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Abstract

Recent literature has demonstrated that vision transformers
(VITs) exhibit superior performance compared to convo-
lutional neural networks (CNNs). The majority of recent
research on adversarial robustness, however, has predomi-
nantly focused on CNNs. In this work, we bridge this gap by
analyzing the effectiveness of existing attacks on VITs. We
demonstrate that due to the softmax computations in every
attention block in VITs, they are inherently vulnerable to
floating point underflow errors. This can lead to a gradi-
ent masking effect resulting in suboptimal attack strength of
well-known attacks, like PGD, Carlini and Wagner (CW) and
GAMA. Motivated by this, we propose Adaptive Attention
Scaling (AAS) attack that can automatically find the optimal
scaling factors of pre-softmax outputs using gradient-based
optimization. We show that the proposed simple strategy
can be incorporated with any existing adversarial attacks as
well as adversarial training methods and achieved improved
performance. On VIT-B16, we demonstrate an improved
attack strength of upto 2.2% on CIFAR10 and upto 2.9%
on CIFAR100 by incorporating the proposed AAS attack
with state-of-the-art single attack methods like GAMA at-
tack. Further, we utilise the proposed AAS attack for every
few epochs in existing adversarial training methods, which is
termed as Adaptive Attention Scaling Adversarial Training
(AAS-AT). On incorporating AAS-AT with existing methods,
we outperform them on VITs over 1.3-3.5% on CIFAR10.
We observe improved performance on ImageNet-100 as well.

1. Introduction

In recent years, the rise of deep neural networks (DNNs) has
been accompanied by a concerning vulnerability to impercep-
tible perturbations known as Adversarial Attacks [17, 32].
These subtle perturbations can mislead DNN predictions
with potentially severe consequences. Efforts to bolster
DNN robustness against such attacks have led to numerous
defense mechanisms. However, many defenses succumb to a

challenge known as gradient masking, creating a false sense
of security [6, 20, 30, 39, 42]. Some defenses employ ran-
domized or non-differentiable elements, hindering precise
gradient calculation and thwarting strong adversarial attacks.
This phenomenon raises concerns about the efficacy of de-
fense strategies [2, 9, 34] and have demonstrated that these
defenses can be bypassed by adaptive attacks specifically
tailored to the targeted model.

Projected Gradient Descent (PGD) [24] was an early pop-
ular attack, but subsequent methods like like GAMA [31],
Carlini and Wagner (in short CW) [8], and AutoAttack [10]
have demonstrated superior performance. Yu and Xu [40]
discovered that proper scaling of logits in the output space
allows PGD to perform similarly. The authors characterized
that taking softmax leads to floating point underflow er-
rors. Attacks, like GAMA and CW, which avoid softmax,
are naturally resilient to these errors, possibly contributing
to their success in CNNs. Further, Hitaj et al. [21] found that
adversarial training methods like GAIRAT [42] can enhance
logits magnitude, thwarting attacks. However, scaling log-
its down [7, 11, 21] results in strong attacks, significantly
reducing GAIRAT’s robustness.

Transformers have set new benchmarks in various tasks
[5, 14, 28, 35], and Vision Transformers (VITs) [15, 33]
have shown improved performance over CNNs. However,
a debate persists on whether VITs are inherently more ro-
bust. Past studies [4, 25, 29] suggested VITs exhibit lower
attack transferability in black box settings, implying greater
robustness than CNNs. Yet, recent work [3] challenged this,
demonstrating that, under strong attacks (e.g. AutoAttack)
and activation functions, like GELU in CNNs, transformers
are no more robust than CNNs. Naseer et al. [27] improved
adversarial transferability for VITs through classifier training
and backpropagation, while Wei et al. [37] showed dropping
input patches enhances attack transferability. Despite these
findings, there’s still a lack of a fundamental understanding
of why generating strong attacks on VITs is challenging.

