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Abstract

Learned reweighting (LRW) approaches to supervised
learning use an optimization criterion to assign weights for
training instances, in order to maximize performance on
a representative validation dataset. We pose and formal-
ize the problem of optimized selection of the validation set
used in LRW training, to improve classifier generalization.
In particular, we show that using hard-to-classify instances
in the validation set has both a theoretical connection to,
and strong empirical evidence of generalization. We pro-
vide an efficient algorithm for training this meta-optimized
model, as well as a simple train-twice heuristic for care-
ful comparative study. We demonstrate that LRW with easy
validation data performs consistently worse than LRW with
hard validation data, establishing the validity of our meta-
optimization problem. Our proposed algorithm outperforms
a wide range of baselines on a range of datasets and do-
main shift challenges (Imagenet-1K, CIFAR-100, Clothing-
1M, CAMELYON, WILDS, etc.), with 1% gains using VIT-B
on Imagenet. We also show that using naturally hard exam-
ples for validation (Imagenet-R / Imagenet-A) in LRW train-
ing for Imagenet improves performance on both clean and
naturally hard test instances by 1-2%. Secondary analyses
show that using hard validation data in an LRW framework
improves margins on test data, hinting at the mechanism un-
derlying our empirical gains. We believe this work opens up
new research directions for the meta-optimization of meta-
learning in a supervised learning context.

1. Introduction
Overparameterized models, common in supervised learn-
ing [27], carry the risk of overfitting to training data. Typ-
ically, model generalization is measured on a validation
dataset separate from the training data, for purposes of hy-
perparameter selection. Increasingly, this validation dataset
is itself used as part of the learning objective in nested
formulations, e.g., for hyperparameter tuning via gradient
descent on the validation loss [11]. In particular, learned
reweighting (LRW) approaches learn importance weights

associated with training instances [14, 16, 17, 31, 32, 40]
or groups of training instances [25, 41] by optimizing
a weighted training loss alongside an unweighted meta-
loss on the validation data. This bilevel optimization
aligns training loss with the validation data distribution
via reweighting, a useful property in addressing covariate
shift [34], and for group DRO [9, 41]. Even for in-domain
test data, Ren et al. [31] show that using “clean” valida-
tion data with bilevel optimization can overcome significant
amounts of label noise in training data.

Thus the choice of validation set in a LRW paradigm can
greatly influence the quality and properties of the learned
classifier. We therefore ask the question: can we optimize
the choice of validation data in LRW so as to maximize gen-
eralization of the resulting classifier? We refer to this prob-
lem of validation set selection as meta-optimization, since it
produces data that is the input of another optimization (the
meta-learning approach underlying LRW). The closest re-
lated work to our proposal is [40] which constructs a valida-
tion dataset on the fly during training of an LRW classifier,
with a criterion of choosing representative instances.

Our primary hypothesis is that we can improve clas-
sifier generalization by using a validation set consisting
of hard-to-classify instances from the training distribution.
We therefore pose and formalize the problem of Meta-
Optimized LEarned REweighting (MOLERE) where the
partitioning of data into train and validation splits, and the
LRW classifier corresponding to that split, are jointly opti-
mized. We design an efficient algorithm to tackle this meta-
optimization, and make the following contributions:

• We formalize the problem statement of validation set op-
timization in learned reweighting (LRW) classifiers for
improved generalization. We prove that asymptotically
our optimization objective exactly achieves our stated
goal of maximizing accuracy on the hardest samples.

• We simplify the nested optimization of our proposal into
a tractable bi-level optimization with a min-max game be-
tween two auxiliary networks: a “splitter” that finds the
hardest samples, and a “reweighter” that minimizes loss
on those samples using LRW. We also provide a simple
train-twice heuristic that can be used for careful analysis

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

27600



of the choice of validation data in LRW.
• We show strict accuracy ordering of LRW models based

on validation set: easy < random < hard, demon-
strating the importance of optimizing LRW validation
sets. We obtain reliable gains over ERM across datasets
(e.g., 1% on Imagenet/VIT-B backbone), and in domain-
generalization (e.g., 1.36% on iWildCam dataset [4,
18]) and noisy-label settings (e.g., 4.2% on Clothing1M
dataset [37]). We outperform a range of baselines includ-
ing reweighting, meta-learning among others. Analyses
show improved margins on test set in MOLERE classi-
fiers, suggesting an explanation of our gains.

