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Abstract 

We present VIDIM, a generative model for video inter- 

polation, which creates short videos given a start and end 

frame. In order to achieve high fidelity and generate mo- 

tions unseen in the input data, VIDIM uses cascaded dif- 

fusion models to first generate the target video at low res- 

olution, and then generate the high-resolution video con- 

ditioned on the low-resolution generated video. We com- 

pare VIDIM to previous state-of-the-art methods on video 

interpolation, and demonstrate how such works fail in most 

settings where the underlying motion is complex, nonlinear, 

or ambiguous while VIDIM can easily handle such cases. 

We additionally demonstrate how classifier-free guidance 

on the start and end frame and conditioning the super- 

resolution model on the original high-resolution frames 

without additional parameters unlocks high-fidelity results. 

VIDIM is fast to sample from as it jointly denoises all the 

frames to be generated, requires less than a billion pa- 

rameters per diffusion model to produce compelling results, 

and still enjoys scalability and improved quality at larger 

parameter counts. Please see our project page at vidim- 

interpolation.github.io. 

1. Introduction 

Diffusion Models [15, 49, 50] have recently exploded in 

popularity for generative modeling of images and other 

forms of continuous data such as audio [5] and video [18]. 

Compared to previous methods for generative modeling 

such as Generative Adversarial Networks (GANs) [12], dif- 

fusion models enjoy significantly more training stability due 

to the fact that they optimize the evidence lower bound 

(ELBO) [24], as opposed to having the complex dynamics 

of two models in a zero-sum game like GANs, and do not

 

∗Equal contribution. 

suffer from posterior collapse like variational autoencoders 

(VAEs) due to the limited form of the approximate poste- 

rior. This ease of training has led to significant advances 

in generative modeling, such as compelling results in text- 

to-image [38, 40, 44] and text-to-video [17, 55] generation, 

image-conditioned generation tasks [43], and even 3D novel 

view synthesis [27, 36, 58]. 

In this paper, we explore the specific task of video inter- 

polation with diffusion models. Video interpolation refers 

to the problem of generating intermediate frames between 

two consecutive frames of video. Video interpolation tech- 

niques have been used for many desirable applications, e.g., 

generating slow motion videos from existing videos, video 

frame rate up-sampling ( e.g . 30 fps → 60 fps) or interpolat- 

ing between near-duplicate photographs. 

Numerous methods have been proposed in prior 

work [11], but even the state-of-the-art [20, 26, 39] fails 

to generate plausible interpolations when the start and end 

frame become increasingly distinct, as these methods rely 

on linear or unambiguous motion. Moreover, while exist- 

ing video diffusion models can be used for the video inter- 

polation task [17, 18], as we carefully study in this work, 

quantitative and qualitative results improve significantly by 

explicitly training generative models that are conditioned on 

the start and end frames, as generative models have the key 

advantage of producing samples, as opposed to predicting 

the mean. As we will show, this is also strongly supported 

by ratings from human observers. 

In this work, we show that diffusion based generative 

models can overcome the limitations of prior state-of-the- 

art models for video interpolation. We summarize our main 

contributions below: 

• We develop a cascaded video interpolation diffusion 

model, which we dub VIDIM , capable of generating 

high-quality videos in between two input frames. 

• We carefully ablate some of the design choices of 

VIDIM, including parameter sharing to process condi-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Frame interpolation for very large and ambiguous motion. The middle frame of an interpolated video with FILM[39], RIFE [20], 

LDMVFI [9] and AMT[26] shows large blurry artifacts. VIDIM, however, is able to recover a plausible output frame. Note that due to the 

ambiguity of the problem, VIDIM’s output is not always similar to the ground truth (especially clear in the top example), but corresponds 

to a different choice of motion. See the Supplementary Website for video outputs. 

tioning frames and the use of classifier-free guidance 

[14], demonstrating their importance to achieve good re- 

sults. 

• We propose two curated difficult datasets targeted for 

generative frame interpolation: Davis-7 and UCF101- 

7, based on widely used Davis [35] and UCF101 [51] 

datasets. 

• We show that VIDIM generally achieves better results 

compared to prior state-of-the-art in these difficult in- 

terpolation problems across generative modeling metrics. 

We show by user study that VIDIM is almost always pre- 

ferred over the baselines in qualitative evaluation. 

