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Figure 1. Zero-training No-latency interactive video generation. PEEKABOO allows users to control the output (object size, location
and trajectory) for any off-the-shelf video diffusion models, through specially designed masking modules. First row shows a panda playing
PEEKABOO by following an expanding mask in left direction.

Abstract
Modern video generation models like Sora have

achieved remarkable success in producing high-quality
videos. However, a significant limitation is their inability
to offer interactive control to users, a feature that promises
to open up unprecedented applications and creativity. In
this work, we introduce the first solution to equip diffusion-
based video generation models with spatio-temporal con-
trol. We present PEEKABOO, a novel masked attention mod-
ule, which seamlessly integrates with current video genera-
tion models offering control without the need for additional
training or inference overhead. To facilitate future research,
we also introduce a comprehensive benchmark for interac-
tive video generation. This benchmark offers a standard-
ized framework for the community to assess the efficacy
of emerging interactive video generation models. Our ex-
tensive qualitative and quantitative assessments reveal that
PEEKABOO achieves up to a 3.8× improvement in mIoU
over baseline models, all while maintaining the same la-
tency. Code and benchmark are available on the webpage.

1. Introduction

Generating realistic videos from natural language descrip-
tions is a challenging but exciting task that has recently
made significant progress [4, 20, 35, 38, 40]. This is largely
due to the development of powerful generative models and
latent diffusion models (LDMs [32]), which can produce
high-quality and diverse videos from text. These models
have opened up new possibilities for creative applications
and expression.

As the generation quality continues to improve, we can
expect more innovation and potential in this domain. An
important aspect is to enable more interactivity and user
control over the generated videos (or better alignment), by
allowing the user to control the spatial and temporal aspects
of the video, such as the size, location, pose, and movement
of the objects. This enables users to express their creativity
and imagination through generating videos that match their
vision and preferences. It can also be useful for various
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applications, such as education, entertainment, advertising,
and storytelling, where users can create engaging and per-
sonalized video content.

While current models are capable of producing tem-
porally and semantically coherent videos, the user cannot
have spatio-temporal control [41]. Moreover, these models
sometimes fail to produce the main object in the video [1].
In order to control the output of videos interactively, a
model would need to incorporate inputs about spatial lay-
outs into its generation process. One set of approaches to
achieve spatial control on the network output involves train-
ing the entire network or specialized adaptors on spatially
grounded data [28, 39]. However, such methods involve re-
training which is resource and data intensive, limiting their
access to the wider community. This raises the question -
Can we create a training-free technique that can introduce
interactivity through desired control in videos while utilis-
ing large scale pretrained Text-to-Video (T2V) models?

In this work, we propose PEEKABOO, a training-free
method to augment any off-the-shelf LDM based video-
generation model with spatial control. Further, our method
has negligible inference overhead. For control over indi-
vidual object generation, we propose to use local context
instead of global context. We propose an efficient strat-
egy to achieve controlled generation within the T2V infer-
ence pipeline. PEEKABOO works by refocusing the spatial-,
cross-, and temporal-attention in the UNet [34] blocks.

Figures 1, 3 and 5 demonstrate outputs that our method
produces for a variety of masks and prompts. Our method
is able to maintain a high quality of video generation,
while controlling the output spatio-temporally. To evalu-
ate the spatio-temporal control of video generation method,
we propose a new benchmark by adapting an existing
dataset [26], and curating a new dataset for our task (Sec-
tion 5.1.1), and proposing an evaluation strategy for further
research in this space. Finally, we show the versatility of
our approach on two text-to-video models [38] and a text-
to-image model [33]. This demonstrates the wide applica-
bility of our method. In summary:
• We introduce PEEKABOO which i) allows interactive

video generation by inducing spatio-temporal and mo-
tion control in the output of any UNet based off-the-shelf
video generation model, ii) is training-free and iii) adds
no additional latency at inference time.