In this work, we rethink the understanding of the adversar-
ial robustness of VITs and discuss the fundamental causes of
gradient masking in VITs that leads to poor attack strength
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Figure 1. Floating point underflow errors in attention blocks of a VIT lead to gradient masking. (a) ∆ is the difference between
the largest and the second-largest pre-softmax output. As highlighted in red, if the scale of the pre-softmax outputs is high, floating point
underflow error occurs. It will not occur if the scale is low (as highlighted in green). Motivated by this, we propose to downscale the
pre-softmax outputs. (b) Gains in PGD-100 robust accuracy on using AAS-attack (green) on adversarially trained (PGD-AT [24] with
AWP [38]) VIT-B16 model [15] are higher as compared to manually finding the scaling factors (blue). In case of CNNs (red, the logits of
adversarially trained (PGD-AT [24]), WideResNet-28-10 are downscaled.

on using standard attacks, like PGD [24], GAMA [31], and
CW [8] attacks, these attacks have demonstrated good at-
tack strength on CNNs. Alike Yu and Xu [40], we also
assume that the reason for gradient masking is VITs is the
floating point underflow error which occurs due to softmax
calculation in every attention block in VITs. In Figure 1 (a),
as highlighted in red, we observe that in the case of VITs,
a larger scale of pre-softmax outputs can result in floating
point underflow. This leads to a false estimate of the gradient,
resulting in a weaker attack. But, we can overcome the float-
ing point errors by scaling down the pre-softmax outputs by
the right scaling factor. As shown in Figure 1 (b), on scaling
down the pre-softmax outputs in every attention block the
proposed Adaptive Attention Scaling (AAS) attack leads to
a boost upto 3% over standard PGD [24] attack on CIFAR10
dataset. In the case of CNNs (shown in red) as demonstrated
by [40], scaling down the logits help in improving the attack
strength by overcoming floating point errors. The effect of
gradient masking is much more intense in the case of VITs
because of softmax functions present in attention blocks.
This is evident from the improved gains on simply scaling
the pre-softmax outputs manually (shown in blue) over the
same method applied to logits in the output space of CNNs
(shown in red). We show strong empirical evidence for our
hypothesis and point out a more fundamental reason for the
poor performance of VITs on adversarial attacks.

To achieve robustness against strong adversarial attacks,
the most popular approach is adversarial training (AT). While
it is easy to train CNNs [24, 38, 41] using adversarial train-
ing, but VITs seem to pose multiple challenges [12, 26].
Recently, Mo et al. [26] demonstrated that training a VIT
from scratch doesn’t converge to a good solution. Therefore,
a pre-trained initialization is necessary for training VITs
using AT. The authors also showed that to stabilize the adver-
sarial training of VITs, gradients need to be clipped. These
clipping or pretraining is not required in case of CNNs. Fur-
ther, using complex augmentations like Cutmix and Mixup

gives improved results. Similarly, Debenedetti [12] proposes
a training recipe to improve VITs robustness, where a ten
epoch linear ϵ warmup is used along with high weight de-
cay to get improved performance. While these tricks, like
gradient clipping, warmup, and high weight decay, improve
robustness, it is not well understood why these tricks are
needed. Though it is very easy to train CNNs using adver-
sarial training, it seems difficult to train VITs.

We consider that the floating point underflow error not
only leads to weaker attack generation during inference but
also during training. This results in suboptimal adversar-
ial robustness on performing adversarial training on VITs.
Motivated by this, we propose a new adversarial training
method, named as Adaptive Attention Scaling Adversarial
Training (AAS-AT), where we ensure that the scale of the
logits doesn’t exceed too much. We demonstrate that this
simple check by using the proposed AAS attack at regular
intervals of training helps in stabilizing the training of VITs
and results in improved robustness. We demonstrate that the
proposed training method AAS-AT can be combined with
different existing adversarial training methods leading to
improved performance.
The contributions of this work are listed as follows:
• The first contribution of our work is to highlight the pres-
ence of gradient masking in adversarially trained VITs. More
importantly, we precisely point out the reason for it. We
demonstrate that the floating point underflow error is caused
due to softmax operations in attention blocks. It leads to
weak attack generation in case of VITs. We consider this as
fundamental cause for weaker white box attacks on VITs.
• We propose a novel attack, named as Adaptive Attention
Scaling (AAS), that automatically finds the optimal scaling
values for pre-softmax outputs in attention blocks, thus miti-
gating floating point underflow error. In recent literature, it
is unclear if scaling the pre-softmax outputs in the case of
VITs should have significant changes in the strength of these
attacks. But we observe over 2% improved attack strength
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in the case of VITs on combining the proposed AAS attack
with the GAMA-PGD attack.
• We have shown that the use of standard loss functions, like
cross-entropy and max-margin, are not able to optimize the
pre-softmax scaling factors well. Whereas, LPIPS distance,
a feature-level distance, helps to generate a stronger attack
by estimating the distance between a normal model and a
model with perturbed pre-softmax output scaling factors.
We maximize LPIPS distance in feature space to get per-
ceptually aligned gradients and find optimal scaling factors.
This eventually overcomes gradient masking and enhance
adversarial robustness.
• We propose a robust training model, known as Adaptive
Attention Scaling Adversarial Training (AAS-AT), that com-
bines the proposed AAS attack to make the VITs more robust.
We show the proposed AAS attack and AAS-AT model can
be combined with any existing adversarial attack and adver-
sarial training method respectively. This ensures that the
proposed method is generalizable and widely applicable.
• Lastly, we highlight our empirical contributions against
PGD, CW and GAMA attacks. By simply combining AAS-
AT with standard PGD-AT, we achieve improved perfor-
mance over recent works. We demonstrate improved re-
sults as compared to existing methods on CIFAR10 and
CIFAR100 datasets with an improvement of over 1.3%. We
scale our model for large datasets and got improved results
also on ImageNet-100.

