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Figure 1. Some highlighted instances from the JRDB-Social dataset featuring detailed annotations across three levels: Individual Level)
Representing specific attributes like age, gender, and race are shown through color-coded abbreviations. For example, ‘MMC’ represents
Male, Middle Adulthood, Caucasian. Intra-group Level) This level focuses on group dynamics and interactions between each pair at
the frame level, represented by dashed lines. Group Level) Each social group [1] is represented by the same colour and accompanied
by textual descriptions that detail the number of members, their specific attributes, their body position’s connection with the content, the
presence of salient scene content near the group, the venue, and the group’s aim or purpose.

Abstract

Understanding human social behaviour is crucial in com-
puter vision and robotics. Micro-level observations like in-
dividual actions fall short, necessitating a comprehensive
approach that considers individual behaviour, intra-group
dynamics, and social group levels for a thorough under-
standing. To address dataset limitations, this paper intro-
duces JRDB-Social, an extension of JRDB [2]. Designed
to fill gaps in human understanding across diverse indoor
and outdoor social contexts, JRDB-Social provides annota-
tions at three levels: individual attributes, intra-group in-
teractions, and social group context. This dataset aims to
enhance our grasp of human social dynamics for robotic
applications. Utilizing the recent cutting-edge multi-modal
large language models, we evaluated our benchmark to ex-
plore their capacity to decipher social human behaviour.

1. Introduction

Human social behaviour understanding finds numerous ap-
plications in computer vision and robotics. Simply observ-
ing the micro-level information like the actions of an indi-
vidual is inadequate for a comprehensive understanding of
human behaviour because humans are inherently social be-
ings and require analysis within a broader social context.
Therefore, a comprehensive and multi-layered approach is
required to perceive human social behaviour thoroughly.
For example, in security and surveillance systems, integrat-
ing individual-level data, identifying social groups, and tak-
ing context into account significantly enhance the overall
capacity to better understand crowd behaviors [3]. Addi-
tionally, this integration fosters more natural and intuitive
experiences in human-robot interaction like telerobots [4],
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coworker robots [5] and social robots [6].
In recent years, significant progress has been made in
vision-based understanding of human behaviour and activ-
ity, furnishing datasets at different levels. Some datasets
focused on individual-level information such as human
attributes and atomic actions [7–14]. Conversely, other
datasets primarily concentrate on human-human interac-
tions [9–14]. On a higher level, certain datasets provide
information regarding human groups and video caption-
ing, describing various events occurring in videos [15–22].
While serving as valuable resources for the research com-
munity, these datasets mainly consider one aspect of this
multi-level hierarchy in understanding human behaviour
and activity and fall short in adequately capturing and re-
flecting the complexity of dynamics and context inherent in
human social behaviors within crowded scenes. To bridge
this gap, we introduce JRDB-Social an extension of the
JRDB dataset [2]. JRDB features a social manipulator robot
with stereo RGB 360° cameras, dual LiDAR sensors for 3D
point clouds, audio, GPS, and over 1.8 million annotations
in the form of 2D bounding boxes and 3D oriented cuboids.
The JRDB dataset has already contained very useful annota-
tions such as human atomic actions and social grouping [17]
and human body pose annotations [23]. Our proposed anno-
tations serve as a perfect complement to enrich this popular
dataset. JRDB-Social is structured at three distinct levels
including: individual level, intra-group level and the so-
cial group level. Firstly, at the individual level, we pro-
vide annotations for gender, age, and race. Secondly, at the
intra-group level, we capture fine-grained, dynamic multi-
interactions between (20 categories) each pair within a sub-
group at the frame level. Lastly, at the social group level, we
incorporate text captions that describe information about the
context including the connection between the group’s body
position and the content, the presence of salient scene con-
tent situated in close proximity to the group, the specific
location or venue, and the group’s aim and purpose, thus
offering a holistic contextual overview. This benchmark fa-
cilitates exploration into how demographic factors influence
social behaviour, allowing for examination of differences
in interactions based on gender or race. Venue annotations
provide contextual information for interactions, recognizing
that behaviours and social dynamics in settings like cafete-
rias may differ from those in formal environments such as
classrooms. Understanding the purpose of a group can il-
luminate the motivation behind the interaction, whether the
group gathers for leisure, work, or education. Ultimately,
this benchmark seeks to narrow gaps in comprehending hu-
man behavior within social settings, furnishing valuable in-
sights to enrich our understanding of social dynamics.
With the surge in popularity and significant advancements
in large language models (LLMs) and vision-language mod-
els (VLMs) [24–27], which claim proficiency in visual un-