• We curate and release a public benchmark, SSv2-ST for
evaluating spatio-temporal control in video generation.
Further, we create and release the Interactive Motion Con-
trol (IMC) dataset to evaluate interactive inputs from a
human.

• We extensively evaluate PEEKABOO on i) multiple evalu-
ation datasets, ii) with multiple T2V models (ZeroScope
and ModelScope) and iii) multiple evaluation metrics.
Our evaluation shows upto 2.9× and 3.8× gain in mIoU

score by using PEEKABOO over ZeroScope and Mod-
elScope respectively.

• We present qualitative results on spatio-temporally con-
trolled video generation with PEEKABOO, and also show-
case its ability of to overcome some fundamental failure
cases present in existing models.

2. Related Work
2.1. Video Generation

Text-based video generation using latent diffusion model
has taken a significant leap in recent years [4, 8, 15, 16,
35, 44]. Make-a-video [35] introduced the 3D UNet archi-
tecture, by decomposing attention layers into spatial, cross
and temporal attention layers. Further progress in this gen-
eration pipeline was made by [8, 15, 17, 44], while keep-
ing the core three attention-layer architecture intact. Al-
though these works focus on generating videos with high
relevance to the text input, they do not provide spatio-
temporal control in each frame. More recent works have
tried to equip models with this ability to control generation
spatio-temporally. Such methods have integrated guidance
from depth maps [12], target motion [7, 18] or a combina-
tion of these modalities to generate videos [39]. However,
all these works either require re-training the base model or
an external adapter with aligned grounded spatio-temporal
data, which is a challenging and expensive task.

On the other hand, zero-training works include
Text2video-zero [20], which integrates optical flow guid-
ance with image model to get consistent frames, Con-
trolVideo [43], which incorporates sequence of supervising
frames (depth maps, stick figures etc.) to control the mo-
tion of the video, and Free-Bloom [19], which combines a
large language model (LLM) with a text-to-image model
to get coherent videos. However, these methods extend
specialized image models which were trained on grounded
data, and cannot be used with off-the-shelf video-generation
models. The closest method to our work is a concurrent
work [24]. The paper uses an LLM to generate bounding
box co-ordinates across scenes for an object in the prompt.
They use an off-the-shelf video generation model in con-
junction with a special guidance module. However, their
work has a latency overhead due to extra steps in special
guidance module which is absent in our method.

2.2. Controllable Text to Image generation

Recent works have explored incorporating spatial and
stylistic control while generating images from text using
diffusion models. These methods can broadly be catego-
rized into those requiring training of the model [22], and
training-free methods [1, 5, 11, 23, 31]. The former line of
works require large amounts of compute resources, as well
as spatially grounded data to train their models. The latter
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Figure 2. PEEKABOO Module: Our method proposes converting attention modules of an off-the-shelf 3D UNet into masked spatio-
temporal mixed attention modules. We propose to use local context for generating individual objects and hence, guide the generation
process using attention masks. For each of spatial-, cross-, and temporal-attentions, we compute attention masks such that foreground
pixels and background pixels attend only within their own region. We illustrate these mask computations for an input mask ( size 2×2 and
3 frames) which changes temporally as shown on the left. Green pixels are background pixels and orange are foreground. In the attention
masks, both green and orange pixels have a value of 1, and gray pixels have a value of 0. We add the colors for ease of exposition. This
masking is applied for a fixed number of steps, after which free generation is allowed. Hence, foreground and background pixels are hidden
from each other before being visible, akin to a game of PEEKABOO. Best viewed in color.

either try to shape the spatial and cross-attention maps using
energy function guided diffusion, or through masking. Our
method is hence closer to the second type of works, how-
ever, directly extending these to videos is non-trivial due to
the spatio-temporal nature of video generation.