The remaining paper is organized as follows. Prelimi-
naries and motivation are discussed in next two sections.
Thereafter, we elaborate the proposed AAS attack and AAS-
AT in two sections. Lastly, we show experimental results
and conclude the paper in last two sections.

2. Preliminaries
Adversarial Training (AT). Adversarial Training is consid-
ered as the most successful defence strategy. AWP-Trades
[38] is considered as one of the most successful adversarial
training method for CNNs; however, it has not been success-
ful for VITs [26]. Mo et al. [26] showed the importance of
using pre-trained initializations for training VITs adversar-
ially, which helped in improving the training convergence
on using existing methods like PDG [24] and Trades [41].
Debenedetti [12] showed that using a larger value of weight
decay and a few initial epochs of epsilon warmup can help in
improved adversarial robustness. Debenedetti [12] demon-
strated that aforesaid tricks helps in enhancing the robustness
of VITs significantly. In this work, we demonstrate that our
Adaptive Attention Scaling Adversarial Training (AAS-AT)
can be incorporated with any existing AT methods to achieve
improved robustness.
Threat model. Let fθ denote a deep neural network param-
eterized by θ mapping input sample X to RN where N is
the number of classes. The goal of an adversary is to fool

the model while restricting the perturbation within a threat
model. The threat model is defined by:

||X
′
−X||p < ϵ and fθ : X → RN , (1)

where p represents the type of ℓp perturbation norm, X
′

represents the perturbed image and ϵ is the maximum al-
lowed ℓp perturbation bound. In this work, we consider ℓ∞
perturbation norm.
Background. Some of the past findings that motivate our
proposed attack are discussed as follows:
• It is known that the gradients from a robust model are per-
ceptually aligned [1, 22]. Recently, Ganz et al. [16] demon-
strated that if the gradients from a model are perceptually
aligned, then it implies that the model is adversarially robust.
• Through extensive human evaluation, Zhang et al. [43]
demonstrated that LPIPS distance is a good perceptual model.
Motivated by this, it has been further used in Laidlaw et al.
[22] to define a perceptual threat model. Addepalli et al. [1]
proposed to minimize the LPIPS distance between the clean
and adversarial images to achieve robustness to larger per-
turbation bounds by ensuring that the images don’t change
their original class perceptually.

3. Motivation: Gradient Masking in VITs
Yu and Xu [40] demonstrated that the attacks involving soft-
max calculation may suffer from floating point underflow
error leading to a suboptimal attack. Further, VITs use soft-
max to calculate the attention weights in every attention
block. Therefore, the effect of floating point error should
be more severe in the case of VITs as compared to CNNs.
Based on this, we propose the following conjecture:

Conjecture 1: Presence of intermediate softmax in
attention blocks of vision transformers makes them
inherently vulnerable to the gradient masking effect.

Justification: To verify this, we plot the histogram of the
difference between the largest and the second largest values
before taking softmax (∆) for different attention blocks of
the VIT-B16 [15] model in Figure 2 (first row). The his-
togram is plotted for the ImageNet-100 dataset, which is a
100-class random subset of ImageNet-1K [13] using a nor-
mally trained VIT-B16 model. We observe that for many
images, the difference is significantly high and would lead
to floating point underflow errors on taking exponential in
the softmax calculations. As opposed to CNNs, since the
floating point underflow error will occur in intermediate lay-
ers of VITs, the effect would simply magnify. Therefore,
depending on the amount of floating point error, it can even
lead to significant gradient masking. On using the proposed
attack, as observed in Figure 2 (second row), the scale of the
pre-softmax outputs gets significantly reduced, which helps
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Figure 2. Histogram of the difference between largest and second largest pre-softmax outputs for different blocks of the normally
trained VIT-B16 on ImageNet-100 dataset. As shown in the second row, the proposed AAS attack successfully downscales these values.