derstanding and reasoning, we explore and assess their ca-
pabilities using our dataset. We applied these models to
our dataset to evaluate their effectiveness in perceiving and
reasoning about human social behavior in crowded environ-
ments. Our evaluation focuses on examining and discussing
the strengths and limitations of current methodologies in
understanding human social and contextual interaction dy-
namics.
In sum, the key contributions of this work are as follows:
• Providing JRDB-Social benchmark on dynamic human-

human interactions at the frame level, revealing multi-
label annotations between each pair within a group.

• We offer individual attribute annotation and descriptions
of social groups. These descriptions elaborate on the rela-
tionship between the group’s body position and the con-
tent, the presence of salient scene context near the group,
the venue location, and the group’s aim or purpose.

• We assess the performance of the most recent vision-
language models within the framework of JRDB-Social,
performing a comprehensive examination to identify the
advantages and shortcomings of current approaches.

2. Related works

2.1. Datasets

In the following section, we provide the commonly used
public datasets across three distinct levels i.e. individual,
intra-group, and social group level.
Individual Level. Analysing individual-level human be-
haviour, which encompasses factors like age, gender, and
race, alongside detailed atomic action data, is paramount
across diverse domains. The MovieGraph dataset [28] spe-
cializes in delineating inferred properties of human-centric
situations through intricate, graph-based annotations of so-
cial scenarios depicted in movie clips. Also, recently, au-
tonomous vehicle datasets like [29, 30] have been released
featuring individual-level annotations comprehending the
behaviour of various age groups and genders in traffic sce-
narios. Conversely, certain datasets, such as [31–34], fo-
cus on atomic actions by offering comprehensive data that
specifically highlights individual actions within their con-
tent. Shifting focus, other datasets delve into emotions [35],
providing additional layers of information to understand hu-
man behaviour by considering variables such as age, gen-
der, and ethnicity. While valuable, existing datasets lack a
perspective from the robot within a social environment and
they are not from human crowded environments. JRDB-
Social addresses this gap by providing demographic infor-
mation in real-world data from the robot’s perspective.
Intra-Group Level Interactions. Some image-based
datasets focus intensely on specific interactions such as [7–
10, 36, 37]. Also, some video-based including [11–15, 32]
offer a diverse range of interaction scenarios, contributing
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to understanding of human interaction dynamics in various
contexts. The drawback of these datasets lies in their limited
number of label categories or the treatment of interaction la-
bels as a subset. Moreover, they often involve interactions
between only two or very few individuals, lacking represen-
tation of crowd dynamics. JRDB-Social offers frame-level
multi-label annotation of human interactions within social
groups in crowded scenes.
Social Group Level. A more comprehensive understand-
ing of human behaviour emerges when contextual infor-
mation is available. In this context, certain datasets pro-
vide higher-level information such as [15–17] furnish valu-
able insights into social group dynamics. On the other
hand, some datasets such as [18–22] that primarily focus
on video captioning, offer sets of descriptions for multiple
events occurring in videos and aim to temporally localize
them. However, they often overlook crucial, detailed in-
formation—especially pertaining to how individuals inter-
act with each other and their surroundings. JRDB-Social
offers comprehensive information by providing group-level
details such as the group’s body position related to the con-
tent, the proximity of salient scene content within the group,
the group’s objective, and key information about the main
environment. This approach enhances human understand-
ing by presenting a more holistic view of the scenario.

2.2. Vision-based Large Language Models

In recent years, Large Language Models (LLMs) [38–41]
have made significant strides in achieving multi-modal ca-
pabilities. Notable models include Video-LLaMA [24],
which enhances LLMs for detailed video comprehension,
and NExT-GPT [25], a holistic multi-modal model navi-
gating text, images, videos, and audio seamlessly. Other
models like VideoChat [27], Visual ChatGPT [42], VAL-
LEY [43], Otter [44], ViperGPT [45], and MiniGPT-4 [46]
contribute to advancements in video understanding, visual
processing, and instruction tuning for improved contextual
learning. Additionally, efforts such as InstructBLIP [47],
M3IT [48], and VisionLLM [49] focus on instruction tun-
ing, multilingual datasets, and vision-centric tasks, collec-
tively propelling AI systems towards greater versatility in
language understanding and nuanced video comprehension.
While these models excel in understanding and reasoning
over videos, their capacity to comprehend human social be-
haviour and conduct contextual activity analysis remains
unexplored. This paper aims to assess their performance
on the JRDB-Social dataset.