Guided Attention The idea of guiding attention maps
to control the generation in the image domain has gained
popularity recently. Agarwal et al. [1] focus on minimiz-
ing overlap in attention maps for different prompt words,
maintaining object information across diffusion steps. Ep-
stein et al. [11] suggest various energy functions on cross-
attention maps to control spatial properties of objects via
guided sampling. Phung et al. [31] extend this by ensur-
ing both cross and self-attention maps accurately represent
objects, achieving this through optimized noise and seg-
mented attention. Such optimization based methods have
inference time overheads, in contrast with our method. Cao
et al. [5] uses thresholded cross-attention maps of the object
tokens as masks for self-attention, and ensures that fore-
ground pixels only interact with other pixels within the fore-
ground. Their method also requires multiple diffusion infer-
ence calls, or requires a source image as an input. Further,
they apply their technique only for controlling the pose or
actions of objects, which is orthogonal to our task.

3. Preliminaries: Video Diffusion Models

Diffusion models [36] are generative models that generate
images or videos through gradually denoising random gaus-
sian noise. The most effective amongst these are Latent
Diffusion models (LDMs) [32] including Stable Diffusion.
LDMs have two components: First is an image compression
auto-encoder, which maps the image x to and back from a

lower dimensional latent z. Second component is a Denois-
ing Autoencoder fθ(z) which operates in the latent space
and gradually converts random noise to the image latent.

Text conditioning Most current text-to-video methods
utilize a conditional latent diffusion model which takes a
text query as input [29, 35, 38]. The denoising autoencoder
is thus conditioned on the text caption c as

  \label {eq:denoising} \vz _{t+1} = f_\theta (\vz _t | \vc ),    (1)

where fθ is a 3D UNet [34]. During inference, the input
noise is iteratively cleaned and aligned towards the desired
text caption. This is achieved by including a cross attention
with the text embedding.

4. PEEKABOO

Spatio-temporal conditioning For interactive genera-
tion, the denoising should also be conditioned on the user-
desired spatial location and movement of the objects in the
video. This is rather complicated, because unlike Equation
1 where the entire latent zt is conditioned on c, in this set-
ting, parts of the video have to be conditioned on parts of
the caption. Note that this would become a conditional dis-
tribution with multiple conditions.

A possible solution is to encode the extra conditions as
grounding pairs (spatio-temporal volume, text embedding)
and pass them as context tokens in the cross attention layer,
and train accordingly, taking inspiration from the image
based method Gligen [22] or even Flamingo [2]. On the
other hand, we want to explore using a frozen fθ.

4.1. Masked Diffusion

We draw a parallel with the segmentation problem, which is
the inverse of spatio-temporal conditioned generation prob-
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lem. In particular, we take inspiration from MaskFormer [9]
and Mask2Former [10] who proposed to formulate segmen-
tation as a mask classification problem. This formulation
is widely used and accepted, not just for segmentation but
even detection [21] and unified models [45].

Cheng et al. [10] propose to split segmentation into
grouping into N regions which are represented with bi-
nary masks. Hence, Cheng et al. [10] advocate using lo-
cal features for segmenting individual objects. On the other
hand, text-to-video diffusion models operate on condition-
ing a global context, as shown in Eqn 1. Using the above
insight to tackle the problem of spatio-temporal conditioned
generation we also propose to use local context for gener-
ating individual objects, and then add them together. In or-
der to control the spatial locations of objects, we propose to
modify the attention computations in the transformer blocks
of the diffusion model to masked attention calls similar to
[10]. This enables better local generation without any addi-
tional computation or diffusion steps.