• We extend our results to natural hard samples as vali-
dation (Imagenet with Imagenet-R / Imagenet-A), show-
ing 1-3% gains on both in-domain and out-of-domain test
sets. This shows the value of our ideas even in scenarios
where we pay no additional cost for meta-optimization.

We hope that our work will be seen as an initial step in es-
tablishing the value of meta-optimization of meta-learning,
with our findings providing a strong proof-of-concept for
the general research direction.

2. Related Work
Importance weighting for robustness. There have been
several works on learning robust representations via exam-
ple re-weighting lately. Mostly, these work aim at avoiding
noisy labels in the train set by analyzing the effect of de-
creasing loss on a given instance on a clean validation set.
This line of work includes either learning a per-instance free
parameter [31] or learning a simple MLP network [32] to
predict importance of an instance based on its loss value.
However, the requirement of a clean validation set limits
their applicability to realistic scenarios. To deal with this,
a meta-learning based re-weighting scheme (Fast Sample
Reweighting [40]) was proposed based on generating some
sort of pseudo-clean data as a proxy validation set. It also
proposed certain approximations to make the training pro-
cess more computation efficient. On a different note, a re-
cent proposal called RHO-loss [24] proposed to select only
worthy points for training which increased generalization
property of the model, calculated as the difference of the
training loss and a hold-out set loss.

A recent line of work [16, 17] proposed weighting based
on context/relevance of an instance compared with the over-
all data distribution. These papers target slow temporal drift
in longitudinal datasets, and the development of better un-
certainty measures for selective classification, respectively.
In particular, Jain et al. [17], suggest that using target do-
main data in the validation set can improve domain shift
performance of classifiers.

Meta Learning. The sample re-weighting task using a
validation set comes under the umbrella of meta-learning
[15], which follows the learning-to-learn paradigm. It

is conceptually similar to model agnostic meta learning
(MAML) [10], which learns a single set of parameters
that can easily be customized (few-shot) to multiple tasks.
Learning these shared parameters involves a nested opti-
mization similar to the one presented here, and significantly
optimized for efficiency by recent work[28, 30, 42].

Probabilistic Margins. Recent work [22] showed that
the probabilistic margin in multi-class problems can be used
to improve how neural networks deal with adversarial ex-
amples. The margin is defined as the difference between
the probability of the true label and the largest of the re-
maining label probabilities, indicating the difficulty of clas-
sifying that instance. Liu et al. [22] propose re-weighting
training instances, in presence of an adversarial attack, in-
versely related to their probability margins.

Just Train Twice. A recent work [21] proposed an
effective strategy to improve sensitivity of ERM models
towards certain groups by training the ERM model in 2
stages. The first stage is a standard training procedure,
whereas the second stage involves giving more importance
to the incorrectly classified examples in the first stage
by up-weighting their loss in the aggregate loss term for
updating the parameters. This can be interpreted as similar
to giving more importance to low margin examples (here
essentially a hard separation between positive and negative).

3. Preliminaries: Learned ReWeighting

We work with learned reweighting (LRW) classifiers where
training data is reweighted in order to optimize some spec-
ified metric on validation data. The basic LRW formula-
tion [31] works with two datasets Str = {(xi, yi)}Ni=1 and
Sval = {(xi, yi)}Mi=1 (training & validation, respectively).
Given a desired loss function ℓ(y, ŷ), LRW learns a classi-
fier fθ(·), (with parameters θ) and an instance-wise weight-
ing function ϕ(·) that minimize following bi-level objective:

θ∗(ϕ) = argmin
θ

∑
(x,y)∈Str

ϕ(x)ℓ(y, fθ(x)),

s.t. ϕ∗ = argmin
ϕ

∑
(x,y)∈Sval

ℓ(y, fθ∗(ϕ)(x))
(1)

Notice that the validation loss is unweighted, while the
training objective is a weighted loss. Essentially, the above
bilevel objective computes an estimate of classifier per-
formance on the validation set, and optimizes it indirectly
via reweighting of training data to influence the learned
classifier. The weighted-loss-minimizing classifier fθ∗(·),
and the weights ϕ∗(·), are learned jointly, typically us-
ing alternating stochastic updates over minibatches to make
the learning tractable [31]; this is in line with other meta-
learning approaches such as MAML [10]. Following more
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recent work [16], we use an instance-dependent neural net-
work ϕ(x) for learning the training instance weights, in-
stead of free parameters [31].
Intuition: LRW has been used for overcoming training la-
bel noise [31, 32] and for handling covariate shift [16, 41].
In these cases, the validation set is assumed to be repre-
sentative of test samples (i.e., clean labels, or covariate-
shifted data, respectively). The intuition is that the learned
reweighting of the training loss aligns it with the (possibly
different) validation distribution in the process of indirectly
minimizing the meta-loss (Eq. 1). In particular, Shu et al.
[32] show analytically that “validation-like” instances are
upweighted. Thus, the validation set in LRW can be thought
of as a target for generalization, with the learned classifier
being optimized for performance on that target set.