2. Background and Related Work 

Video frame interpolation (VFI) is a classic computer vi- 

sion problem with a sizable body of existing work. VFI 

is closely related to optical flow computation, which is an 

equally deeply studied problem. Instead of attempting a 

comprehensive list of works in these areas we discuss the 

recent state-of-the-art that is most relevant for our work. For 

a recent survey on this topic, see [11]. 

Most recent video frame interpolation architectures con- 

tain a feature extractor (e.g. decoder) correspondence es- 

timation and image warping (e.g. optical flow) and frame 

synthesis (e.g. decoder). Most works also agree that optical 

flow is best learned for the frame interpolation task specif- 

ically [8, 25, 39, 60] or fine tuned for it [21, 32, 33]. Some 

methods use backward warping (gather) [20, 25, 26, 33, 39] 

while others use forward warping (splatting/scatter) [32]. 

Recent works employ hybrid CNN and transformer ar- 

chitectures [29, 61] and all-pairs dense feature match- 

ing [26] inspired by the state-of-the-art optical flow 

method [53]. Regardless of the details, the progress of video 

frame interpolators have been driven by benchmarks [2, 4, 

35, 51, 60] that are usually prepared to assume linear or 

mostly unambiguous motion, by either having explicit lin- 

earity constraints [60] or just using samples that are not very 

far apart in time. It is rare to go beyond the non-linear 

motion assumption, although a few methods do assume a 

quadratic motion model [28, 59]. Some recent works spe- 

cialize on large motions [39, 47], but yet only to an extent 

where the motion is mostly unambiguous and thus can be 

solved with a non-generative model. In our work we show 

that when the input images are much further than 1/30s 

apart, the problem becomes highly ambiguous and best ad- 

dressed as a conditional generative problem. 

LDMVFI [9] and MCVD [56] are some recent diffusion 

based frame interpolatation methods. Different from LD- 

MVFI we model in pixel space and generate the entire video 

at once which is key for consistent motion. We also focus 

on explicitly training for video frame interpolation where as 

MCVD studies a range of video generative modeling tasks. 

While it is difficult to design truly fair comparisons as ex- 

isting video models are often too large and source code is 

not available [17, 48], the conditioning mechanism can still 

be studied. Ho et al. [18] propose the use of imputation 

(and additionally with a mechanism resembling classifier- 

free guidance) to adapt video models to be conditioned on 

input frames. We train a super-resolution model adopting 

this strategy, and in section 4.4 demonstrate that this ap- 

proach performs worse despite being having the exact same 

hyperparameters otherwise. 

3. Methodology 

We now present the technical details behind VIDIM, our 

cascaded diffusion model for video interpolation. Prior
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work has shown that diffusion models do not achieve good 

sample quality for high-resolution generation with a sin- 

gle model without revising several hyperparameters and ar- 

chitecture details [19]. We in fact tried training a base 

VIDIM model to generate a 9x128x1281 video following 

the changes proposed by Hoogeboom et al. [19], but we 

found early on that these models did a very poor job at mod- 

eling high-frequency details at this resolution. We thus fol- 

lowed the cascaded model strategy of Ho et al. [16], i.e., 

training separate base and super-resolution models. While 

there is additional overhead to maintaining multiple diffu- 

sion models, this still avoids several complexities of latent 

diffusion models [40], such as finding an optimal encoder- 

decoder model, and having to address temporal inconsis- 

tency in the decoder with other training or fine-tuning pro- 

cedures [3]. We train two video diffusion models: first we 

train a base model that is conditioned on 2 64x64 frames 

and generates 7 64x64 in-between frames. Then we train a 

super-resolution model conditioned on 2 256x256 frames 

and 7 64x64 frames that generates the 7 corresponding 

256x256 frames. We intentionally chose an odd number 

of frames to allow evaluating the middle frame, similarly to 

prior work on video interpolation. 

3.1. Model architecture 

VIDIM is inspired by Imagen Video [17], where the UNet 

architecture [41] is adapted for video generation by shar- 

ing all convolution and self-attention blocks over frames, 

and feature maps are only allowed to mix over frames with 

the addition of temporal attention blocks where the query- 

key-value sequence lengths are the number of frames. Sim- 

ple positional encodings (differing over frames) for video 

timestamps normalized to [0 , 1] are summed to the usual 

noise level embeddings (identical for all noisy frames). 