4.2. Masked spatio-temporal mixed attention

Given an input bounding box for a foreground object in the
video, we create a binary mask for the foreground object,
and downsample it to the size of the latent. We create block
sparse attention masks as described below. We use additive
masking for attention, i.e. for any query Q, key K, value V
a binary 2D attention mask M ,

  \begin {aligned} \text {MaskedAttention}&(Q,K,V,M) = \text {softmax}(\frac {QK^T}{d} + \mathcal {M})V \\ \text {where} \quad \mathcal {M}[i,j]& = \begin {cases} -\infty \quad \text {if} \ M[i,j] = 0 \\ 0 \qquad \text {if} \ M[i,j] = 1 \end {cases} \end {aligned}   





  


     

     

(2)
Here, the additive mask M is such that it has a large

negative value on the masked out entries in M , leading to
the attention scores for such entries being small. Note that
M ∈ {0, 1}dq×dk , where dq, dk are the lengths of queries
and keys respectively. We denote the length of the text
prompt by ltext, the length of the video by lvideo, and the
dimensions of the latents by llatents. The text input is de-
noted by T , and the input mask for frame f is denoted by
Mf

input. For the ease of notation, we assume that the input
masks and the latents are flattened along their spatial di-
mensions. The shape of Minput is lvideo × llatents We also
define the function fg(·), which takes a pixel or a text token
as input, and returns 1 if it corresponds to the foreground of
the video, and 0 otherwise.

By nudging the foreground token to attend only to the
pixels at the desired location at each frame, we can control
the position, size and movement of the object. However,
naively enforcing this attention constraint only in the cross-
attention layer is not sufficient for spatial control. This is
because the foreground and background pixels also interact

through spatial- and temporal attention. We now discuss
how to effectively localise the generation context.

Masked cross attention For each frame f , we compute
an attention mask Mf

CA, which is a 2-dimensional matrix
of size llatents × ltext. For each pixel-token pair, this mask
is 1 iff both the pixel and token are foreground, or if both of
them are in the background. Formally

  M_{CA}^f[i,j] &= \fg (M_{input}^f[i]) \ast \fg (T[j]) \nonumber \\ &+ (1-\fg (M_{input}^f[i])) \ast (1 - \fg (T[j]))
  

  

 
     (3)

This ensures that the latents attend to the foreground and the
background tokens at the correct locations.

Masked spatial attention For each frame f , we compute
an attention mask Mf

SA which is a 2-dimensional matrix of
size llatents × llatents. For each pixel pair, this mask is 1 iff
both the pixels are foreground, or if both of them are in the
background. Formally

  M_{SA}^f[i,j] &= \fg (M_{input}^f[i]) \ast \fg (M_{input}^f[j]) \nonumber \\ &+ (1-\fg (M_{input}^f[i])) \ast (1 - \fg (M_{input}^f[j]))
  

 


 
  



(4)

This additionally focuses the attention to ensure that the
foreground and background are generated at the correct lo-
cations, by encouraging them to evolve independently for
the initial steps. This also helps improve the quality of gen-
eration since it leads to adequate interaction within the fore-
ground and background regions. A similar idea in the con-
text of image generation had been explored in MasaCtrl[5]
in their self attention layer.

Masked temporal attention For each latent pixel i, we
compute a mask M i

TA, which is a 2D matrix of size lvideo×
lvideo. For each frame pair, the value of this mask is 1 if
the pixel i is a foreground pixel in both frames, or if it is a
background pixel in both frames. Formally,

  M_{TA}^i[f,k] &= \fg (M_{input}^f[i]) \ast \fg (M_{input}^k[i]) \nonumber \\ &+ (1-\fg (M_{input}^f[i])) \ast (1 - \fg (M_{input}^k[i]))
  

 


 
  



(5)

This ensures temporal consistency for the generation
since it provides correct local context for foreground and
background latents across time.

4.3. Zero-training Pipeline

Putting the selective masks in a diffusion pipeline gives us a
zero-training method, dubbed PEEKABOO. PEEKABOO in-
tegrates in the attention layers of the 3D-UNet architecture
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Figure 3. Spatial control with PEEKABOO: Changing the bound-
ing box while providing the same prompt leads to generated panda
being faithful to the input layout in terms of size and location with
our method.

of text-to-video models. We perform selective generation
of foreground and background object for a fixed number of
steps t and then allow free-generation for the rest of steps.
This free generation enables the foreground and background
pixels to cohesively integrate with each other on the same
canvas as have been done by [3, 23]. In essence, our method
ensures that foreground pixels cannot “see” the background
pixels for some steps (and vice versa), before being visible
to each other. This is akin to a game of PEEKABOO.