4. MOLERE: Optimizing LRW models
4.1. Hypothesis and formal objective

Our primary hypothesis is that we can improve generaliza-
tion capabilities of supervised learning by combining two
ingredients: a) a learned-reweighting classifier, as described
in the previous section, and b) an optimized validation set
that strongly encourages desired properties in the reweight-
ing classifier. We refer to this idea as Meta-Optimization of
the Learned Reweighting framework.

In particular, we propose learning an LRW classifier with
hard samples as validation set, to improve accuracy and
generalization of learned classifiers. Since LRW by defini-
tion maximizes classifier performance on a given validation
set, we believe that this choice of validation set will max-
imize generalization. Thus, given a dataset for training a
predictive model, we need to 1) select the “hard instances”
from the dataset and separate it into a validation set, and 2)
train a classifier on the remaining data using this validation
set for LRW. Notice that hardness of instances is determined
in terms of the learned model itself; thus, formalizing the
above idea leads to a joint optimization problem of data par-
titioning (train, validation), and LRW training. We present
the formal problem below.
Objective: Let S = {(x, y)}N+M

i=1 be the available data,
and let Θ be the splitting function that splits S into train-
ing and validation datasets; to be precise, we let Θ(S) be
the validation set and Θ(S)c be its complement. MOLERE
aims to solve the following tri-level optimization problem

Θ∗ = argmax
Θ

∑
(x,y)∈Θ(S)

ℓ(y, fθ∗(ϕ∗(Θ),Θ)(x))

where ϕ∗(Θ) = argmin
ϕ

∑
(x,y)∈Θ(S)

ℓ(y, fθ∗(ϕ,Θ)(x))

s.t.θ∗(ϕ,Θ) = argmin
θ

∑
(x,y)∈Θ(S)c

ϕ(x)ℓ(y, fθ(x)).

(2)

In words: Find a data split, such that across all possi-
ble splits the LRW classifier learned on the split has max-
imal error on the chosen validation set. In practice, we
impose an additional constraint on the validation set size:
|Θ(S)|/(N + M) ≤ δ, where δ is some predefined frac-
tional constant.

4.2. MOLERE objective and generalization

We now study the asymptotic properties of our proposed
meta-optimization as N + M → ∞, as a means of gain-
ing theoretical insights into its generalization capabilities in
comparison to classical empirical risk minimization (ERM).
This analysis assumes a weighting function ϕ(·) dependent
on both x and y. Interestingly, our experiments revealed
similar performance between this formulation of ϕ and one
relying solely on x. The following proposition shows that
asymptotically MOLERE solves a robust optimization ob-
jective.

Theorem 1 (Asymptotics). Consider the tri-level optimiza-
tion in Equation (2). Suppose the weighting function ϕ(·),
and splitting function Θ(·) are dependent on both x and y.
Let’s suppose N + M → ∞, and limN,M→∞

M
N+M = δ.

Moreover, suppose the domains of ϕ, θ,Θ are very large
and contain the set of all measurable functions. Then the
objective of MOLERE is equivalent to

max
S:|S|=δ(N+M)

min
θ

∑
(x,y)∈S

ℓ(y, fθ(x)). (3)

Proof Sketch. The proof of the theorem relies on the ob-
servation that there exists a weighting function ϕ that can
transform any probability distribution P to any another dis-
tribution Q (as long as the support of Q is a subset of P ).
Using this observation, one can show that the second, third
level optimization problems in Equation (2) is equivalent to
following problem: minθ

∑
(x,y)∈Θ(S)c ℓ(y, fθ(x)).

