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Abstract

Composed Image Retrieval (CIR) is a task that retrieves
images similar to a query, based on a provided textual mod-
ification. Current techniques rely on supervised learning
for CIR models using labeled triplets of the <reference im-
age, text, target image>. These specific triplets are not
as commonly available as simple image-text pairs, limit-
ing the widespread use of CIR and its scalability. On the
other hand, zero-shot CIR can be relatively easily trained
with image-caption pairs without considering the image-to-
image relation, but this approach tends to yield lower ac-
curacy. We propose a new semi-supervised CIR approach
where we search for a reference and its related target im-
ages in auxiliary data and learn our large language model-
based Visual Delta Generator (VDG) to generate text de-
scribing the visual difference (i.e., visual delta) between the
two. VDG, equipped with fluent language knowledge and
being model agnostic, can generate pseudo triplets to boost
the performance of CIR models. Our approach significantly
improves the existing supervised learning approaches and
achieves state-of-the-art results on the CIR benchmarks.

1. Introduction

Image-to-image or text-to-image retrieval, where a query
image/text is used to retrieve similar ones from a gallery,
has grown into a pivotal research field with many practical
applications [38]. However, relying solely on image queries
is limiting, as they primarily retrieve similar images, mak-
ing it challenging to understand the user’s intent for modi-
fications in the results. On the other hand, relying solely on
text queries can also be restrictive, as it may not effectively
convey the user’s desired detailed visual contents. To ad-
dress this, Composed Image Retrieval (CIR) was introduced
[2, 36, 42, 52]. CIR seeks to retrieve images using a query
that combines both an image and a textual description of the
user’s intent (referred to as the visual delta), which allows
more flexible retrieval. Due to the convenience and diverse
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Figure 1. An illustration of the data preparation process of (a)
conventional supervised Composed Image Retrieval (CIR) vs. (b)
our proposed semi-supervised CIR. While supervised CIR strug-
gles to scale up due to high annotation costs, our semi-supervised
method offers a cost-effective and scalable solution. It augments
training samples efficiently by generating pseudo triplets through
our Large Language Model (LLM)-based Visual Delta Generator.

applicability of CIR, it has attracted increased attention re-
cently for a variety of real-world applications.

Existing research on CIR has been developed under two
major settings: (1) Supervised CIR: Learning with super-
vised triplets (i.e. <reference image, visual delta, target im-
age >) [2, 11, 28, 35, 50] as shown in Fig. 1 (a), and (2)
Zero-shot CIR: Learning with massive noisy <image, tex-
tual caption > pairs [3, 42, 49], without any CIR supervi-
sion. Supervised CIR would obviously yield much higher
accuracy in retrieval but requires expensive two-stage data
collection processes - collecting pairs of related reference
and target images, and then annotating them with visual
delta that depicts the difference between them. On the other
hand, zero-shot CIR does not incur additional labeling costs
and utilizes web-collected noisy image text caption pairs
directly. However, it has a much lower performance bar
compared to supervised approaches and lacks the ability to
specialize in specific CIR domain tasks.

In this paper, we investigate a class of CIR called
semi-supervised CIR, blending supervised and unsuper-
vised samples to enhance generalization (Fig. 1 (b)). This
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method focuses on boosting CIR performance in specific re-
trieval domains by creating new triplets from unsupervised
data. Building on this concept, we introduce a novel tech-
nique, Visual Delta Generator (VDG), designed to tap into
the extensive natural language capabilities of Large Lan-
guage Models (LLMs) [5, 21, 47, 48]. Our approach in-
volves projecting reference and target images from super-
vised CIR triplets into the language embedding space, mak-
ing them suitable inputs for the LLM. We then fine-tune
the model by using prompts such as ‘Describe the differ-
ences between images.’ to induce it to yield human-like vi-
sual delta as illustrated in Fig. 2. Furthermore, we employ
a parameter-efficient fine-tuning technique, LoRA [19], on
the LLM. This choice of design effectively enhances the
quality of visual deltas while also preserving the LLM’s
original capabilities, without harming its inherent knowl-
edge.