Unlike image control methods [3, 23], PEEKABOO does
not require extra inference overhead in the form of more
number of diffusion steps and works with very low value
of fixed step t (refer to Appendix for more details). This
ensures that there is no gain in latency during generation
while providing extensive spatial control.

Further, since PEEKABOO is a zero-training off-the-shelf
technique it is versatile to implement in all diffusion models
and can work with present as well as future text-to-video
models. Thus, PEEKABOO can give spatio-temporal control
in better quality generation models which are not explicitly
trained on any spatially-grounded dataset.

4.4. Extensions

Currently, majority of the diffusion pipelines have a UNet-
based architecture. This enables PEEKABOO to become ver-
satile and be used not only in Text-to-Video scenario, but in
Text-to-Image setup with a possibility in other generation
modalities too.
Automatically generated input masks Since our method
is orthogonal to the choice of input masks, we can use a
large language model to generate the input masks for an
object corresponding to a given prompt, in a similar fashion
as concurrent works [23, 25]. In Table 2, we demonstrate
that doing this leads to videos with better quality than the
baseline model. Moreover, it enables our method to be end-
to-end in terms of only requiring a text prompt from the
user.
Image generation Image generation diffusion method are
based of 2D-UNet architecture, with the absence of tem-
poral attention layer. Analogous to our text-to-video setup,

we can adapt PEEKABOO for Image Diffusion models. The
spatial-attention mask maintains the semantic structure of
the image while the cross-attention mask focuses the atten-
tion of foreground token on desired location and vice versa
for background. In Figure ??, we showcase spatial control
on an off-the-shelf diffusion model and highlight the versa-
tility of our method.

5. Experiments
In this section, we demonstrate the effectiveness of our
method. The main focus of our technique is to generate ob-
jects in specific spatio-temporal locations in videos. We first
evaluate this region level control in Sec 5.1.1. In 5.1.2, we
compare the generation quality against baselines to show
that grounding enables much better generation. We also
demonstrate qualitative results of our method, and perform
ablation analysis on our method and show the effect of each
component on the final generations.

5.1. Quantiative Analysis

We first present quantitative results on evaluating the spatial
control and the quality of videos generated by PEEKABOO.

5.1.1 Spatial Control

Evaluation Datasets Evaluating spatial control in multiple
text-to-video models is a challenging task and requires cre-
ating a common benchmark for (prompt, mask) pairs. We
develop a benchmark obtained from a public video dataset
with high-quality masks that represent realistic locations
for day-to-day subjects. Further, we also curated a set of
(prompt, mask) pairs that represent an interactive input from
the user in controlling a video and its subject.
• Something-something v2-Spatio-Temporal (ssv2-ST):

We use Something-Something v2 dataset [14, 26] to ob-
tain the generation prompts and ground truth masks from
real action videos. We filter out a set of 295 prompts.
The details for this filtering are in the appendix. We then
use an off-the-shelf OWL-ViT-large open-vocabulary ob-
ject detector [27] to obtain the bounding box (bbox) an-
notations of the object in the videos. This set represents
bbox and prompt pairs of real-world videos, serving as a
test bed for both the quality and control of methods for
generating realistic videos with spatio-temporal control.