A similar result holds when both Θ(·), ϕ(·) rely solely on
x. Intuitively, the above theorem shows that in the limit of
infinite samples, MOLERE identifies the hardest samples
in the training data, and learns a classifier that minimizes
the error on those samples. This is exactly the goal laid out
in our hypothesis above.
Connections to DRO. Interestingly, the objective in Equa-
tion (3) is the dual of the following Distributionally Robust
Optimization (DRO) objective [5]

min
θ

max
S:|S|=δ(N+M)

∑
(x,y)∈S

ℓ(y, fθ(x)). (4)

DRO is a well studied framework for learning robust mod-
els [8, 26]. However, to the best of our knowledge, dual
DRO is not studied in the literature; we will explore this
connection more deeply in future work.
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4.3. Efficient algorithm for validation optimization

Designing a tractable algorithm for meta-optimization runs
into two technical challenges: a) How can we learn to assign
instances to train and validation sets? and b) How do we ef-
ficiently solve the tri-level objective proposed in Sec. 4.1?
We address these two challenges in this section. First, we
use a second auxiliary network for soft-assigning instances
to train and validation datasets. Second, we collapse the
outer two loops of the trilevel objective into a minimax for-
mulation, and thereby reduce it to a bi-level optimization
problem. We describe each of these in order below.
Soft data assignment: Inspired by a recent work [3], we
use a partitioning network to predict probability for each
instance to be included in the validation set. At any point
in time, the “splitter” network outputs soft assignments
P(z|x, y) with z ∈ {0, 1} indicating whether the example
(x, y) belongs to the pseudotest set (z = 0) or the pseu-
dotrain set. The pseudotrain set is used to train a classi-
fier using standard cross-entropy. The splitter is then up-
dated to identify easy instances for the classifier and assign
them to the pseudotrain partition in the next round; this is
achieved by minimizing the cross-entropy between its soft-
assignment and classifier accuracy:

Lsplit = CE(Psplitter(zi|xi, yi), Iyi
(ŷ))

where ŷ = argmaxPpredictor(y|xi)
(5)

In order to maintain the label distribution and train-to-test
ratio, two regularizers [3] are added to penalize shift from
the prior distribution, and to push label margins in the train-
ing split and testing split close to the original label margin
(see supplementary for details).
Meta-optimization with min-max objective: To simplify
the tri-level optimization in Sec. 4.1, we propose a bi-level
approximation where the outer loop combines the data split-
ting and instance reweighting objectives. Specifically, we
propose a min-max game between the splitter (parametrized
by Θ) and the meta-network (parametrized by ϕ), where
the splitter has to maximize validation set error whereas in-
stance weights are focused on minimizing it:

Θ∗, ϕ∗ =argmax
Θ

min
ϕ

∑
(x,y)∈Sc

t

(
ℓ(y, fθ∗(ϕ,Θ)(x))− Lsplit

)
where θ∗(ϕ,Θ) = argmin

θ

∑
(x,y)∈St

ϕ(x)ℓ(y, fθ(x))

(6)
where the set St = {(x, y) : (x, y) ∈ S, I{Θ(x, y) > 0.5}}
and Sc

t = S \ St, I denotes the indicator function. The
overall algorithm updates the splitter and instance weight-
ing network once every Q steps of classifier update, and
also regularizes the splitter with Ωratio+Ωld at set intervals
(every R steps). The complete description of this method is
provided in Algorithm 1 and analysis of the loss function

at the outer level, derivation of update equations for all pa-
rameters (Θ, ϕ, θ) are provided in the supplementary. Both
the instance weight network and Splitter are parameterized
as neural networks. The meta-network for instance weights
predict the weight for a training instance (xi, yi) by using
(xi) as input, wi = gϕ(xi) and the Splitter predicts a proba-
bility of (xi,yi) being in the train set by taking both of them
as inputs zi = gΘ(xi, yi). In experiments, we refer to this
end-to-end optimization method as LRWOpt.

Algorithm 1 LRWOpt: The Overall One-Shot Algorithm.

Require: θ, Θ, ϕ, learning rates (β1, β2, β3), S, N , M .
Ensure: Robustly trained classifier parameters θ.

1: Randomly initialize θ, Θ and ϕ;
2: initialize ge = 0; ▷ Difference b/w train and val error
3: for e=1 to MaxEpochs do
4: Str,Sval = GenerateSplit(D,Θ)
5: for b = 1 to M//m do ▷ m is the batch size
6: {(xv

i , y
v
i )}mi=1 = SampleMiniBatch(Sval,m);

7: Θ← Θ− β1∇Θ

∑
(Lsplit − ℓ(yvi , fθ(x

v
i )))

8: ϕ← ϕ− β2∇ϕ

∑
(ℓ(yvi , fθ(x

v
i ))− Lsplit)

9: for j = 1 to Q do
10: {(xi, yi)}ni=1 SampleMiniBatch(Dt, n);
11: θ ← θ − β3∇θ

∑
gϕ(xi)ℓ(fθ(xi), yi);