Scaling
Factor

CIFAR10 CIFAR100
Clean PGD-100 Clean PGD-100

1 87.43 61.10 62.47 30.01
10−4 86.23 60.23 61.13 28.45
10−3 86.79 60.14 61.42 27.76
10−2 87.01 59.43 61.79 28.01
10−1 87.22 60.87 62.04 28.12
10 85.71 66.78 61.03 31.78

Table 1. Manually scaling down the pre-softmax outputs leads
to enhanced attack strength of PGD attacks on CIFAR10 and CI-
FAR100 datasets.

in overcoming the gradient masking effect. To understand
this, we define the pre-softmax scaling factor as follows:
Definition of Pre-Softmax Scaling Factor (λ): Consider
that the keys and queries are Rd. Let the set of queries be
packed into a matrix denoted by Q, and the matrices for keys
and values be K and V . Let the pre-softmax scaling factor
be λ; then we define the attention as follows:

Attention(Q,K, V ) = softmax(λQKT /
√

(d))V. (2)

We now analyze the effect of manually scaling down the
features used for softmax computation (pre-softmax scaling
factor λ) on CIFAR10 and CIFAR100 datasets in Table 1.
We observe that even using the same scaling factor for all the
attention blocks can give a boost of up to 1.67% in the PGD-
100 and 2.7% in FGSM attack strengths on the CIFAR10
dataset. On CIFAR100, improved attack strength of up to
2% is observed on the PGD-100 attack.

4. Adaptive Attention Scaling (AAS) Attack
The process of finding the optimal combination of scaling
factor is difficult because different attention blocks can have
different scaling factors. We analyze if these scaling values
can be found automatically using gradient-based optimiza-
tion before generating the attack. Zhang et al. [43] performed

a human study and demonstrated that LPIPS distance is a
good perceptual metric. The LPIPS distance is a feature-level
distance defined for a set of inputs to a given model. For a
given set of clean (x) and adversarial (x

′
) images, LPIPS

distance is the sum of the normalized ℓ2 distances between
the features of the two images taken after every attention
block. A greater value of LPIPS distance indicates that the
two images are perceptually dissimilar to each other [1, 22].
Definition of LPIPS in terms of pre-softmax output:
In this work, instead of using a set of clean and adver-
sarial images for calculating LPIPS distance, we perturb
the pre-softmax output scaling factors denoted by S =
{s1, s2, ..., sm} and calculate the LPIPS distance for a given
set of normal and perturbed models. Here, m is the number
of attention blocks in the VIT. Thus, for an image x, the
LPIPS distance, in our case, is defined by:

LPIPS(fθ(S), fθ(S′
)) =

m∑
i=1

||f
θ(s

′
i)
(x)− fθ(si)(x)||2

||f
θ(s

′
i)
(x)||2||fθ(si)(x)||2

. (3)

It is well know that the gradients calculated using an
adversarially robust model are perceptually aligned [1, 22].
Through a human study, Zhang et al. [43] demonstrated
that LPIPS is a good perceptual metric. Thus, maximizing
LPIPS distance while perturbing the pre-softmax scaling
factors should lead to finding the scaling factors which can
produce gradients that are more perceptually aligned. As
demonstrated by Ganz et al. [16], perceptually aligned gradi-
ents can imply adversarial robustness. Therefore, by making
the gradients more perceptually aligned by maximizing the
LPIPS distance between the original and perturbed mod-
els, we tend to overcome gradient masking and enhance the
adversarial robustness of the model. As demonstrated in
Addepalli et al. [1] (Figure S3), LPIPS distance between the
clean images and the corresponding adversarial images per-
turbed using the adversarial attack generated from a standard
model is less as compared to LPIPS distance between clean
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images and corresponding adversarial images generated by
attacking a robust model. Therefore, maximizing LPIPS
distance between the features of a normal and perturbed
model should lead to the generation of perceptually aligned
gradients, thereby overcoming the gradient masking effect.

Table 2. Effect of perturbing the scaling factors using different
loss functions. A feature level distance like LPIPS [43] leads to
better attack strength by overcoming gradient masking effectively.