• Interactive Motion Control (IMC): We also curate a set
of prompts and bounding boxes which are manually de-
fined. We use GPT-4 to generate prompts and pick a set
of 34 prompts of objects in their natural contexts. These
prompts are varied in the type of object, size of the ob-
ject and the type of motion exhibited. We then annotate 3
sets of bboxes for each prompt, where the location, path
taken, speed and size are varied. This set of 102 prompt-
bbox pairs serve as our custom evaluation set for spatial
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Method Latency DAVIS16 LaSOT ssv2-ST IMC

mIoU (↑) AP50 (↑) Cov (↑) CD (↓) mIoU AP50 Cov CD (↓) mIoU AP50 Cov CD (↓) mIoU AP50 Cov CD (↓)

LLM-VD [24]* 2.20× 26.1 15.2 96 0.19 13.5 4.6 98 0.24 27.2 21.2 61 0.12 36.1 33.3 97 0.13

ModelScope [38] 1× 19.6 5.7 100 0.25 4.0 0.7 96 0.33 12.0 6.6 44.7 0.17 9.6 2.4 93.3 0.25
w/ PEEKABOO 1.03× 26.0 16.6 93 0.18 14.6 10.2 98 0.25 33.2 35.8 63.7 0.10 36.1 33.3 96.6 0.13

ZeroScope [38] 1× 11.7 0.1 100 0.22 3.6 0.4 100 0.3 13.9 9.3 42.0 0.22 12.6 0.6 88.0 0.26
w/ PEEKABOO 1.03× 20.6 17.9 100 0.19 11.5 11.9 100 0.28 34.7 39.8 56.3 0.17 36.3 33.8 96.3 0.12

Table 1. Evaluation of spatio-temporal control on mIoU, AP50, Coverage and Centroid Distance (CD): We evaluate two different
video generation models on spatio-temporal control against DAVIS16, LaSOT, ssv2-ST, and IMC datasets. As demonstrated by mIoU
and CD, the videos generated by PEEKABOO endow the baselines with spatio-temporal control. PEEKABOO also increases the quality
of the main objects in the scene, as seen by higher AP50 and Coverage scores. Further, LLM-VD[24] has higher inference cost whereas
PEEKABOO does not affect latency. *: LLM-VD[24] has not released code, this is our re-implementation.

Method FVD@MSR-VTT (↓)

CogVideo (English) [17] 1294
MagicVideo [44] 1290

ModelScope [38] 868
ModelScope w/ PEEKABOO 609

Table 2. Video quality evaluation. PEEKABOO is able to generate
videos with higher quality than other baselines. We use bounding
boxes generated by GPT-4 as inputs to the model.

control. Note that since ssv2-ST dataset has a lot of inan-
imate objects, we bias this dataset to contain more living
objects. This dataset represents possible input pairs that
real users may generate.

• LaSOT: We repurpose a large-scale object tracking
dataset –LaSOT[13]– for evaluating control in video gen-
eration. This dataset contains prompt-bbox-video triplets
for a large number of classes. The videos have frame level
annotations specifying the location of the object in the
video. We subsample the videos to 8 FPS and then ran-
domly pick up 2 clips per video from the test set of this
dataset. This gives us 450 total clips across 70 different
object categories.

• DAVIS-16: DAVIS-16[30] is another video object seg-
mentation dataset that we consider. We take videos
from its test set, manually annotating them with prompts.
We use the provided segmentation masks to create in-
put bboxes. This gives us 40 prompt-bbox pairs in total,
where each video has a different subject.

Experimental Setup We use two base models for our
evaluation, Zeroscope and ModelScope [38]. These mod-
els are run for the default number of inference steps, with
default temperature and classifier guidance parameters. We
also experiment with mask guidance steps in the appendix.
We provide the model with the text prompt and the set of
input bboxes. The generated videos are then evaluated for

spatio-temporal control and video quality.