12: end for
13: end for
14: if

∑
ℓ(yvi , fθ(x

v
i ))−

∑
ℓ(yi, fθ(xi)) <ge then

15: break;
16: end if
17: ge =

∑
1
M ℓ(yvi , fθ(x

v
i ))− 1

N

∑
ℓ(yi, fθ(xi))

18: end for

4.4. A simple train-twice heuristic

We now describe a simple train-twice heuristic that can be
used to establish the importance of validation set optimiza-
tion in LRW. We first train an ERM classifier on the avail-
able training data, and use the probabilistic margin (PM) as
a proxy for instance hardness:

PM(x, y, θ) = py(x, θ)− max
j,j ̸=y

pj(x, θ) (7)

Here θ denotes the ERM classifier’s parameters. This crite-
rion was used to manually reweight adversarial examples in
recent work [22]. Although this proxy score is inexact1, it
nevertheless allows us to design interesting heuristic LRW
variants based on its rank-ordering of training instances: (1)
LRW-Hard, where we use the lowest margin instances as
validation data, and the rest of the instances as training data,
(2) LRW-Easy, in which the highest margin instances are

1For instance, it measures instance hardness under an ERM classifier,
not the to-be-trained LRW model; further, an overtrained classifier may
give incorrectly overconfident margins [21].
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Figure 1. Robustness analysis on benchmark datasets. Left: Comparing different LRW variants, based on the choice of validation set
(Easy, Random, Hard, corresponding to the rank-ordering of training data by probabilistic margin of an ERM classifier). y-axis shows
accuracy gains over ERM for each dataset (x-axis). We see consistent ordering of performance, with LRW-Easy < LRW-Random <
LRW-Hard, showing the importance of validation set optimization. Right: Comparing against other re-weighting methods. The figure
shows that our proposal (LRW-Hard) outperforms the other reweighting techniques on average, with fast sample re-weighting (FSR) begin
competitive in some datasets. In-1K corresponds to ImageNet-1K. For absolute accuracy values refer supplementary.

used as validation data, and (3) LRW-Random, a control
which uses a randomly selected validation set that does not
depend on the ERM margin.
We can use these variants to quantify the impact of perturb-
ing the validation set in LRW, and to provide an existence
proof of validation optimization techniques that materially
improve learned classifiers. In particular, we expect to see
a clear ordering of classifier test accuracy – LRW-Easy <
LRW-Random < LRW-Hard.

5. Experiments
We perform extensive experimentation on multiple classi-
fication tasks including distribution shift benchmarks. For
all datasets, if a train-validation split is already available,
we use the training data for the ERM classifier in the train-
twice heuristic before pooling, ranking, and repartitioning.
For the end-to-end optimization, we start with pooled train-
validation data and simultaneously learn the data splits and
the corresponding LRWOpt model.

5.1. Datasets

We use popular classification benchmarks including
CIFAR-100 [20], ImageNet-100 [35], ImageNet-1K [7],
Aircraft [23], Stanford Cars [19], Oxford-IIIT Fine-grained
classification (Cats v/s Dogs) [29] and Diabetic Retinopa-
thy (DR) dataset. Furthermore, for OOD analysis we use
the ImageNet-A [13], ImageNet-R [12] datasets for mod-
els trained on ImageNet-1K. We also use the Camelyon
[2], iWildCam [4] dataset from the widely popular WILDS
benchmark [18] and also the country shifted test set for the

DR [1] dataset. We further analyze for robustness in pres-
ence of instance dependent noise on the noisy version of
CIFAR-10 dataset (Inst.C-10) proposed by Xia et al. [36]
and Clothing-1M [37] dataset. Please refer supplementary
(supp.) for more details, setup for these datasets.

5.2. Baselines

Along with ERM, we also compare our method against vari-
ous re-weighting based methods designed for improving ro-
bustness or handling noisy scenarios. These include learned
re-weighting methods: MWN [32], FSR [40], L2R [31],
MAPLE [41], BiLAW [14], GDW [6], StableNet [39] along
with Margin Based Reweighting (MBR) [22] and Rho-Loss
[24]. Please refer supp. for more details regarding them.

