and
smaller in memory, significantly outperforms all these two-
stage methods on all benchmarks. This finding not only
highlights the efficiency of our model but also demonstrates
the effectiveness of global retrieval using our novel SALAD
aggregation. Additionally, considering our method’s re-
liance on local features, we believe that a re-ranking stage
could also be applied, potentially increasing our recall met-
rics but at the price of a higher computational footprint.

4.3. Ablation Studies

Effect of DINOv2. We assess the impact of the DINOv2
backbone and our optimal transport aggregation SALAD
separately. For this, we compare with the existing baselines
of ResNet NetVLAD or AnyLoc, this last one applying a
VLAD on top of a pretrained DINOv2 encoder. We inte-
grate the DINOv2 backbone with various aggregation mod-
ules, obtaining a handful of performant techniques that im-
prove their respective previous results. As shown in Table 4,
all of these outperform the baselines, even though AnyLoc
already uses DINOv2. This validates the DINOv2’s inte-
gration in end-to-end fine-tuning to refine its capabilities.

Effect of SALAD. Our experiments in Table 4 show that
aggregation also matters. Even the recent MixVPR aggre-
gation coupled with DINOv2 does not match the perfor-
mance of DINOv2 NetVLAD and DINOv2 SALAD. We
believe that the DINOv2 backbone is especially suitable
for local feature aggregation, as its features work remark-
ably well in dense visual perception tasks [27, 41, 62].
Although DINOv2 NetVLAD achieves comparable perfor-
mance to SALAD, it employs a descriptor almost three
times as big. Besides, the generalization performance of
DINOv2 NetVLAD is limited, as observed in NordLand
results. We attribute this to NetVLAD’s priors initializa-
tion with urban scenarios, which constrain the convergence

Model Dim. size # Params. Latency (ms) MSLS Val R@1
S 384 21M 1.30 90.5
B 768 86M 2.41 92.2
L 1024 300M 7.82 92.6
G 1536 1100M 24.93 91.7

Table 5. DINOv2 configurations and performances.

of the system. In our experiments we also trained a slim-
mer DINOv2 NetVLAD version, whose features are dimen-
sionally reduced as described in Section 3.3, targetting a fi-
nal descriptor of roughly the same size as SALAD. In this
fairer setup, DINOv2 SALAD clearly outperforms DINOv2
NetVLAD. We also evaluate SALAD on top of ResNet
and ConvNext backbones, which improves over baseline
ResNet NetVLAD but is significantly worse than using DI-
NOv2. This indicates that SALAD is specially suited for
high spatial resolution features, like the ones from DINOv2.

Effect of hyperparameters. DINOv2 comes in different
sizes that affect the number of parameters, inference speed,
and representation capabilities. As shown in Table 5, more
parameters do not always result in better performance. Ex-
cessively big models might be harder to train or prone to
overfitting the training set. From these results, we chose
the DINOv2-B backbone, which exhibits a great balance
between performance and size and speed. Regarding de-
scriptor size, we observed (Table 1) that changing m and
l allows to get slimmer versions with competitive perfor-
mance. For the number of blocks to train, as shown in Ta-
ble 6, fine-tuning two or four block report the best results
without significant computation overhead.

Effect of SALAD components. In Table 7, we show
how different components of our SALAD pipeline affect the
final performance. Both the global token, which appends
global information not captured in local features, and the
dustbin, which helps in distilling the aggregated features,
contribute to the performance of SALAD. We also trained a
model using a dual-softmax [46] to solve the optimal trans-
port assignment, following LoFTR and Gluestick [42, 52].
Although dual-softmax achieves only slightly worse perfor-
mance, the Sinkhorn Algorithm is theoretically sound and
provides a better acronym to our method.
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Figure 3. Heatmap of local features importance. Left images show the original pictures, their right counterparts represent the weights not
assigned to the ‘dustbin’. Note how the network learns to discard uninformative regions like skies, roads or dynamic objects, and instead
focus on distinctive patterns in buildings and vegetation. We attribute its focus on distant buildings to their invariance to viewpoint change.