Loss Functions CIFAR10 CIFAR100
(Perturb Scales) Clean PGD-100 Clean PGD-100

No Attack 87.43 61.10 62.47 30.01
Scaling (0.01) 87.01 59.43 61.79 28.01
Cross-Entropy 86.84 60.13 61.48 29.11
Max-Margin 86.47 59.78 61.23 28.46
GAMA 86.74 59.85 61.41 28.31
LPIPS (ASA) 87.31 58.01 62.03 27.02

Algorithm 1 Adaptive Attention Scaling (AAS) Attack

1: Input: Network fθ(S) where S = {s1, s2, ..., sm} is the pre-
softmax scaling factor and m − 1 is the number of attention
blocks in the model. Training Dataset D = {(xi, yi)}, and M
training mini-batches of size n;

2: for iter = 1 to M do
3: δ = N (0, 1);
4: for steps = 1 to 10 do
5: δ = δ +∇S LPIPS(fθ(S)(xi), fθ(S′

)(xi));

6: S
′
= Clamp(S+δ, 10−r, 1); % to prevent zero scaling

factors, we considered r = 7%
7: S = S

′
;

8: Generate the attack on the perturbed model;

• Why LPIPS is better? To understand whether maximiz-
ing a feature level distance, like LPIPS, is better than other
standard attacks that use cross-entropy or max-margin loss,
we analyze the effect of using different loss functions to
perturb the scaling factors of pre-softmax outputs in Table 2.
Since gradient masking is present at feature level in VITs,
using a feature-level attack, like LPIPS, can give improved
performance by up to 1 − 2% over standard attacks. We
observe that manually scaling the pre-softmax outputs out-
performs the standard attacks, like GAMA, PGD, CW. This
shows the importance of attacking at the feature level rather
than the output space. Motivated by the above discussion,
we propose to maximize LPIPS distance for perturbing the
pre-softmax output scaling factors. The proposed AAS at-
tack is presented in Algorithm 1. As common in practice, we
initialize the attack with a standard normal distribution (L3).
We perturb the pre-softmax output scaling factors in the at-
tention blocks by maximizing the LPIPS distance before
generating the actual attack (L4-L7). Later, the adversarial
attack is generated using the model whose scaling factors is
perturbed (L8).

5. Adaptive Attention Scaling Adversarial
Training (AAS-AT)

Motivated by Conjecture-1, since VITs are inherently sub-
jected to the gradient masking effect, adversarial training
of VITs should be difficult. This is indeed observed in the
prior works [12, 26], which demonstrate the need to use
gradient clipping, larger weight decays and epsilon warmup
to stabilize and achieve improved robustness on VITs by
performing adversarial training. Though these tricks help
in stabilizing the VITs, the reason for their effectiveness is
not well known. Motivated by our previous discussion, we
hypothesize that the reason for the sub-optimal adversarial
robustness on training VITs is the gradient masking effect
caused due to the large scale of pre-softmax outputs. To mit-
igate the associated gradient masking effect, we propose to
use the proposed AAS attack in every few epochs of training
while training on standard attacks for the remaining epochs.
More specifically, we propose to perturb the pre-softmax
scaling weights for every few epochs using LPIPS loss maxi-
mization to ensure that the scale of the pre-softmax values is
within the suitable range. This will help in preventing float-
ing point underflow errors resulting in a better estimate of
the gradients and stronger attack generation during training.
As shown in Algorithm-1 in Supplementary, the proposed
AAS-AT is build on Trades AT [41] with an added scaling
factors perturbation step (Lines 8-10) every λ epochs. If the
task was to perturb the pre-softmax output scaling factor,
then the old scaling factors are reinitialized using the new
perturbed ones (Line 17), otherwise, following Trades, the
cross-entropy loss on the clean images and KL Divergence
between the clean and the adversarial images is minimized
(Lines 19-20).

6. Experimental Results
In this section, we present the results of the proposed Adap-
tive Attention Scaling (AAS) attack and Adaptive Attention
Scaling Adversarial Training (AAS-AT). The performance
is evaluated on CIFAR10, CIFAR100 and ImageNet-100
datasets, where ImageNet-100 is a random 100 class sub-
set of ImageNet-1K. In all the experiments, we use an ℓ∞
norm threat model of perturbation bound 8/255. PGD-100,
CW, DLR, GAMA use 100 iterations for generating the at-
tack, whereas FGSM is a single-step attack. For training,
we utilize a 10-step attack for all Adversarial Training meth-
ods. Training is done using VIT-B16 model (unless speci-
fied) using additional synthetic data generated from diffusion
models (DDPM) [18] in case of CIFAR10 and CIFAR100.
To evaluate the attack, we use VIT-B16 model trained on
the standard PGD-AT [24] with AWP [38] for weight space
smoothing. We use RTX-2080 and V100 GPUs for all ex-
periments. Further training details of individual adversarial
training methods and reproducibility evaluations (like reruns
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Table 3. Comparison of AAS attack with different attack methods on CIFAR-10, CIFAR-100 and ImageNet-100 datasets.