Evaluation methodology. After generating videos for each
(prompt, mask) pair, we pass these videos through OWL-
ViT-large detector to compute bboxes for each generated
video. We first compute the fraction of generated videos
for which OwL-ViT detects bboxes in more that 50% of the
generated frames. We report this fraction as the Coverage
of the model in Table 1. However, the lack of a detected
bbox does not necessarily imply the lack of an object gen-
erated, since OwL-ViT could fail to capture some objects
correctly. Hence, to evaluate the spatio-temporal control of
the generation method, we first filter out videos where less
than 50% frames have a detected bbox. We then compute
the Intersection-over-Union of the detected bboxes and the
input mask on these filtered videos. We report the mean of
these IoU (mIoU) scores for each method in Table 1. These
two metrics together provide a good proxy of the quality of
the generated videos as well as the spatio-temporal control
imparted. We compute the Centroid Distance (CD) as the
distance between the centroid of the generated object and
input mask, normalized to 1. This measures control of the
generation location. Finally, we report the average preci-
sion@50% (AP50) of the detected and input bboxes aver-
aged over all videos. For generated frames with the object
present, AP50 represents the spatial control provided by the
method, while mIoU measures the model’s ability to match
the input bboxes exactly and penalizes frames where the ob-
ject cannot be detected.

Results In Table 1, we demonstrate that our method adds
control to the model. We verify that our method enables
spatio-temporal control, as evidenced by the higher (upto
2.5x) AP@50 scores and lower CF on all four datasets
(DAVIS16, LaSOT, ssv2-ST and IMC). This means that the
generated objects are close to the true centroid of the input
mask, and their shape and size are also consistent with the
input mask. We observe significant jump in mIoU score
with PEEKABOO across different models and LLM-VD
[24], highlighting superior spatio-temporal control achieved
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Figure 4. (a) Ablation Studies on IMC: The performance of
PEEKABOO varies as different attention masks are removed. The
AP50 drops the most when cross-attention masks are removed,
indicating their importance to spatial control, followed by tempo-
ral and spatial attention. (b) Performance against varying bbox
sizes: mIoU score compared against varying bounding box sizes
across time in videos. We observe that PEEKABOO provides better
control independent of bbox size variation. Best viewed in color.

through PEEKABOO. Further, PEEKABOO has a higher cov-
erage than the baseline models and LLM-VD, indicating
that our method is also able to generate objects when the
base model could not do so. Finally, we note that PEEK-
ABOO introduce minimal latency increase to the original
method compared to LLM-VD’s 2.20× increase in infer-
ence time on ModelScope.

5.1.2 Quality control

While the above datasets provide evidence for PEEKABOO’s
spatio-temporal control, we also benchmark our method on
MSR-VTT[42] – a large scale video generation dataset – to
evaluate the quality of videos generated. We benchmark
PEEKABOO for evaluating quality control using Fréchet
Video Distance score (FVD) metric [37]. FVD is calculated
based on I3D model trained on Kinetics-400 dataset [6].
Following previous works, we evaluate on the test-set of
MSR-VTT containing 2900 videos by randomly sampling
one of the 20 captions for each video. We demonstrate the
versatility of our method by using bounding boxes gener-
ated by GPT-4. We query GPT-4 to generate series of lo-
cations for the foreground object depending on the prompt.
We evaluate on ModelScope model and compare the scores
with PEEKABOO. Table 2 shows that PEEKABOO increases
the quality of generated while providing spatial control dur-
ing video generation. The performance of these methods is
also better than other baselines, indicating that PEEKABOO
can be integrated in an automated pipeline to use GPT-4
generated bboxes and output a coherent video.

5.1.3 Ablation analysis

Ablation on individual attention masks. A Spatio-
Temporal attention block consists of three types of atten-
tion layers– Spatial, Cross and Temporal. PEEKABOO ap-
plies masking on all three layers, however, the effect of each