6. Results
6.1. In-Distribution Generalization

6.1.1 MOLERE improves classification accuracy

Figure 1 (left) shows the LRW advantage (gains over
an ERM baseline) for a range of datasets. Shown are
4 alternatives–LRW-Easy, LRW-Random, and LRW-Hard,
corresponding to easy, random, and hard validation sets per
the train-twice heuristic (Sec. 4.4), and LRWOpt, which is
the end-to-end optimization of LRW classifier and train-
validation split (Sec. 4.3). Refer supplementary for absolute
accuracy values.
• Gains vs ERM are strictly ordered in nearly all datasets–

LRW-Easy < LRW-Random < LRW-Hard–robustly con-
firming our hypothesis that validation sets in LRW classi-
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Figure 2. OOD generalization. Left: Comparison of LRW variants on domain shift benchmarks. The ordering between the validation
selection methods is reconfirmed on domain shift benchmark datasets as well, suggesting that earlier gains are not via overfitting to training
distribution. Right: Comparing against other re-weighting methods. The figure shows that our proposal (LRW-Hard) outperforms the other
reweighting techniques on average, with fast sample re-weighting (FSR) begin competitive in some datasets. For absolute values refer supp.

fiers need to be optimized. The difference between LRW-
Hard and LRW-Easy is over 2.5% relative gain for Ima-
genet & CIFAR-100, and 1.6% relative for Clothing-1M.

• LRW-Random shows modest gains over ERM in most
datasets2. LRW-Hard shows significant gains, underscor-
ing the benefit of combining LRW with validation set
optimization – 0.8% relative gain on Imagenet, 1.3% on
Clothing-1M, 2.15% relative on CIFAR-100.

• The end-to-end LRWOpt matches or exceeds LRW-Hard,
showcasing its effectiveness without the need for training
twice. On a minority of datasets, LRW-Hard is nominally
better; we believe this is due to the small-sample nature
of real-world datasets, and attendant estimation noise.

Although the presented accuracy is on unseen test sets,
a concern may be that LRW-Hard overfits to the training
data distribution and results in brittle classifiers. To address
this, we performed a number of experiments on datasets
with matched out-of-domain test sets (Diabetic retinopa-
thy [1, 33], Camelyon [2], WildCam [4]) in next subsection.

6.1.2 MOLERE outperforms existing re-weighting
baselines

We now compare our LRWOpt method against other
reweighting methods– FSR [40]) , MBR [22], MAPLE [41],
MWN [32], StableNet [39], BiLAW [14])–see Fig. 1 (right)
for more details. While FSR, RHO-Loss, MBR, MAPLE,
StableNet and BiLAW are proposals in the literature for
learned reweighting of the training data (via meta-learning)

2Previous results [31] had shown neutral or slightly negative gains over
ERM, focusing chiefly on training with noisy training labels + clean val-
idation data. The improvement in our results are driven by the use of the
meta-network.

in order to address various clean- and noisy-label scenar-
ios, MBR is an extrapolation of a proposal for ad-hoc up-
weighting of adversarial examples alone [22], for increased
robustness against those specific adversarial attacks. In sim-
ilar spirit, the proposal “just train twice” [21] also suggests
an ad-hoc upweighting of poor performing instances in a
second round of training. RHO-loss [24], on the other hand,
follows the harder version as against all these methods and
selects only some points from a batch which minimize the
holdout set loss for efficient training.
On the datasets tested, we see that LRWOpt clearly outper-
forms all these baseline methods consistently across all the
datasets. It is followed by MAPLE, StableNet which are
designed keeping group/OOD robustness in mind. FSR and
Rho-Loss perform similar to ERM only. Interestingly, MBR
and MWN are among the worst performers, showing that it
is insufficient to simply upweight instances based on a first-
round estimate of margin and the commonly followed bi-
level optimization procedure by using free-parameters/loss
based re-weighting, even though capable of providing un-
biasedness, is not sufficient and requires another level of
optimization for finding the appropriate validation set.