After the VDG is trained, it knows how to distinguish
between a given reference and target image and produce vi-
sual delta as a textual response. If we forward two similar
images with different compositions, we can thus obtain the
corresponding visual delta easily with the VDG. This allows
us to achieve two purposes. First, we can now augment ex-
isting CIR triplets by adding generated visual deltas to pairs
of reference and target images from the training set. Sec-
ond, we can also harvest new reference-target pairs from an
unlabeled database based on visual similarity, after which
we forward these images to VDG to configure new pseudo
triplets for CIR training. Note that our VDG is model ag-
nostic – it simply increases the number of triplet candi-
dates for training any given supervised CIR baselines. This
strategy strikes a balance between maintaining the integrity
of supervisory concepts derived from a supervised dataset
and the capacity for effortless expansion using new, unla-
beled image samples. It’s a cost-effective and scalable so-
lution, ensuring uniformity in annotations across extensive
datasets. By generating pseudo triplets with VDG, we sig-
nificantly reduce annotation costs and enhance the perfor-
mance of CIR models trained solely on supervised learning,
as well as those trained without supervised triplets. Our ap-
proach leads to state-of-the-art results in CIR benchmarks.

The key advantages of our semi-supervised CIR include:

• To the best of our knowledge, we are the first to trans-
fer knowledge from Large Language Models (LLMs) and
connect it with semi-supervised Composed Image Re-
trieval (CIR).

• We propose a novel Visual Delta Generator (VDG) that
generates synthetic visual deltas for augmenting the su-
pervised dataset and allowing the integration of an auxil-
iary image gallery for CIR model training.

• Comprehensive experimental results confirm the effec-
tiveness of our method, demonstrating state-of-the-art re-
trieval rankings and showcasing the potential of our work.
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Figure 2. An overview of the VDG tuning process. It includes (a)
a vision projector and (b) a Large Language Model (LLM). The
VDG is trained to produce visual delta that accurately describes
the difference between a reference image and its corresponding
target image.

2. Related Work
Composed Image Retrieval. The field of image retrieval
has captured the interest of many researchers in our commu-
nity [6, 38]. One notable area that has seen much progress
recently is Composed Image Retrieval (CIR), a problem
that focuses on retrieving images that best match a given
pair of a query image and textual intent. Supervised CIR
methods [2, 11, 35, 50] are trained on human-annotated
triplets, consisting of a reference image, a target image, and
their textual difference. On the other hand, zero-shot CIR
[3, 9, 16, 42] operates without relying on human-guided de-
scriptions of the differences between the two images. In-
stead, it uses noisy image-text pairs, aiming to find a func-
tion that can translate images into words. This approach,
designed to discriminate subtle differences between images
based solely on text captions, poses challenges, but also
scales well, making it easy to add more data for CIR train-
ing. Addressing the limitations of both approaches, we ex-
plore the field of semi-supervised learning-based retrieval
in this work, leveraging the strengths of both labeled and
unlabeled data to enhance retrieval performance.

Semi-supervised Learning. Semi-supervised learning
has been an active research topic in visual recognition for
a long time [4, 18, 20, 25–27, 39, 44, 46, 51]. Semi-
supervised learning can be roughly categorized into two
groups, consistency learning [25, 39, 46] and pseudo-
labeling based learning [27, 44]. Consistency-based meth-
ods, as the name implies, encourage consistency in the out-
put of the model by adding noise to model weights or us-
ing Exponential Moving Average (EMA) from a teacher
model to a student model. In pseudo-labeling based meth-
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ods, hard/soft pseudo-labels obtained from a pretrained
model are assigned to unlabeled images [15, 44]. These
pseudo-labels can be filtered using confidence thresholding
or multi-view consistency. However, neither consistency-
based nor pseudo labels methods are directly applicable
to CIR. This is because the relative textual descriptions of
the corresponding visual differences (visual delta) needed
in CIR are not the intended outputs of these methods. In
this work, we propose the Visual Delta Generator (VDG),
a multi-modal pseudo-label generator. VDG processes two
input images and generates text that describes their visual
differences, making it an ideal candidate for constructing
pseudo triplets for CIR.