We propagate these embeddings to each UNet block using 

FiLM [34], similarly to Nichol and Dhariwal [31]. We do 

the same for the super-resolution model to condition on the 

high-resolution start and end frames. The super-resolution 

model only differs from the base model in that (1) it con- 

catenates each (naively upsampled) low-resolution condi- 

tioning frame to the noisy high-resolution frames along the 

channel axis, and (2) it downsamples before the first convo- 

lutional residual block, following Saharia et al. [44] to re- 

duce memory usage. For more stable and efficient training, 

we additionally use attention blocks following Dehghani 

et al. [10], which employ query-key normalization and an 

MLP block that runs in parallel to the attention block. 

Parameter-free frame conditioning. One key innovation 

we highlight is introducing frame-conditioning without any 

additional parameters: in both the base and super-resolution

 

1Not that large resolution by video interpolation standards 

models, we condition on the start and end frames simply 

by feeding these two additional frames to the entire UNet 

(i.e., concatenating along the frame axis). Because the fea- 

ture maps for each frame additionally depends on the noise 

levels, we simply set fake noise levels for the conditioning 

frames as the minimum noise level (maximum log-signal- 

to-noise-ratio). This adds two new sequence elements to 

the temporal attention layer, which lets information from 

the conditioning frames propagate to the rest of the network 

without any additional parameters. This contrasts other dif- 

fusion architectures [27, 63], where the usual choice is ad- 

ditional cross-attention layers which doesn’t scale to condi- 

tion on more frames and make the parameter count depen- 

dent on the number of frames. Other work has found that 

concatenating extra frames along the channel axis follow- 

ing, e.g., Saharia et al. [43], leads to worse sample quality 

when the generated and conditioning frames are not per- 

fectly aligned [58]. 

Guidance on conditioning frames. In our results, we 

show that classifier-free guidance (CFG) [14] on the con- 

ditioning frames is essential to achieve the best sample 

quality. Similarly to our parameter-free frame condition- 

ing strategy, we would like masked conditioning frames 

for CFG to play naturally with parameter sharing across 

frames. To achieve this, instead of zeroing-out the condi- 

tioning frames, we replace them with isotropic Gaussian 

noise and set their corresponding noise levels to the max- 

imum value. It would also be confounding if we zero-out 

the timestamps for the conditioning frames, so we instead 

replace them with a learned null token. 

3.2. Diffusion modeling choices 

We now provide a brief overview of the training objective 

formulation we utilize for VIDIM. We begin with the for- 

mulation of Kingma et al. [22], where we use the simpler 

continuous-time objective (as opposed to that of Ho et al. 

[15]) for learning a data distribution p ( x | c ) , where c are the 

start and end frames and x are the middle frames. We define 

a forward process at every possible log signal-to-noise-ratio 

λ (a.k.a. “log-SNR”) in the usual manner via

 

q ( z λ 

| x ) = N 

(
z λ; αλ 

x , σ2 

λ 

I 

)

 

(1) 

where αλ 

= 

√

 

sigmoid( λ ) and σλ 

= 

√

 

sigmoid( − λ ) . Our 

training objective is then

 

E 

x,c ∼ p ( x,c ) 

t ∼ U (0 , 1) 

z λt 

∼ q ( z λt 

| x ) 

e 

λt

 

2 ∥ αλt 

z λt 

− σλt 

v θ( z λt 

| c ) − x ∥1

 

(2) 

Note that, following Saharia et al. [43], we use the L1 loss 

as we found early on that it helps produce better high- 

frequency details in samples compared to the standard L2
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Figure 2. Two examples from DAVIS-9 dataset, showing the predicted in-between frames. Top : The break-dancer example demonstrates 

highly ambiguous motion. Our method can produce plausible video with sharp details whereas the baselines [20, 26, 39] trained with 

regression objective resort into predict blurry images. Bottom : On a very large motion with significant perspective change on the dirt bike, 

the baselines fail to reconstruct sharp results, where as our method produces sharp results with plausible motion.
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Davis-7 (mid-frame) UCF101-7 (mid-frame)

 

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

 