3. The JRDB-Social Dataset
We developed JRDB-Social to complement the current an-
notation of JRDB dataset [2] by providing new annotations
to better comprehend human activity in a social context.
JRDB dataset contains 64 minutes of sensory data, compris-

ing 54 sequences reflecting diverse indoor and outdoor lo-
cations within a university campus environment. The JRDB
dataset has been captured by a social manipulator robot fea-
turing stereo RGB 360° cameras, dual LiDAR sensors for
3D point clouds, audio, GPS, and boasts over 1.8 million
annotations in the form of 2D bounding boxes and 3D ori-
ented cuboids. The JRDB dataset already contains valuable
annotations, such as human atomic actions, social group-
ing [17], and human body pose annotations [23] and JRDB-
Social serves as a complementary extension to this dataset,
providing a multifaceted perspective at three levels: the in-
dividual, intra-group, and the social group level.
Annotation Process. For annotating JRDB-Social, at each
level, we designed a toolbox, featuring unique IDs corre-
sponding to existing 2D and 3D bounding box annotations.
We adhered to a quality assessment protocol aligned with
established benchmarks known for high-quality annotated
data, such as previous JRDB benchmarks [2, 17, 23]. In
line with these benchmarks, we implemented a standard-
ised data annotation process to ensure consistency with
past JRDB annotations [2, 17]; for instance, our inter-
action annotations align seamlessly with the actions of
each individual involved. Also, our annotators, chosen
for their expertise in behaviour analysis, adhere to strict
guidelines and protocols for standardized annotation. En-
countering challenges such as significant distance from the
robot, varying lighting conditions, occlusion, and crowded
scenes, each label in our dataset is accompanied by diffi-
culty level—categorized as Easy (1), Medium (2), or Hard
(3)—reflecting the annotator’s confidence. To ensure fair-
ness and consistency, labels undergo a thorough review by
two additional individuals, alongside random quality as-
sessments by multiple assessors.
Text Description Structure. We enhance JRDB-Social by
including text descriptions for each group to offer contex-
tual understanding. This aligns with the trend of combining
natural language understanding with computer vision, ben-
efiting tasks like image captioning. This enhancement also
has potential in Human-Robot interaction, helping robots
adjust behaviour based on group context, thus improving in-
teractions. We construct our sentences in the colour-coded
format, shown in the yellow box below.

3.1. Individual Level Attributes

The JRDB-Social dataset includes individual attributes, as
understanding these is crucial for studying diverse social
behaviours in groups and deepening insights into human
behaviour in social situations especially in social sciences
and psychology research. Additionally, in human-robot in-
teractions, awareness of individuals’ demographics aids in
personalizing the robot’s behaviour for more culturally sen-
sitive interactions. Therefore, in addition to the currently
available annotations of human body pose and atomic ac-
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Text Description Structure:[number of individu-
als], including attribute of each person involved
(e.g., Person 1:[age, gender, race], Person 2:[age,
gender, race], Person 3:[age, gender, race], and
so on). These individuals engage in activities on
[the content relates to group’s body position and
the presence of a salient scene content nearby] in
[a specific venue location] with the purpose of
[group’s goal].

tion in [17, 23], we annotated gender, age, and race in this
dataset. Under the gender category, the dataset distinctly
classifies individuals into two primary groups: Male and
Female. The age attribute is finely segmented into five dis-
tinct groups: Childhood (3-12 years), Adolescence (13-20
years), Young Adulthood (21-40 years), Middle Adulthood
(41-65 years), and Late Adulthood (66 years and above). In
terms of racial classification, the dataset adopts Alfred L.
Kroeber’s classification1 which is based on physical char-
acteristics. It includes Caucasian/White (light skin, varied
eye colours), Negroid/Black (dark skin, coiled hair), Mon-
goloid/Asian (almond-shaped eyes, black hair, varied skin
tones). Figure 3 illustrates attribute distributions within the
JRDB-Social dataset excluding impossible ones. As illus-
trated, male individuals predominate in the gender category.
The video, primarily captured in a university environment,
predominantly features individuals in the young adulthood
category, reflecting distribution of this category in real-life
situations. The racial breakdown shows equal representa-
tion from Caucasian and Asian populations, with a smaller
proportion representing the Black community. Figure 1
shows some samples.