Multi-modal Models for Image-Text Retrieval. Models
like CLIP [41] and BLIP [29] have showcased the advan-
tages of training models on extensive image-text pairs, en-
abling precise alignment between language and vision rep-
resentations that is crucial for image-text retrieval. Building
on this, there have been significant advancements in utiliz-
ing Large Language Models (LLMs) for enhanced vision-
language understanding [1, 10, 31, 33, 53]. Especially for
CIR, Fromage [23] utilizes LLMs to directly produce em-
beddings for retrieval, allowing cross-modal compositional
search with a single image and textual intent. CoVR [49]
and SEARLE [3] apply LLMs to generate visual deltas us-
ing image captions without incorporating visual data, which
limits the generation of accurate CIR training samples.
Our proposed method overcomes these challenges by fine-
tuning LLMs with the integration of a pretrained vision-
language alignment module. This integration empowers
LLMs to perceive and comprehend images, making them
applicable even in scenarios with only image datasets. The
method excels in generating accurate visual deltas, a key
factor in training efficient external CIR models. These en-
hancements optimize the use of LLMs while ensuring com-
putational efficiency, thereby expanding the versatility of
LLMs in image-related tasks.

3. Method
Overview. Our goal is to establish a semi-supervised
Composed Image Retrieval (CIR) system that merges image
reference features with user textual descriptions to retrieve
images from a large-scale database. We face a challenge
in the limited availability of supervised triplets necessary
for robust CIR model training. To overcome this limitation,
we introduce a novel semi-supervised approach for CIR
by leveraging an instruction-tuned Large Language Model
(LLM), which we call Visual Delta Generator (VDG). The
VDG learns to discriminate differences between two images
and produces a textual response. This capability allows us
to generate additional CIR training triplets, which in turn
contributes to the development of more robust CIR models.

Sec. 3.1 provides detailed insights into the construction of
the VDG. Sec. 3.2 describes the pseudo triplet generation
process. Training of CIR models with pseudo triplets and
our additional objective function for better optimization are
described in Sec. 3.3.

3.1. Visual Delta Generator Training

While semi-supervised learning methods have been actively
developed for standard visual recognition tasks, these can-
not be directly applied to CIR. In CIR, pseudo-label genera-
tion requires a detailed semantic understanding of two sep-
arate images such that their difference can be automatically
expressed in the form of text. We leverage vision-language
pretraining models and LLMs to achieve the requirements.
With the huge success of LLMs, there are approaches that
aim to utilize their understanding of the language domain
for improving vision tasks. Particularly, LLaVA [33] and
InstructBLIP [10] which are trained on top of the chat-bot
style instruction tuned LLM, Vicuna [7], have shown inter-
esting results on vision-language tasks. Inspired by these,
we propose VDG, which allows the LLM to take two im-
ages (reference, target) with similar contents and discrim-
inate their difference in the form of text response (visual
delta) as shown in Fig. 2.

First, to enable the LLM to interpret images, we use the
Querying Transformer (Q-Former) motivated by Instruct-
BLIP [10] to prepare images for the LLM input (i.e., Vision
Projector (VP) in Fig. 2(a)). Q-Former, a transformer en-
coder [12, 21], processes a fixed set of 32 learnable query
tokens (embeddings). These tokens are modified through
self-attention layers and interact with image features of Vi-
sion Transformer (ViT) [12] through cross-attention layers.
As a result, the query tokens are infused with the visual in-
formation from the provided image, making them suitable
for LLM processing.

Stage 1: Alignment. The outputs of the VP are inherently
not aligned with the tokenized word embeddings of the in-
puts to the LLM, which we chose to be LLaMA2 [48] in this
work. Alignment between the VP and LLM needs to be at-
tained by fine-tuning trainable projection of VP in Fig. 2(a)
as was done in LLaVA [33]. Specifically, we employ large-
scale image-caption pairs to foster alignment between the
image representations understood by the VP and the LLM.
This step includes minimizing standard next token predic-
tion loss which is generally used to train the decoder-based
LLM as:

LLLM = −
T∑

t=1

logP (wt|x, Iinst,w(1,..,t-1); θproj), (1)

where wt denotes a token at time step t, T is the length of
the sequence, P (·) is the probability assigned by the model
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to the actual token wt given with the image x, instruction
Iinst and previous tokens w(1,..,t-1), and θproj is parame-
ters of projection layer. Following standard practice, the
prediction for each token is computed using a softmax over
the vocabulary of the LLM, and the cross-entropy loss is
computed between the predicted probabilities and the tex-
tual token labels as a classification.