AMT [26] 20.12 0.4853 0.2865 69.34 25.16 0.7903 0.1691 63.92 

RIFE [20] 19.54 0.4546 0.2954 57.68 25.73 0.7769 0.1564 42.33 

FILM [39] 19.75 0.4718 0.3048 68.88 24.96 0.7869 0.162 54.98 

LDMVFI [9] 19.07 0.4175 0.2765 56.28 24.53 0.7712 0.1564 42.96

 

VIDIM (ours) 18.73 0.4221 0.2986 53.38 22.88 0.688 0.1768 53.71

 

Table 1. Comparison between different video interpolation baselines and VIDIM on reconstruction and generative metrics, evaluating only 

the middle frame out of all 7 generated frames. VIDIM samples were obtained from our best cascade with guidance weight 2.0. Note that 

under this setting, it does not make sense to report FVD scores. 

Davis-7 UCF101-7

 

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓

 

AMT [26] 21.09 0.5443 0.254 34.65 234.5 26.06 0.8139 0.1442 31.6 344.5 

RIFE [20] 20.48 0.5112 0.258 23.98 240.04 25.73 0.804 0.1359 18.72 323.8 

FILM [39] 20.71 0.5282 0.2707 30.16 214.8 25.9 0.8118 0.1373 26.06 328.2 

LDMVFI [9] 19.98 0.4794 0.2764 22.1 245.02 25.57 0.8006 0.1356 18.09 316.3

 

VIDIM (ours) 19.62 0.4709 0.2578 28.06 199.32 24.07 0.7817 0.1495 34.48 278

 

Table 2. Comparison between different video interpolation baselines and VIDIM on reconstruction and generative metrics, evaluating all 

7 generated frames. VIDIM samples were obtained from our best cascade with guidance weight 2.0. Note these numbers (especially FID 

scores) are not comparable to those in 1 as the number of samples differs (here we use 7x as many images per set). 

loss. We use a cosine log-SNR schedule λt 

following 

Kingma et al. [22], with maximum log-SNR of 20 at t = 0 

and minimum log-SNR of -20 at t = 1 . Note how this 

objective is equivalent to the re-weighted ELBO objective 

from Ho et al. [15] in the sense that the loss is a norm be- 

tween the predicted and actual noise (hence the e 

λt

 

2 factor), 

but using the “v-parametrization” from Salimans and Ho 

[46] rather than predicting the added noise directly. This is 

well-known to improve training stability of diffusion mod- 

els. 

4. Experiments 

We now present our main experiments and results. All base 

models were trained to generate 7 64x64 frames in between 

the start and end 64x64 frames, and the super-resolution 

models condition on the original 256x256 start and end 

frames to upsample the 7 input frames at resolution 64x64. 

In order to leverage a large-scale video dataset for these 

tasks, we train all VIDIM models on a mixture of the pub- 

licly available WebVid dataset [1] and other internal video 

datasets. In order to handle cases with large and more dif- 

ficult motion, our input pipelines take bursts of 32 contigu- 

ous frames from the original videos and evenly subsample 

9 frames so some frames are skipped. To additionally re- 

duce the number of cuts and other examples that are unde- 

sirable for video interpolation, we follow the motion brack- 

eting procedure employed by FILM [39]. 

4.1. Training and architecture hyperparameters 

We trained all VIDIM models with the Adam optimizer [23] 

with a learning rate of 5e-4 (with linear warm-up for the first 

10,000 steps) and β1 

= . 9 , β2 

= . 999 , gradient clipping at 

norm 1, and maintaining an EMA of the model parameters 

with decay rate .9999 following Ho et al. [15]. To make 

our ablation studies fair, all base models were trained for 

500k steps and all super-resolution models were trained for 

200k steps. All super-resolution models were trained with 

noise conditioning augmentation [16] on the low-resolution 

frames, where we re-use the noise schedule and add noise to 

these frames with t ∈ U (0 , 0 . 5) for each training example. 

We additionally study different parameter counts for our 

VIDIM models in Tab. 3. In these experiments, we scale up 

the number of parameters exclusively by changing the hid- 

den size (a.k.a. number of channels) in the last UNet res- 

olution (16x16 for both the base and super-resolution mod- 

els). All other UNet resolutions have the same hyperpa- 

rameters across experiments: the first resolution always has 

128 channels and 2 subblocks, each subblock having a con- 

volutional block and a temporal attention block with one at- 

tention head. Middle resolutions always have 256 channels 

and 4 subblocks, with each subblock’s temporal attention 

block having two attention heads. The last 16x16 block has 

8 subblocks, and additionally includes a self-attention block 

shared over frames before each temporal attention block. 