3.2. Intra-Group Level Dynamic Interactions

The concept of multi-label interaction at the frame level
provides a detailed understanding of social dynamics within
social groups [17], offering detailed insights into simulta-
neous actions and gestures among individuals. These fine-
grained annotations are instrumental in training machine
learning models for the recognition of diverse social inter-
actions, especially in social navigation scenarios. Addition-
ally, the frame-level annotations facilitate behavioural stud-
ies, allowing researchers to examine in-depth the temporal
dynamics of interactions and how individuals engage with
each other in specific social settings. In JRDB-Social, we
provided multi-label fine-grained interaction annotation at
the frame level and categorized it into three distinct groups,
each encompassing various dimensions of shared experi-
ences. The first category, shown in purple in Figure 2,
focuses on shared physical activities, including behaviours

1https://en.m.wikipedia.org/wiki/Mongoloid
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Figure 2. Sorting interaction classes on a log-scale distribution,
displaying descending frame numbers for all data. Difficulty levels
indicated as E (Easy), M (Medium), and H (Hard).

with physical proximity and posture. The second, in dark
purple, involves joint engagement with external entities, of-
ten centred around interacting with objects together. The
third, in light pink, encompasses interpersonal exchanges
and gestures as part of social interactions. The distribution
of dynamic interaction classes for both training and test sets
is depicted in Figure 2. The vertical axis, presented on a
log scale, represents the number of frames. Notably, preva-
lent interactions include walking, standing, sitting together,
and engaging in conversations and less frequent activities
like pointing at something together and shaking hands well
reflect distribution biases in real-world daily scenarios. Ad-
ditionally, the accompanying pie chart illustrates difficulty
levels, with medium difficulty comprising the largest por-
tion at 36.64%, followed by hard at 34.2%, and easy at
29.2%, indicating an even distribution of difficulty. Dur-
ing the annotation process, interactions between individuals
within each group are meticulously annotated. We identify
the individuals participating, document the frame range of
the interaction, and to improve accuracy, integrate the indi-
vidual actions outlined in [17], aligning them with the cor-
responding interaction. More details about our protocols are
provided in supplementary materials.

3.3. Social Group Level Context

These annotations aim to provide a comprehensive under-
standing of social behaviour at the social group level. By

82%

13%

Age

Childhood Adolescence
Young Adulthood Middle Adulthood
Late Adulthood

45%45%

8%

Race

Asian Caucasian
Black Others

58%42%

Gender
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Figure 3. Statistics of individual attributes.
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including information beyond individual attributes and in-
teractions, the dataset becomes richer and more reflective
of real-world scenarios involving groups of people and con-
text. It encompasses the details about the group’s surround-
ing environment, their specific venue and aims and pur-
poses. Figure 4 illustrates a word cloud depicting labels for
each category. Further statistical details for each category
can be found in the supplementary materials.
Engagement of Body Position with the Content and
Salient Scene Content. These annotations contribute to a
contextual analysis of the physical engagement of the group
and add layers of context to the dataset. This involves the
examination of body position related to the content (BPC),
considering the majority of group members. Additionally,
it offers valuable insights into the presence of salient scene
elements (SSC) in their surroundings. To elaborate, the
BPC encompasses specifics regarding how body position is
linked to the content. For instance, sitting on a chair or
standing on the platform. On the other hand, SSC provides
information about the presence of dominant scene content
near the group. This includes observations like standing
near a pillar or counter. As the location of the group may
vary, we annotate this information at the frame level.
The Venue Location. This annotation offers information
about the locations where the group participates in activi-
ties, helping in modelling and predicting the movement pat-
terns of individuals and groups. This is essential for robots
to navigate through diverse environments, adapting their
behaviour based on the spatial context. These are classi-
fied into indoor spaces like cafeterias, dining halls, or food
courts, open spaces or corridors, rooms or classrooms, and
study areas. Furthermore, it includes outdoor categories
such as open areas or campuses and streets.
Group’s Aims and Purposes. These annotations provide
information at the social group level about the purpose be-
hind the formation and activities of each group, the dataset
becomes a valuable resource for advancing research in so-
cial understanding, behavioural analysis, and contextual
reasoning. Our categorization provides information from
the act of moving through spaces, utilizing corridors in nav-
igating, to routine travel in commuting, and aimless strolls
in wandering, the categories capture various facets of hu-
man interaction. Socializing emphasizes communal con-
nections, while studying, writing, reading, and working
highlighting focused intellectual activities. Discussing an
object or a matter centres on engaging conversations around
specific topics, and attending class, lecture, or seminar un-
derscores educational gatherings. Ordering and eating food
portrays communal aspects of meal-related activities, and
excursion adds a recreational dimension to the group’s aim.
Moreover, Waiting for someone or something demonstrates
the anticipation and patience associated with awaiting a per-
son or an event. In essence, this categorization offers nu-