Stage 2: Instruction Tuning. In this stage, we conduct
instruction tuning to equip our LLM with the ability to un-
derstand image pairs and produce visual delta, as shown in
Fig. 2(b). Referring to Fig. 3, we train the LLM with an
instruction (i.e., “Request”) to generate the visual delta in
textual format (i.e., “Response”). We forward two distinct
images (i.e., “Reference” and “Target”) into the LLM via
the VP. We employ a parameter-efficient fine-tuning tech-
nique, LoRA [19], directly on the LLM. This fine-tuning
process is designed to provide “extra room” for the LLM
to undertake new tasks, all without compromising its foun-
dational capabilities. In this stage, we introduce a specific
prompt structure to the LLM as below:

Request: Analyze given reference and target images and provide
a description that transforms the reference to match the target.
Reference: <Reference image query tokens>
Target: <Target image query tokens>
Response: <Visual delta (text label)>

Figure 3. A template prompt for VDG instruction tuning.

which guides the LLM to generate the corresponding visual
delta. We leverage the same training loss from Eqn. 1 to
train LoRA parameters.

3.2. Pseudo Triplet Generation for CIR

After training VDG, we can generate visual delta of two im-
ages, which can be used to form pseudo triplets for CIR.
However, it is important to choose two images that not
only share certain attributes and similarities but also present
other distinct attributes (i.e., visual delta). To gather suitable
pairs of reference and target images, we utilize an image en-
coder to select them from an auxiliary image gallery, which
we denote as G′. Note that, we notate upper strophe (′) on
samples and embeddings that are obtained from G′, in the
following.

Following the strategy in CIRR [36], we start with an an-
chor image xa and retrieve the top 20 images from G′ using
cosine similarity scores between ResNet 152 [17] embed-
dings, pretrained on ImageNet [24]. We exclude images
with scores above 0.94 and sequentially add images to a
subgroup of size 6, skipping those within a 0.002 score of
the previously included image. As depicted in Fig. 4, we
establish dense connections between all pairs (both consec-
utive, represented by the outer circle, and non-consecutive,

VDG
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Figure 4. The process of pseudo triplet generation. First, an image
subgroup is constructed based on visual similarity (left). Then,
paired reference and target images are fed into the VDG to gener-
ate the visual delta, completing the triplet formation (right).

represented by the dotted inner connections), while ensur-
ing no overlaps. The arrow’s starting point denotes the ref-
erence, while its endpoint indicates the target. Given im-
ages x′r

i and x′t
j , VDG produces δ′i,j . This allows us to for-

mulate the pseudo triplet as {x′r
i , x

′t
j , δ

′
i,j}.

3.3. Semi-supervised CIR Training

Preliminaries. Suppose we have access to a CIR dataset
of triplets: D = {(xr

i , x
t
j , δn(i,j))}Nn=1 where xr

i , xt
j denote

reference and target images, respectively, δn(i,j) represents
their visual delta, and N denotes the total triplet counts.

In the pursuit of enhancing CIR through a semi-
supervised approach, our method’s strength lies in its
model-agnosticism, allowing for seamless integration with
a variety of CIR models. Following recent trends, we opt
to use the encoders from vision-language pretraining mod-
els [10, 29, 31, 41], notably CLIP and BLIP, as our baseline
backbones. These encoders are naturally equipped to un-
derstand and convert both visual and textual elements into a
joint embedding space, making them suitable for CIR tasks.