We avoid self-attention at other resolutions as it is too com- 

putationally expensive. We use dropout [52] at all UNet 

resolutions with resolutions up to 64x64 but not beyond, 

following Hoogeboom et al. [19]. 

4.2. Comparisons with prior work 

We evaluate VIDIM on several reconstruction and genera- 

tive metrics, and compare against prior methods on video 

interpolation by running these models ourselves on the
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same benchmarks. Specifically, we create subsets of the 

Davis [35] and UCF101 [51] datasets of 400 videos with 

examples that contain large and ambiguous motion and con- 

sisting of 9 frames per video. It should be emphasized that 

our numbers cannot be directly to prior work also due to 

the fact that diffusion models operate at a fixed resolution. 

Thus, in order to ensure that we are accurately represent- 

ing all the prior work we consider, we run all the baselines 

ourselves on said benchmarks. We refer the reader to our 

Supplementary Material and website where we release our 

curated evaluation datasets (dubbed Davis-7 and UCF101- 

7) for future work and the general public, as well as playable 

video samples. 

For each dataset, we report the following reconstruction- 

based metrics: peak-signal-to-noise-ratio (PSNR), struc- 

tural similarity (SSIM) [57], and LPIPS [62]. We addi- 

tionally report more popular metrics for generative models 

(specifically, FID [13] and FVD [54]), which, unlike recon- 

struction metrics, do not penalize plausible extrapolations 

that differ from the ground truth. It is well-known that gen- 

erative models should not be expected to achieve the best 

scores in reconstruction-based metrics [42, 58]. In fact, it 

has been consistently shown in prior work that blurrier im- 

ages tend to score higher in reconstruction metrics despite 

being rated as worse by human observers [6, 7, 30, 45]. 

We nevertheless report said reconstruction metrics for both 

completeness and utility to compare different configura- 

tions of the same model, which we do find provides useful 

signal for development. 

We additionally create a second set of results where we 

only evaluate the middle frame, similarly to prior work on 

video interpolation, as we find that otherwise the evaluation 

is skewed towards better frames: most frames are too close 

to the start and end frames and most methods do a good job 

on these, while it is clear that the middle frame is usually 

the most difficult. For these sets of results, we must exclude 

FVD as the I3D network requires a video with 9 frames as 

input. We show results of evaluating all 7 generated frames 

in Tab. 2, and results of evaluating only the middle frame 

as in Tab. 1. All samples were obtained using the ancestral 

sampler proposed by Ho et al. [15] with 256 denoising steps 

per diffusion model. 

Our quantitative evaluation demonstrates the superiority 

of VIDIM compared to other baselines in most generative 

metrics. While there is one exception, namely, that RIFE 

[20] achieves a better FID score than our cascaded model 

when evaluated over all 7 frames, this is not the case when 

considering only middle frame. The baseline methods will 

not have a difficult job with frames that are very close to 

the input frames, skewing the evaluation, while they clearly 

perform worse in the more difficult frames. This is also 

qualitatively apparent in our samples in Fig. 2 and in our 

samples in the Supplementary Material and website, espe-

87.9%

4.9

RIFE
2.5%
FILM
2.8%
LDMVFI
1.8%
AMT
4.9%

VIDIM
87.9%

Human Evaluation Preferences

 

Figure 3. Human evaluation results on Davis-7, showing how of- 

ten VIDIM and each baseline was preferred by human raters. 

cially in the cases with the largest amounts of motion. It 

is also noteworthy that VIDIM is always superior in FVD 

scores by a significant margin, showing that the aforemen- 

tioned baselines produce much less natural-looking videos. 

This is an important quantity to consider, as FID does not 

consider any aspects of temporal consistency and only con- 

siders each frame individually. Notably, the RIFE baseline 

that achieves the best FID scores when considering all out- 

put frames, actually has the worst FVD scores and temporal 

consistency. 