Figure 4. Social group level word cloud in the dataset. Left: loca-
tion of body posture and objects. Top: group aim. Right: venue
locations. Larger words indicate higher frequency.

anced insights into the multifaceted dynamics of collective
human behaviour in diverse contexts. .

4. Experiments
In this section, we delve into the recent advancements of
large language models, particularly their progress in vision-
related aspects and multi-modal capabilities. Our objec-
tive is to explore the effectiveness of state-of-the-art multi-
modal Language Models (LLMs) using the JRDB-Social
benchmark. Our focus is to assess their ability to compre-
hend various complexities of human social behaviour across
different difficulty levels and conditions. Specifically, we
aim to evaluate their performance at individual, intra-group,
and social group levels.
Multi-modal LLMs Selection. For our evaluation, we
opted for prominent and well-established multi-modal mod-
els that have exhibited promising results in recent stud-
ies. This selection includes video-based models like Video-
LLaMA [24], VALLEY [43], and Otter [44]. Addition-
ally, our analysis incorporates image-based models, such as
MINIGPT-4 [46] and InstructBLIP [47]. This diverse set
ensures a comprehensive examination of the current state-
of-the-art in multi-modal language models.
Metric and Evaluation. For evaluating these models based
on textual descriptions in JRDB-Social, common metrics
like BLEU [50], ROUGE [51], and METEOR [52] are of-
ten used to measure overall sentence similarity. However,
these metrics may lack specificity when the focus is on key
entities such as gender, age, aims, venues, etc., embedded in
the hard-coded sentence structure. For instance, BLEU and
ROUGE lack precision by concentrating on n-gram overlap
without considering individual term precision, while ME-
TEOR, despite incorporating additional linguistic features,
is sensitive to parameter choices. To sidestep these limita-
tions arising from these metric limitations, we opt to assess
the models by prompting questions to extract named enti-
ties, such as coloured words in the text description struc-
ture, reflecting crucial elements of meaning. We then re-
formulate the problem as a single or multi-label classifica-
tion task. This approach aligns with the unique demands of
our task, providing a focused and rigorous evaluation frame-

22091



Multi-modal LLM Individual Level Intra-Group Level Social Group Level Overall
Gender Age Race Interactions BPC SSC Venue Purpose Average

Video-LLaMA (LLaMA-2 13B) [24] 0.7139 0.3069 0.2837 0.3253 0.1639 0.1252 0.2413 0.2595 0.3025
Video-LLaMA (LLaMA-2 7B) [24] 0.5200 0.3196 0.2308 0.3852 0.1642 0.1639 0.2147 0.3003 0.2874
Valley (LLaMA-1 13B) [43] 0.3991 0.2041 0.1253 0.1674 0.0364 0.0456 0.0904 0.2632 0.1603
Valley (LLaMA-2 7B) [43] 0.4658 0.1731 0.0905 0.2035 0.1115 0.0559 0.0695 0.2515 0.1400
OTTER (LLaMA-1 7B) [44] 0.1959 0.1131 0.0115 0.2761 0.0799 0.1242 0.0420 0.0411 0.1105
MiniGPT-4 (LLaMA-2 7B) [46] 0.7391 0.2204 0.2604 0.2068 0.1970 0.0978 0.2574 0.2736 0.2816
InstructBLIP (Vicuna-V1 13B) [47] 0.5860 0.2482 0.1875 0.0665 0.0639 0.2354 0.1636 0.1841 0.2169
InstructBLIP (Vicuna-V1 7B) [47] 0.6444 0.0697 0.2587 0.0937 0.1337 0.1174 0.2020 0.1880 0.2135

Table 1. Guided Perception Experiment: Comparing popular multi-modal LLMs across the JRDB-Social in F1 score for all sets. Optimal
results in bold, second best underlined. BPC = Engagement of Body Position’s connection with the Content, SSC = Salient Scene Content.