Data Attack Clean Acc Robust Acc Clean Acc Robust Acc Clean Acc Robust Acc
+ Scale + Scale + AAS + AAS

FGSM 66.48 63.78 61.04
PGD-20 63.14 60.64 58.21
PGD-100 61.10 59.43 58.01

CIFAR10
CW

87.43
59.98

87.01
58.13

87.31
57.73

DLR 60.03 58.31 57.94
GAMA 59.78 58.16 57.61

FGSM 33.46 30.78 28.03
PGD-20 30.78 28.31 27.21
PGD-100 30.01 27.76 27.02

CIFAR100
CW

62.47
29.03

61.42
27.08

62.03
26.31

DLR 29.21 26.95 26.42
GAMA 28.97 26.64 26.08

FGSM 32.06 29.47 28.79
PGD-20 30.02 27.13 26.41
PGD-100 29.75 27.03 26.12

ImageNet-100
CW

68.03
28.69

67.36
26.48

67.84
25.81

DLR 28.71 26.71 25.90
GAMA 28.07 26.15 25.64

of AAS-AT) are presented in the Supplementary.

Table 4. Incorporating AAS-AT with Trades on ImageNet-100.

Method Clean Accuracy Auto-Attack

PGD-AT 68.32 25.78
PGD-AT + Ours 68.02 27.32
Trades 65.48 26.46
Trades + Ours 65.26 28.04

6.1. Evaluation of the proposed AAS attack
The results of the proposed Adaptive Attention Scaling
(AAS) attack on CIFAR10, CIFAR100 and ImageNet-100
datasets are presented in Table 3. The bracket shows
the scaling factor. The results are shown on incorporat-
ing AAS with different existing attack methods. In each
of them w/o ASA/Scale represents the original accuracy
achieved by the respective attack itself. Whereas + Scale
represents the accuracy achieved on manually finding the
best possible scaling factor for GAMA attack in the set
{10, 1, 10−1, 10−2, 10−3, 10−4, 10−5}. The same scaling
factor is used for all the attention blocks, and separate tuning
for each attention block is not performed because it is O(mt)
where m is the attention blocks and t is the size of the scal-
ing factor set, which will be computationally very expensive.
Finally, + AAS represents the performance of the respective
attack on combining with the proposed Adaptive Attention
Scaling attack. Since on performing scaling (+ Scale) or the
proposed attack (+ AAS), the function mapping of the model
will change; therefore, clean accuracy will also change.

As observed in Table 3, the clean accuracy drops by upto

1% when finding the scaling factors manually. But on using
AAS attack, this decrease is not more than 0.45%. On the
other hand, on CIFAR10, the robust accuracy decreases by
upto 5% in the case of FGSM and PGD-20 attacks. Even
for stronger attacks like CW, DLR and GAMA, an improved
attack strength of up to 2% is observed on CIFAR10. It is
also observed that simply scaling the pre-softmax outputs
can also help in improved attack strength by upto 1.6% in
case of the strongest GAMA attack, but since the scaling
factors found in this fashion might not be optimal, therefore
finding them using gradient-based optimization as used in
AAS attack helps in a further boost of around 0.51%. Even
on CIFAR100, on combining the proposed AAS attack with
GAMA, it shows 2.89% improved attack strength, whereas
scaling shows 2.3% improvements. We also compare the
performance of the proposed AAS attack on ImageNet-100
where we observe around 3.5% improvements over PGD-
100 and 2.2% improved results over the GAMA attack. As
can be seen from this analysis, by overcoming the floating
point underflow errors, our AAS attack gives consistent gains
over the existing attacks.
• Ablation experiments. As shown in Figure 3 (a), on
increasing the number of attention blocks in which the pre-
softmax values are scaled using the proposed AAS attack, the
robust accuracy on the CIFAR10 dataset falls continuously.
Since floating point errors occur in each of the attention
blocks, therefore when scaling is done for a larger number of
attention blocks, the effect of gradient making is minimized,
thus leading to stronger attacks. Further, as shown in Fig-
ure 3 (b), if the size of the model is increased by adding up
more attention blocks, the drop in robust accuracy of the pro-
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Figure 3. Ablation of AAS attack on CIFAR10. (a) Effect of
increasing the number of attention blocks used in AAS attack (b)
Comparison between PGD and AAS attack on increasing the size
of the model. Using a larger model with more attention blocks
leads to larger gradient masking.
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Figure 4. Comparison between PGD and AAS attack on increas-
ing the number of attack iterations. Using a larger number of itera-
tions also doesn’t decrease the gap between the attack strengths.