mask on the generation quality is different. In this sec-
tion, we experiment with PEEKABOO by disabling masking
for each attention layer one-by-one. We evaluate the AP50
score for ModelScope and ZeroScope on the IMC dataset,
as shown in Figure 4. The performance drops massively
when any one of the attention mask is not provided. We
observe that not passing MCA hurts the control the most.
This is explained by the fact that main object’s text token
will not focus its attention at the bbox location, leading to
the object being generated at a different location. Surpris-
ingly, not passing MTA is worse than not passing MSA. We
conjecture that removing spatial attention mask leads to de-
graded videos, while removing the temporal attention mask
leads to the loss of temporal control. Since the latter model
still generates higher quality objects at incorrect locations,
it has a lower AP50 score. We notice that the Coverage of
the model after removing MSA is much less than the Cover-
age of the model after removing MTA, providing evidence
in support of our hypothesis.
Performance on varying Bbox sizes. PEEKABOO can ac-
commodate varying bbox sizes within videos. Fig 3 shows
qualitative control on input bboxes with the output. More-
over, SSv2-ST dataset contain examples with varying bbox
sizes. Thus, we further quantify our SSv2-ST results in
Fig 4(b) by plotting mIoU scores against varying box sizes
across time in videos. For each prompt of SSv2-ST, we
compute the standard deviation of the bbox size (relative to
the mean input) to highlight the variation across time. We
observe a consistent improvement by PEEKABOO on base
model independent of box size variation.

5.2. Qualitative Results

In Figure 1, we present examples of videos generated by
PEEKABOO applied on ZeroScope [38]. As demonstrated,
the videos follow the bbox input. Through these qualitative
results, we highlight the versatility of bbox input in captur-
ing the shape, size, location and motion, and show how our
method can utilize this information interactively.
Static spatial control. Figure 3 shows videos where the
object is statically located in the frame. Our method can
control the position of the object, and can also change the
size of the object as specified by the user through a bbox.
Dynamic spatial control. Figure 5 present videos where
the main subject is moving on a desired path. Our method
generated realistic looking movements for various motion
trajectories. The temporal masking of our method also en-
ables it to handle cases where the mask disappears mid-way
through the scene, as is the case in the first row in Figure 1,
while the spatial and cross-attention masking ensures spa-
tial coherence of the generated frames with the input bound-
ing boxes.
Overcoming model failures. Diffusion models can have
a bias on their generation capabilities depending on their
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“A                     hovering

over the city”

“A                   fluttering”

helicopter

“A             floating in a river”barrel

butterfly

“A          jumping in the snow”wolf

“A          jumping up to catch 
a fly”

frog

Figure 5. PEEKABOO with a moving mask: As demonstrated, our method can mimic the input mask trajectories to generated spatio-
temporally controlled videos with realistic motions. For e.g. in the last row, the wolf is jumping following the mask on the left.

(a) A spider descending on its web.

(b) A croissant on a wooden table.

Figure 6. Overcoming model failures: Frames on the left are
generated by zero-scope, and frames on the right are generated by
PEEKABOO. Inset in the first row are cross-attention map between
the word “spider” and the pixels in the video frame. We can gen-
erate objects that are otherwise omitted from the video by the base
model. The attention maps also show that explicit masking leads
to better generation. The second row depicts a numeracy failure of
the baseline where PEEKABOO can control the number of objects.

training data. However, we observe that PEEKABOO can
suppress those biases and produce high quality generation

by forcing the model to generate foreground object at a spe-
cific location. In Figure 6, we present results of prompts
where the original model fails to produce the foreground
object however, our method can produce the object in the
user specified location and motion. The inset figures in Fig-
ure 6 reveal the reason for this – while the cross-attention
corresponding to the word “spider” is diffused across the
entire canvas in the original model, PEEKABOO focuses this
attention on the desired region. Further, Figure 6 depicts the
example of hallucination by generation model where the
subject was generated multiple times. Again, PEEKABOO
solves this issue due to spatial-attention mask and cross-
attention at a specific location.

6. Conclusion

In this work, we explore interactive video generation. We
hope that this work will inspire more research in this area.
To this end, we propose a new benchmark for this task
and PEEKABOO, which is a training-free, no latency over-
head method to endow video models with spatio-temporal
control. Future work involves exploring PEEKABOO for
image-to-video generation, video-to-video generation and
long form video generation.
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