Multi-modal LLM Individual Level Intra-Group Level Social Group Level Overall
Gender Age Race Interactions BPC SSC Venue Purpose Average

Video-LLaMA (LLaMA-2 13B) [24] 0.3338 0.2543 0.3507 0.2786 0.0795 0.0238 0.2471 0.1792 0.1965
Video-LLaMA (LLaMA-2 7B) [24] 0.2177 0.2256 0.2984 0.2970 0.0637 0.0195 0.2705 0.1375 0.1645
Valley (LLaMA-2 7B) [43] 0.0215 0.0579 0.0122 0.0104 0.0025 0.0008 0.0449 0.0211 0.0217
MiniGPT-4 (LLaMA-2 7B) [46] 0.2344 0.2109 0.2619 0.0994 0.0829 0.0282 0.2432 0.1861 0.1684
InstructBLIP (Vicuna-V1 13B) [47] 0.0856 0.0856 0.0346 0.0542 0.0172 0.0267 0.1119 0.0778 0.0643
InstructBLIP (Vicuna-V1 7B) [47] 0.1111 0.1478 0.0686 0.0841 0.0314 0.0338 0.1457 0.0821 0.0881

Table 2. Holistic (Counting) Experiment: Comparing popular multi-modal LLMs across the JRDB-Social in F1 score for all sets. Optimal
results in bold, second best underlined. BPC = Engagement of Body Position’s connection with the Content, SSC = Salient Scene Content.

work that addresses the shortcomings of more generic tex-
tual metrics. Also, for evaluating interaction labels, we ap-
ply the same metrics. To assess the selected models’ perfor-
mance, we use accuracy and F1 score as metrics. While ac-
curacy measures overall correctness, the F1 score provides
a balanced evaluation of precision and recall, particularly
valuable in imbalanced scenarios, as observed in the JRDB-
Social dataset. While the F1 score results for entire data are
outlined here, more comprehensive details and accuracy re-
sults are provided in the supplementary materials.
Experimental Setup and Implementation Details. Gen-
erally, we conducted two separate experiments, Guided
Perception and Holistic, to investigate how multi-modal
LLMs perform under different difficulty conditions and lev-
els of guidance. In the guided perception experiment, we
use ground truth bounding boxes to direct the model’s fo-
cus to specific video regions, providing clear cues for ana-
lyzing areas of interest. In the holistic study, the model is
exposed to the entire video without external aids like bound-
ing boxes. This methodology allows the model to conduct
a thorough analysis of the video, relying solely on its in-
herent information, mimicking real-world scenarios where
detailed annotations might be lacking. Figure 6 shows this
study on three levels, and more detail is provided in sec-
tion 4.1 and section 4.2.
To enhance both reliability and performance, we imple-
mented a Five Ensemble Strategy. In this strategy, each
model undergoes five iterations, and the final output is de-
rived through the utilization of an aggregation strategy. Fur-
ther details regarding its implementation for both video-
based and image-based models can be found in the sup-

plementary materials. Additionally, in our guided per-
ception experiment for social group analysis, we explored
different cropping scales to identify the most effective
cropping region. Unlike individual or intra-group levels,
the model needed to account for a broader context be-
yond mere bounding boxes. This approach ensured the
model’s capability to encompass diverse contextual infor-
mation and maintain robustness across different scenarios,
adeptly adapting to scenes featuring both small and large
groups. Figure 5 displays the various scales using differ-
ent methods that utilize MiniGPT-4 (model LLaMA-2 7B).
Frame-level processing involves cropping videos based on
bounding boxes for each frame and resizing them uniformly
to 512× 512 pixels or 256× 256 pixels. In the fixed black
mask method, videos are cropped with non-object areas
masked in black. The object’s centre point is retained with-
out resizing across frames. The fixed without mask method
is akin to the fixed black mask method, but it maintains the
full context without using black masking on non-object ar-
eas. Considering the overall F1 average, it was observed
that the Frame-level method, with an F1 average of 0.1452
and a scaling factor of 2.5, outperformed both the Fixed-
Black Mask and Fixed W/O Mask methods. Consequently,
the Frame-level method is selected. More details have been
provided in the supplementary material.