posed AAS attack with respect to PGD-100 further increases.
This demonstrates the effectiveness of overcoming gradient
masking by using our AAS attack. Finally, we present the
effect of increasing the number of iterations of attack for
PGD and AAS in Figure 4. AAS attack saturates earlier than
PGD, and PGD is not able to close up the gap between two
attacks even on 1000 iterations. To confirm, this further, we
observe that AAS attack indeed leads to less noisy gradi-
ents as compared to PGD in Figures-2, 3 of Supplementary.
On ImageNet-100 in Table 4, we observe over 1.58% im-
proved robust accuracy against Auto-Attack on using the
proposed AAS-AT along with Trades. To emphasize that our
claims can generalize to other VIT architectures, we present
results of AAS attack on Swin Transformer (Swin-T) [23]
and LeViT [19] in Table-3 of Supplementary. As shown in
Tables-1 of the Supplementary, we observe that the proposed
AAS attack shows improved attack strength for different per-
turbation radius. We present a discussion on computational
efficiency of our method in Tables-5, 6 of Supplementary.

6.2. Evaluation of the proposed defense (AAS-AT)

As shown by Mo et al. [26], it is essential to use a pretrained
initialization along with gradient clipping to enable stable
and effective adversarial training of VITs. Therefore, we
use ImageNet-1K initialization and gradient clipping in all
our experiments. We utilize standard Pad-Crop along with
Horizontal Flip as augmentations. Training is done for 110
epochs with a max learning rate of 0.1, and a cosine learning
rate schedule is used for all experiments except XCIT-S12
[12]. For XCIT-S12 and XCIT-S12 + Ours, we train for 300
epochs instead. Further, SGD, along with a momentum of

0.9, is used as the optimizer in all the experiments. The
simplicity of the proposed AAS-AT allows it to combine ef-
fectively with any existing adversarial training method. The
results of combining the proposed AAS-AT with different ad-
versarial training methods on CIFAR10 and CIFAR100 are
shown in Table 5. We use PGD-100 [24], PGD-100 + AAS
and AutoAttack [10] for evaluating the robustness of the
defenses. As can be seen, AutoAttack remains the strongest
white box attack. But the proposed PGD-100+AAS attack
improves the attack strength by upto 4.5% over PGD-100.
In the case of PGD-AT + AAS-AT, the difference between
PGD-100 and PGD-100+AAS is significantly reduced to
only 0.34%. This shows that since the scale of the softmax
is inherently lowered on training using AAS-AT, even PGD-
100 remains effective. This demonstrates that large scaling of
pre-softmax outputs indeed leads to the generation of weaker
attacks. Though PGD-100 + AAS is weaker than AutoAttack
[10], the difference between PGD-100 + AAS and AutoAt-
tack is less than 1% in all cases. Further, PGD-100 + AAS
is significantly cheaper in terms of compute as compared
to AA. This demonstrates the effectiveness of the proposed
AAS attack. As shown in Table 5, it can be observed that on
CIFAR10 incorporating AAS-AT with standard adversarial
training methods like PGD [24] and Trades can improve the
performance by upto 3.47% on AA attack. Further on, incor-
porating AAS-AT with state-of-the-art adversarial training
methods like Trades + AWP also gives an improved perfor-
mance of upto 1.7%. On CIFAR100, we get even larger
gains of upto 2.38% on combining with Trades + AWP. We
also demonstrate that AAS-AT can improve the performance
of existing adversarial training methods, like [12, 26] that
are crafted mainly for VITs. In the case of XCIT-S12 [12],
AAS-AT improves the AA attack [10] performance about
1.38% and 1.29% for CIFAR10 and CIFAR100, respectively.
On combining AAS-AT with [26], it shows gains of 1.76%
on CIFAR10 and 1.41% on CIFAR100.