6.2. Out-Of-Distribution (OOD) generalization

We further evaluate the robustness of our learned repre-
sentations on the standard out-of-distribution datasets from
the Wilds benchmark namely the camelyon [2] and the
iwildcam [4] datasets along with the Diabetic Retinopathy
dataset with a country shifted test set (APTOS test dataset)
[1]. For the first two, 10% examples from the train set,
sampled randomly, are used as val set. For the last one, a
separate validation set, with same domain as the train set, is
provided. Refer supplementary for more details regarding
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the dataset details and our evaluation setup. Furthermore,
we also analyze the performance on the ImageNet-A
dataset by using both training and validation data from
ImageNet-1K. Our primary goal here is to check whether
the gains we saw above are primarily driven by in-domain
learning, or a broader improvement in generalization
capacity over the existing learned reweighting methods –as
a result, we restrict ourselves to comparison among ERM,
the LRW variants along with LRWOpt and the re-weighting
baselines, rather than the substantial literature on domain
shift. Fig. 2 (left) confirms that our learned classifiers
generalize better to domain shift data as compared to
ERM classifiers; further, the ordering between the different
validation datasets is largely preserved. Fig. 2 (right)
provides evaluation of our methods and other re-weighting
baselines. These include the standard bi-level optimization
based ones like MWN, FSR along with ones designed for
OOD generalization/robustness like MAPLE, StableNet,
Rho-Loss and MBR. It can be observed that our method
surpasses all of these baselines thereby showing the impor-
tance of validation set optimization problem for the bi-level
optimization based re-weighting methods, introduced in
the paper. StableNet comes out to be the closest competitor
of our method which has been designed explicitly for OOD
learning. Rest all the re-weighting methods perform similar
to ERM with minor gains/losses. Absolute accuracy values
for this analysis are provided in the supplementary.

6.3. Practical Label Noise Settings

We now study the noisy label setting with a focus on real-
world label noise using datasets like Clothing1M [37], and
noisy CIFAR-10 (Inst. C-10 [36]), which contain instance
conditioned noise as against randomly flipping labels or
adding uniform noise. This noise can be treated as a mea-
sure of instance hardness rather than labeling error (refer
supplementary for more details). Table 3 compares LR-
WOpt method against bi-level optimization approaches like
MWN, FSR, L2R, GDW which although specifically de-
signed for noisy labels have been primarily tested on la-
bel flipping, uniform noise data. We also compare against
MAPLE, designed for general robustness. On Inst. C-10,
our method clearly surpasses all baselines, with 1.53% ac-
curacy gain. On Clothing-1M, we show about 0.85% gain
over the best performing GDW baseline. For other noisy
settings like random label flips, prior work on outlier robust
DRO [38] has shown good results using loss clipping (e.g.
exclude k% of highest loss as label noise), which could be
co-opted into our work.

6.4. Skewed Labels

We now study the skewed label setting, comparing against
instance based reweighting schemes proposed with this set-

Method Easy Hard Random LRWopt MWN ERM

Acc. 83.17 85.09 83.87 84.94 84.02 84.11

Table 1. ImageNet-1k dataset with a ViT-B/16 pretrained back-
bone. We compare various versions of our method with the ERM,
Meta-Weight and l2s baselines.

class skew 200 50 10 1

MWN [32] 40.11 ± 0.9 48.67 ± 0.7 61.32 ± 0.6 74.23 ± 0.3
FSR [40] 38.04 ± 0.8 45.12 ± 0.9 58.38 ± 0.6 74.68 ± 0.2
GDW [6] 40.36 ± 1.0 48.89 ± 0.8 61.67 ± 0.5 74.41 ± 0.4

LRWOpt 42.33 ± 0.8 50.77 ± 0.7 63.28 ± 0.8 75.12 ± 0.3

Table 2. Comparison, on CIFAR-100 dataset, of our LRWOpt
method with existing meta-learning based reweighting methods in
a label skew setup for which these methods were defined.

MWN FSR L2R MAPLE GDW Ours

Inst. C-10 65.89 67.12 70.21 70.34 69.12 71.87
Clothing-1M 72.79 72.07 72.22 71.67 73.12 73.97

Table 3. Instance-dependent noise. ImageNet-1k dataset with a
ViT-B/16 pretrained backbone. We compare various versions of
our method with the ERM, Meta-Weight and l2s baselines.

ting in mind (Meta-Weight-Net, FSR and another recently
proposed re-weighting method GDW [6]). Table 2 shows
the results for this analysis on the CIFAR-100 datasets with
various skew levels ranging from 1 to 200. It can be ob-
served that our LRWOpt significantly outperform the exist-
ing loss based reweighting methods at all of the skew levels
showing accuracy gains upto 2.22%.

6.5. MOLERE scales to large pretrained models

We further analyze the LRW-Hard, Easy and Random meth-
ods along with the ERM baseline on ViT-B/16 pretrained
backbone trained using these techniques and evaluated on
the ImageNet-1K dataset. Table 1 shows the results from
this experiments. Again LRW-Hard emerges the winner
and improves significantly (around 1%) w.r.t. other meth-
ods and the baseline advocating robustness using hard ex-
amples. Furthermore, there is 1.92% difference in accuracy
between LRW-Easy and LRW-Hard, even though we warm-
started all the techniques with a pretrained backbone, show-
ing the sensitivity of techniques to choice of validation set.