Method MSLS Val
R@1 R@5 R@10

DINOv2 SALAD (frozen) 88.5 95.0 96.2
DINOv2 SALAD (train 2 last blocks) 92.0 96.5 97.0
DINOv2 SALAD (train 4 last blocks) 92.2 96.4 97.0
DINOv2 SALAD (train 6 last blocks) 91.6 96.2 97.0
DINOv2 SALAD (train all blocks) 89.2 95.1 96.1

Table 6. Fine-tuning different number of DINOv2 blocks.

Method MSLS Val
R@1 R@5 R@10

DINOv2 SALAD w/o dustbin 91.4 95.8 96.2
DINOv2 SALAD w/o global token 91.8 96.0 96.2
DINOv2 SALAD (Dual Softmax) 91.9 95.7 96.5
DINOv2 SALAD 92.2 96.4 97.0

Table 7. Ablation study of the SALAD components.

4.4. Introspective Results

We provide an introspection of our model’s performance
through a series of illustrative figures. Figure 3 visualizes
the weights that are not assigned to the ‘dustbin’, offering
insight into the parts of the input image that the network
considers informative. As the ‘dustbin’ assignment is com-
pletely learnt by the network, some discarded features might
be counter-intuitive. However, we observe that it typically
removes dynamic objects and focuses on the most distinc-
tive and invariant parts of the image. In Figure 4, we dis-
play the assignment distribution of patches from two dif-
ferent images depicting the same place. It demonstrates the
model’s ability to consistently distribute most of the weights
into the same bins for patches representing similar regions.
Such repeatable and consistent assignment across different
images of the same place is crucial for the reliability and

performance of the system. Finally, in Figure 5, we show-
case various query images alongside their respective top-3
retrievals made by our system. DINOv2 SALAD is able to
retrieve correct predictions even under challenging condi-
tions, such as severe changes in illumination or viewpoint.

5. Conclusions and Limitations
In this paper, we have proposed DINOv2 SALAD, a novel
model for VPR that outperforms previous baselines by a
substantial margin. This achievement is the result of com-
bining two key contributions: a fine-tuned DINOv2 back-
bone for enhanced feature extraction and our novel SALAD
(Sinkhorn Algorithm for Locally Aggregated Descriptors)
module for feature aggregation. Our extensive experiments
demonstrate the effectiveness of these modules, highlight-
ing the model’s single-stage nature and exceptionally fast
training and inference speed.

While our work brings significant improvements in per-
formance, it is not without limitations. Primarily, the adop-
tion of DINOv2 as our backbone results in slower process-
ing speeds compared to ResNet-based methods. Besides,
although SALAD is a general aggregation module, its ef-
fectiveness is tied to the choice of backbone. It excels with
DINOv2, which offers high spatial resolution features, but it
is less suited for coarser features. Additionally, in SALAD
we use an optimal transport assignment in its simplest form.
More sophisticated constraints could improve the resulting
assignment, a very relevant aspect for our future work.
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Figure 4. Illustration of feature-to-cluster assignments. See at the leftmost and rightmost part of the figure two different views of the
same place. Framed by red and blue squares we highlight two corresponding patches in each of the images. The central part of the figure
shows the feature-to-cluster assignments for these patches. Note how DINOv2 SALAD correctly assigns the features to the same bins for
both views, even with different local texture.

Query Top-1 Top-2 Top-3

Figure 5. DINOv2 SALAD qualitative results at MSLS. The left column shows several queries and the three other ones shows the top-3
candidates retrieved by our DINOv2 SALAD. Candidates are framed in green if they correspond to the same place as the query, and in red
if they do not. Note the correct retrievals under seasonal, weather, viewpoint and day-night changes. Note also a challenging failure case
in the last row, due to non-discriminative image content.
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Torii, Tomas Pajdla, and Josef Sivic. Neighbourhood con-
sensus networks. Advances in neural information processing
systems, 31, 2018.

[47] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12716–12725, 2019.

[48] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020.

[49] Stefan Schubert, Peer Neubert, Sourav Garg, Michael Mil-
ford, and Tobias Fischer. Visual Place Recognition: A Tuto-
rial. IEEE Robotics & Automation Magazine, 2023.

[50] Shihao Shao, Kaifeng Chen, Arjun Karpur, Qinghua Cui,
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