• Ablation experiments. As shown in Figure 5 (a,b), the
proposed defense PGD-AT + AAS-AT is stable to using
AAS attack every 5 − 40 epochs. Using AAS attack too
frequently or using it only once/twice in the entire training
leads to suboptimal performance. The effect of varying ϵ
and performing PGD-20 attack during evaluation is shown
in Figure 5 (c). Since the proposed AAS-AT does not have a
large scale of pre-softmax outputs, PGD-20 attack is stronger
for PGD-AT + AAS-AT (this is also evident from Table 5)
as compared to the baseline PGD-AT. Since PGD-AT suffers
from gradient masking, its accuracy does not reach 0% even
on using an ϵ = 100/255. But we get zero robustness on
using ϵ = 65/255. This shows AAS-AT does not suffer from
gradient masking. Finally, in Figure 5 (d), we show that on
using AAS attack along with PGD-20, the accuracy becomes
zero for both PGD-AT as well as the proposed AAS-AT at
ϵ close to 60/255. Thus the proposed AAS attack is able to
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Table 5. Comparison of AAS-AT with different adversarial training models on CIFAR10 and CIFAR100 datasets.

CIFAR10 CIFAR100
Model Clean PGD-100 PGD-100 +

AAS (Ours)
AA[10] Clean PGD-100 PGD-100 +

AAS (Ours)
AA[10]

PGD-AT [24] 86.14 59.12 54.24 53.14 60.04 30.06 26.31 25.78
PGD-AT + Ours 85.32 58.12 57.78 56.61 62.06 29.03 28.34 27.71

Trades [41] 86.31 60.12 55.49 54.03 61.03 30.43 26.94 26.01
Trades + Ours 87.46 59.01 58.03 57.34 63.06 29.41 28.71 28.06

Trades + AWP [38] 86.21 60.48 56.84 56.03 62.78 31.86 27.94 27.03
Trades + AWP + Ours 87.10 59.78 58.41 57.73 63.14 31.76 30.43 29.41

ART [36] 86.19 59.13 54.76 54.12 62.41 32.61 27.12 26.47
MART + Ours 85.31 57.87 56.43 55.78 62.84 28.32 27.83 27.01

XCIT-S12 [12] 90.06 61.48 57.06 56.14 67.34 37.86 33.41 32.17
XCIT-S12 + Ours 90.78 59.94 57.84 57.42 67.12 35.35 33.97 33.46

Mo et al. [26] 86.43 60.03 56.12 55.03 61.76 31.30 27.84 27.01
Mo et al. [26] + Ours 86.71 58.46 57.44 56.79 61.43 30.86 29.16 28.42
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Figure 5. Ablation of PGD-AT + AAS-AT on CIFAR10. Variation of (a) clean and (b) PGD-100 (robust) accuracy with changing the gap
between consecutive AAS attack epochs, respectively. (c) Lower robust accuracy (PGD-20) of AAS-AT and saturation to zero robustness of
AAS-AT occurs at a much lower ϵ value as compared to PGD-AT. This indicates the absence of gradient masking in AAS-AT. (d) Using
AAS attack on top of PGD-20 overcomes gradient masking, and the robust accuracy of PGD-AT decreases significantly as compared to (c).

overcome the gradient masking effect observed in PGD-AT
model. Additionally we present a comparison between the
robustness of CNNs and VITs on incorporating the proposed
AAS-AT and a discussion on computational efficiency of the
proposed AAS-AT in Supplementary. We also observe that
incorporating AAS-AT with existing AT methods leads to
less than 1% increase in computation.

7. Conclusion

In this work, we demonstrate that the inherent design of
attention blocks in VITs leads to floating point underflow
errors, which causes weaker attack generation. To find the
appropriate scaling factors for each attention block, we pro-
pose Adaptive Attention Scaling attack, which maximizes
the LPIPS distance between the original and the perturbed
model, where the perturbation is generated only on the pre-
softmax output scaling factors. Since LPIPS distance is
known as a good perceptual metric, maximizing it leads
to perceptually aligned gradients, which is a characteristic
of robust models [16]. We show that maximizing LPIPS

distance indeed finds the appropriate scaling factors, thus
overcoming gradient masking effect. We demonstrate that
such an attack strategy can be integrated with any existing
attack and leads to improved attack strength even on combin-
ing it with state-of-the-art single attacks, like GAMA attack.
Further, we utilize this strategy in existing adversarial train-
ing methods and demonstrate improvements in robustness.
We shown our empirical contributions against PGD, CW
and GAMA attacks. Due to the simple design, the proposed
method can be incorporated with any existing adversarial
training method. Combining it with AT methods that are
mainly designed for VITs also gives improved performance.
We hope that by providing a fundamental understanding of
gradient masking in VITs, this work will open new avenues
of research in enhancing the robustness of VITs even further.
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