6.6. Leveraging OOD val set: A heuristic solution

We now turn to the use of known hard instance, or OOD,
datasets when available, in the MOLERE context. For
the well-studied Imagenet-1K dataset, two datasets are
frequently used to gauge generalization properties of
learned classifiers – IN-A (“natural adversarial instances”,
examples known to be misclassified by a trained Resnet-50
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Figure 3. MOLERE improves margins of learned classifiers. (a,b): paired margin deltas between LRWOpt and ERM are moderately
right-skewed with mean/median greater than zero. (c,d): As a function of ERM margin, clear separation seen between LRW-Hard (better)
and LRW-Easy (worse) in terms of margin gain over ERM (errorbars are SEM). All results on unseen test data; Imagenet-100, CIFAR100
shown for brevity, with similar results for other datasets in appendix.

model), and IN-R (renditions of objects, such as drawings,
paintings, sculptures, etc). For each of these, we used a
portion of the dataset as LRW validation set, and retained
another portion for testing. Table 4 shows the results of this
study. We report the following two surprising results: (1)
our approach outperforms the baseline ERM classifier on
not just the OOD test set, but also on the in-domain test set
(1.7-3% and 0.5-0.7% gains respectively), and (2) simply
adding the OOD data to the train set only moderately
improves OOD test set performance while degrading ID
accuracy. These findings were replicated for both IN-A and
IN-R as LRW validation sets, underscoring the real-world
applicability of our findings, on large-scale datasets.

IN-R val (ResNet50) IN-A val (ResNet152)
IN1K Test INR Test IN1k Test INA Test

LRWOpt + INR val 76.14 49.1 78.12 7.9
ERM (IN1K) 75.65 46.1 77.31 6.2

ERM (IN1K+INR) 74.89 47.4 77.08 6.6

Table 4. Natural hard examples as validation. LRW classifiers
on Imagenet (IN1k) data and OOD validation sets (IN-A & IN-R
respectively) outperform ERM on both in-domain and OOD test
sets. Simply augmenting training data of ERM baseline does not
match this (see text for details).

6.7. Margin maximization via meta-learning

We present empirical evidence showing that MOLERE has
a margin maximization effect, i.e., the learned classifiers
have wider margins than ERM classifiers. Since our valida-
tion data is selected to be low-margin instances, our LRW
classifier upweights, and improves performance on, training
instances most similar to the low-margin validation set. 3
shows two views of margin differences between MOLERE
and ERM on the test set, to confirm this expectation3. Pan-

3We show Imagenet-100 & CIFAR100 for brevity; findings consistent
across all datasets (see Appendix).

els (a,b) shows a histogram of paired margin differences be-
tween ERM and LRWOpt, indicating a modest right-skew
with mean & median to the right of 0. Panels (c,d) shows
LRW-Hard and LRW-Easy deltas w.r.t. ERM, averaged
over ERM margin buckets (mean and S.E.M. errorbars)–
across the board (i.e., for most values of ERM margin),
LRW-Hard contrasts with ERM better than LRW-Easy.

Further details on Algorithm 1, proof of Theorem 1, the
time complexity of the proposed scheme compared to ERM,
the training setup, ablation study over the validation set se-
lection/loss, and discussion regarding the early-stage per-
formance of the proposed scheme are provided in the sup-
plementary.

7. Discussion & conclusion

We proposed the novel idea of optimizing the choice of val-
idation data in a learned-reweighting setting, and showed
that it gives significant gains over ERM on a range of
datasets and domain generalization benchmarks. In partic-
ular, in most experiments on clean data, we saw a clear or-
dering between choosing easy, random, and hard samples
as validation data in an LRW setup, with the latter perform-
ing best and delivering consistent gains over ERM. This or-
dering provides broad support to our primary hypothesis:
meta-optimization of the metalearning workflow in LRW
is an important area of research with potential for substan-
tial impact. Our specific heuristic of choosing low-margin
points is a simple, straightforward instantiation of what we
believe is a family of optimization algorithms that can be
brought to bear on the general problem of optimizing meta-
learned classifiers. Indeed, our heuristic is not competitive
under very high label noise scenarios, suggesting the need
for follow-on work that explores more formal, optimization-
driven approaches towards this problem. We are also ex-
cited about elucidating the theoretical basis of observed
gains in the MOLERE framework.
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