4.1. Guided Perception

In this experiment, we employ ground truth bounding boxes
to crop regions of interest. The objective of this approach
is to aid the model in localization, directing its attention
to specific regions and evaluating its capability to detect the
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Multi-modal LLM Individual Level Intra-Group Level Social Group Level Overall
Gender Age Race Interactions BPC SSC Venue Purpose Average

Video-LLaMA (LLaMA-2 13B) [24] 0.9800 0.5657 0.7458 0.2786 0.2326 0.0771 0.2814 0.4788 0.4622
Video-LLaMA (LLaMA-2 7B) [24] 0.9800 0.5633 0.7482 0.3213 0.2177 0.0730 0.2810 0.4663 0.4564
Valley (LLaMA-2 7B) [43] 0.6958 0.4415 0.1629 0.2602 0.2298 0.0637 0.3350 0.4415 0.3288
OTTER (LLaMA-1 7B) [44] 0.8194 0.5290 0.5687 0.3053 0.2796 0.0913 0.4309 0.3198 0.4542
MiniGPT-4 (LLaMA-2 7B) [46] 0.8194 0.5290 0.5687 0.2796 0.0913 0.0282 0.4309 0.3198 0.4180
InstructBLIP (Vicuna-V1 13B) [47] 0.8493 0.6223 0.7663 0.3318 0.4045 0.1026 0.3197 0.4797 0.4846
InstructBLIP (Vicuna-V1 7B) [47] 0.7621 0.5408 0.6450 0.3081 0.2947 0.0711 0.3313 0.4326 0.4848

Table 3. Holistic (Binary) Experiment: Comparing popular multi-modal LLMs across the JRDB-Social in F1 score for all sets. Optimal
results in bold, second best underlined. BPC = Engagement of Body Position’s connection with the Content, SSC = Salient Scene Content.
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Figure 5. Exploring diverse cropping scales with MiniGPT-4 at
the group level in F1 score.

category at three distinct levels. For example, on an individ-
ual level, we query the models for the type of gender, age,
and race within specific areas of interest for each person.
At the intra-group level, we isolate each pair within a group
for the entire duration of their interaction. The model’s role
in this context is to observe the interaction type and discern
singular or multiple interactions taking place among these
pairs. At the social group level, the model is presented with
each isolated group throughout its entirety. Its task involves
recognizing the engagement of body position’s connection
to the content (BPC), identifying the proximity of signifi-
cant scene context (SSC), determining the venue where the
group is active, and comprehending the group’s purpose.
These prompts and processes are illustrated in Figure 6.
Based on the results presented in Table 1, the analysis re-
veals a consistently reliable performance in predicting in-
dividual attributes such as gender and age. However, the
detection of race proves to be more intricate, primarily due
to the subjective and complex nature of this attribute. No-
tably, Video-LLaMA and MiniGPT-4 stand out as the top-
performing models, attributed to the quality of the data on
which they were trained and their design framework. These
models exhibit promising results, particularly in tasks re-
lated to gender and age prediction. Nevertheless, even these
models, experience a decline in performance as the evalu-
ation progresses from the individual to intra-group and so-
cial group levels. This observed pattern signifies a signif-
icant challenge for the models in comprehending higher-
level social contexts. The intricacies associated with at-
tributes like body position’s connection with the content
(BPC) and salient scene context (SSC) contribute to the

limitations faced by these models, underscoring the ongo-
ing need for advancements to enhance their understanding
of diverse and complex social dynamics beyond individual
attributes. In this experiment, we explored the model’s ca-
pabilities by focusing on a limited region. However, the
vital question remains: can the model effectively capture
intricate details when presented with the entire scene? To
answer this query, we delve into a holistic experiment, ex-
plained below.