4.3. Human evaluation 

To evaluate our method qualitatively, we additionally con- 

ducted a user-study where participants were shown video 

quadruplets playing side-by-side, each generated using the 

frame interpolation methods AMT, RIFE, FILM, LDMVFI 

and VIDIM (ours), from the same input frame pair. Users 

were shown up to 400 video quadruplet examples, in ran- 

dom order, and were asked to choose which of the four 

videos looks most realistic. The order used to layout the 

videos side-by-side in each example screen was also ran- 

domized. We evaluate on the Davis benchmark we used for 

all other evaluations in the paper, which contains both very 

challenging interpolation examples with ambiguous motion 

and difficult dis-occlusions, and very easy examples show- 

ing very little motion. The study involved 31 participants, 

and resulted in an aggregate of 1334 video quintuplet rat- 

ings. Each of the 400 examples was rated at least by one 

participant. Results in Fig. 3 show that VIDIM samples are 

very strongly preferred by human observers. Moreover, if 

we normalize by the number of times each individual ex- 

ample was rated, results change by at most by 0.3%, i.e., 

different participants tend to make the same choices. 

4.4. Ablation study on start+end frame conditioning 

We now show the importance of explicitly training both 

the base and super-resolution models to be conditional on
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Figure 4. Sample comparison between our VIDIM medium super-resolution model (top) and an identically trained baseline minus high- 

resolution frame conditioning. 

the input frames. To create a fair comparison, we train a 

super-resolution diffusion model that generates all 9 high- 

resolution frames of a video at training time, otherwise with 

all hyperparameters kept identical (including the number of 

training steps), and generate conditional samples via impu- 

tation: at every denoising step, we replace the start and end 

frame of the predicted x with the conditioning frames, add 

noise again and repeat. While this has been explored in 

prior work [18], our key hypothesis is that without the frame 

conditioning we propose, the training task becomes signif- 

icantly more difficult. To further strengthen this baseline, 

we additionally try reconstruction guidance following Ho 

et al. [18], which has been shown to improve sample qual- 

ity by creating a similar effect to classifier-free guidance. 

Specifically, reconstruction guidance amounts to using the 

following prediction for x at every denoising step:

 

x̂guided 

= x̂inpaint 

− ( w − 1) 

αt

 

2 

∇z t 

∥ c − ĉ ∥2 

2

 

(3) 

where w is the guidance weight (so w = 1 corre- 

sponds to standard inpainting, hence the subtraction by 1, 

but higher values of w entail more guidance), and ĉ are the 

predicted start and end frames that in standard inpainting 

we simply throw away. 

Importantly, we note that for this to be a fair compari- 

son, we only evaluate the baseline on the 7 middle frames, 

i.e. we explicitly discard the first and last frame. This is of 

paramount importance to not evaluate on any ground truth 

samples and to make the FID scores comparable (so they 

use the same number of samples). Results are included in 

Fig. 5. The baseline model achieves an FID score of 60.11 

when disabling inpainting, i.w., when it has no access to any 

original high-resolution frames. 

As we hypothesized, we find that conditioning on the

 

Figure 5. FID scores comparison between VIDIM and an in- 

painting baseline model at different guidance and reconstruction 

guidance weights, respectively. Note that the reconstruction guid- 

ance weights (x-axis) for the baseline are re-scaled via f ( w ) = 

( w − 1) / 13 + 1 to more easily compare scores at the optimal re- 

gion to VIDIM; the true range for the baseline guidance weights is 

from 1 to 27. The baseline model achieves an FID score of 60.11.
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Davis-7 UCF101-7

 

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓

 

Base(lg) 24.06 0.6987 0.094 21.15 116.42 23.04 0.6967 0.0848 24.39 194.6 

Base(md) 22.89 0.6529 0.1108 22.59 116.48 23.04 0.6942 0.0857 25.34 198.0

 

SSR(lg) 27.76 0.7825 0.1468 23.94 132.68 31.49 0.8216 0.1554 33.84 168.368 

SSR(md) 28.22 0.7976 0.1309 22.11 128.6 31.48 0.8288 0.1377 32.29 145.2

 

Base(lg) + SSR(lg) 19.62 0.4709 0.2578 28.06 199.32 24.07 0.7187 0.1495 34.48 278 

Base(lg) + SSR(md) 20.11 0.4632 0.3042 38.78 196.64 22.53 0.6775 0.2485 40.44 263.31 

Base(md) + SSR(lg) 19.49 0.4481 0.269 26.58 217.14 24.1 0.7168 0.1507 35.88 280.8 