4.2. Holistic

In this experiment, the model receives the complete video.
The objective is to evaluate how well multi-modal LLMs
capture fine-grained information without any cropping or
additional assistance and explore their performance across
three distinct levels. To this end, we employed two ap-
proaches: the counting approach and the binary approach.
Counting Approach. In this approach, our central objec-
tive is to evaluate the model’s ability to identify detailed
information and quantify occurrences throughout an entire
video. For example, on an individual level, we analyzed
the count of females or individuals in young adulthood. At
the intra-group level, we inquired about the frequency of
diverse interactions between pairs. One instance is the ex-
ploration of the number of pairs sitting together in a video,
and this investigative process was reiterated for all interac-
tion labels. Similarly, this methodology is replicated at the
social group level. Figure 6 visually depicts this approach.
As indicated in Table 2, the experiment demonstrates a sig-
nificant decline in performance compared to the guided per-
ception experiment, Table 1. Valley (LLaMA-1 13B) and
OTTER (LLaMA-1 7B) models are excluded from Table 1
due to poor performance. This suggests that capturing in-
formation at this level of detail poses a substantial challenge
for these models. Moreover, the difficulty increases when
transitioning to a higher-level social group context, simi-
lar to the guided perception experiment. This observation
prompted us to simplify the task by assessing whether the
model can perceive fine-grained information or not. To ex-
plore this, we conducted a binary approach experiment.
Binary Approach. As previously mentioned, this approach
aims to evaluate the models’ ability to capture intricate de-

22093



What is the (gender, age, race) of the person in the center of the video?

The person in the center of the video is (female, young and mixed race)

What is the interaction between the people in the video? 

The video shows a group of people in a city, some of them are standing, 
while others are walking and talking together.

Guided Perception Holistic

The person is walking on the floor.

I am in a location in a large building, and my current location is the ground. 

The venue of the groups of people in the video is the open area.

The aim of the people in the video is unclear, however, several possible 
aims may have, including wandering, socializing, studying, etc.

• What is the aim of the groups of people in the video? 

• What are the (objects) situated close to the group in the video? 

• What is the venue location of the groups of people in the video? 

• Where is the location of the (BPC) in most individuals within the video? 

How many (attribute categories) are in the video?

How many pairs of people are (interaction category)? 

There are 2 male, 3 young adult, 3 Caucasian people in the video

There are 3 standing together in the video.

• How many groups of people located on (BPC category)? 

• How many groups of people are near the (SSC category)? 

• How many groups of people are at aim of (purpose category)? 
There are 1 table and 3 boards, etc in the video.

There are 2 groups with the aim of eating food in the video.

There are 1 floor and 3 chairs  in the video.

Do you see (attribute categories) in the video?

Do you see pairs of people are (interaction category)? 

• Do you see groups of people located on (BPC category)? 
• Do you see groups of people near the (SSC category)? 
• Do you see groups of people are at aim of (purpose category)? 

Yes, Yes, Yes, No, No.

C

B
Figure 6. Illustrating the Guided Perception experiment is depicted through cropped regions delineated by bounding boxes on the left image.
The colours—light pink, dark pink, and purple—signify the individual, intra-group, and social group levels, respectively, as detailed in
Figure 1’s colour legend. Holistic experiments are denoted by a green background for the Counting approach (C) and a yellow background
for the Binary approach (B).

tails without specifying their type and quantity. The purpose
of this assessment is to examine their level of understanding
achieved by simplifying the task. Similar to the counting
approach, the entire video is presented to the model, and
the query is simplified to a binary response, either Yes or
No. This process is visually depicted in Figure 6. Examin-
ing the outcomes of this experiment in Table 3, despite not
altering the input of the model (entire video), we observed
enhanced performance compared to the counting approach,
Table 2. The improvement may stem from the hallucination
problem [24, 44] present in the text encoder of these mod-
els, as the video encoder in this aspect works similarly to
the counting approach. However, even with the simplicity
of this approach, the models still encounter challenges in
capturing information at the intra-group and social context
levels. This implies that social group contexts pose chal-
lenges for multi-modal LLMs, and improvements in vari-
ous aspects, such as training on more challenging datasets
that offer finer-grained information, and developing a more
effective framework, are required.

5. Conclusion

This paper introduces JRDB-Social, a comprehensive
robotic dataset designed to investigate human social

behaviour within varied contexts. Annotations within the
dataset operate across three levels: individual, intra-group,
and group, providing detailed attributes, interactions, and
contextual descriptions. Leveraging recent advancements in
VLMs, the dataset was assessed to gauge their proficiency
in understanding human social behaviour in crowded
environments. However, findings suggest that VLMs
encounter challenges in meaningful visual perception and
reasoning on this dataset, particularly in tasks involving
complex social interactions. The observed weaknesses
may stem from design choices or differences in training
data. Thus, there is a need for further advancements in
these models to enhance their capability to capture nuanced
social understanding within diverse contexts.
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