Base(md) + SSR(md) 19.52 0.4327 0.3167 39.17 219.05 22.97 0.675 0.2513 42.24 279.83

 

Table 3. Comparison between different model sizes to illustrate the scalability of VIDIM. We compare the base and spatial super-resolution 

(SSR) separately and as a cascade. For each case, we consider two variants, a large model lg and a medium model md . Note that isolated 

models should only be compared to each other, as for the base model the ground truth is at a lower resolution, and the super-resolution 

models in isolation are conditioned on ground truth low-resolution frames. 

high-resolution frames makes a significant difference in the 

quality of the results. Having access to sharp, small text 

helps the network preserve its legibility across the frames it 

generates. Even larger text, facial features, texture details, 

etc. can be botched without access to the high-resolution 

input frames. We provide a qualitative example in 4. Even 

without CFG, VIDIM models explicitly trained with the 

conditioning start and end frames achieve much better FID 

scores than the reconstruction guidance baselines. Interest- 

ingly, the range of “good” reconstruction guidance weights 

is quite different to CFG weights. Qualitatively, we find that 

it is key to use some amount of CFG, but at CFG weights of 

around 4.0 and above, we begin noticing significant color 

artifacts. 

4.5. Scalability of VIDIM 

Finally, we also study the effect of scaling up the number 

of parameters of VIDIM models. As briefly mentioned in 

Sec. 3.1, we only change the hidden size (a.k.a. number of 

channels) of the last UNet resolution to maximize memory 

savings. Because higher resolutions will have more acti- 

vations per-parameter , increasing the width of these layers 

is detrimental to peak accelerator memory usage as activa- 

tions must be stored for backpropagation at training time. 

We thus increase the hidden size of the base model only 

at the 16x16 resolution from 1024 to 1792 and the number 

of attention heads from 8 to 14, making the parameter count 

change from 441M to 1.6B. For our super-resolution model, 

the hidden size at the 16x16 resolution was increased from 

1024 to 1536 and the number of attention heads from 8 

to 12, making the parameter count change from 644M to 

1.01B. In order to avoid memory padding in the accelerator, 

the number of attention heads is always set such that the 

per-head hidden dimension is 128. With the use of ZeRO 

sharding [37], both our medium and large models can be 

trained on accelerators with as little as 16GB of memory per 

chip at batch size 1 per chip, and there is enough remaining 

memory to maintain a ZeRO-sharded copy of the gradients 

to use microbatching and train on larger batch sizes with 

the same amount of accelerators. All our “medium” models 

are trained with a batch size of 256, and our “large” mod- 

els were trained with twice the data, i.e., at batch size 512, 

for the same number of training steps as their corresponding 

medium-sized models. Results are included in Tab. 3. 

Our quantitative results show the ability of VIDIM to fa- 

vorably scale with more parameters and training: a larger 

base model is essential to not produce severe artifacts that 

will be amplified, and a larger super-resolution model is es- 

sential for sharpness in regions with the most amount of 

motion. Surprisingly, comparing the super-resolution mod- 

els in isolation, the medium model achieves better quantita- 

tive results; however, using the large super-resolution is the 

most essential component to achieve low FID scores when 

sampling from the full cascade. Qualitatively, we see a clear 

difference in the samples; the large super-resolution model 

samples look sharper and have noticeably less artifacts. We 

hypothesize that the large super-resolution model has more 

capacity to hallucinate missing details and might be more 

robust than its medium counterpart to artifacts from the base 

model. 

5. Discussion and Future Work 

Through qualitative, quantitative and human evaluation, 

we show that our simple VIDIM models and architectures 

are capable state-of-the-art video interpolation, especially 

for large and ambiguous motion. Key components for 

good sample quality include explicit frame conditioning at 

training time and the use of classifier-free guidance. Still, 

several directions should be explored further. VIDIM-like 

models could be used for frame expansion, video restora- 

tion, among other tasks. Additionally, key problems remain 

to make these models maximally useful, including generat- 

ing videos at arbitrary aspect ratios, and further improving 

the quality of super-resolution models. We also expect our 

architectures, framework, and demonstration of the effec- 

tiveness of image-guided conditioning will be generally 

useful for the community in other video generation tasks 

such as extrapolation, text-guided generation, and others.
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