The image encoder takes patchified image token em-
beddings x = [x1, ...xKimg ] with the learnable image
cls token embedding [xcls], and outputs the visual feature
embeddings Eimg(xcls, x) = [x̂cls, x̂1, ..., x̂Kimg

] where
x̂ ∈ Rdi of di dimension, and Kimg denotes the num-
ber of generated tokens from each image. The text en-
coder processes tokenizer output embedding of visual delta
δ = [z1, ...zKtxt ] with the learnable text cls token em-
bedding [zcls] to produce its textual feature embeddings
Etxt(zcls, δ) = [ẑcls, ẑ1, ..., ẑKtxt

], where ẑ ∈ Rdt of dt
dimension, and Ktxt denotes the number of generated text
tokens from each visual delta.

Model Architecture. To carry out CIR, we establish a fu-
sion function f that takes a reference image xr and a visual
delta δ, producing a composed embedding c as: f(xr, δ) =
c, and notates its trainable components as fθ. We utilize two
well-known backbones, CLIP and BLIP, to configure f . In
the case of CLIP, we employ the text encoder Etxt:θ and an

16808



additional Combiner module [2] Cθ(x̂rcls, ẑcls) that outputs
c to be the components of fθ (i.e., fCLIP

θ = {Etxt:θ, Cθ}).
The Combiner is designed to optimally blend x̂cls and ẑcls
carefully weighing their individual impacts while adeptly
mixing them. In the BLIP case, we exclusively use BLIP’s
text encoder, grounded in the image, and designate it as the
trainable Etxt:θ (i.e., fBLIP

θ = Etxt:θ, and c = ẑcls), with-
out incorporating additional modules. BLIP’s text encoder
inherently fuses image and text signals in its cross-attention
layer, eliminating the need for a separate combining mod-
ule. Notably, we freeze all vision encoders in our setup to
ensure compatibility with existing image retrieval galleries
and to enhance training efficiency.

Supervised / Pseudo Separated Contrastive Loss. The
training objective of CIR is to achieve strong alignment
between the target image’s embedding x (where x =
x̂tcls for simplicity), and the composed embedding c. On
this purpose, we utilize HN-NCE [40] loss for a given
training batch B ∼ D and B′ ∼ D ′, where D′ contains
pseudo triplets. Additionally, to mitigate the impact of
noise in pseudo triplets and ensure consistent contributions
from supervised triplets, we compute a target-composed
contrastive loss (tcc) as:

Ltcc(B,B′) = Lc(B; τ) + Lc(B ⊕ B′; τ) (2)

where Lc is defined as:

Lc(B) = −
n∑

i=1

log

[
ex

T
i ci/τ

α · exT
i ci/τ +

∑B
j ̸=i e

xT
i cj/τ · wxi,cj

]

−
n∑

i=1

log

[
ex

T
i ci/τ

α · exT
i ci/τ +

∑B
j ̸=i e

xT
i cj/τ · wxj ,ci

]
.

where τ, α denote hyper-parameters, and ⊕ denotes con-
catenation along the batch axis, and wxi,cj

, wxj ,ci
are set as

in [40]. This design facilitates the independent yet concur-
rent investigation of both supervised and semi-supervised
CIR embedding spaces in a contrastive manner.

Target-Delta Matching Loss. In the case of BLIP’s
image-grounded text encoder structure, we introduce a new
target-delta matching loss (tdm). Our insight stems from
the observation that, while all reference image patch tokens
are considered in the cross-attention layer of the BLIP text
encoder, target image patch tokens are overlooked when
training solely with contrastive learning between cls token
embeddings. As an example shown in Fig. 5, the visual
delta can be seen as a weakly correlated caption to the tar-
get image. Thus, we aim to align the target image and visual
delta to enable the BLIP text encoder to identify the image
tokens related to textual input. The tdm loss is applied as:
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Figure 5. Illustration of our proposed adaptation of the BLIP
image-grounded text encoder for CIR. Both reference (xr) and tar-
get image (xt) patch tokens are processed by the text encoder (fθ).

Ltdm = E(xt,δ)∼(D,D′)H(ytdm,ptdm(xt, δ)) (3)

where H is cross entropy, ytdm is a 2-dimensional one-hot
vector label obtained through the hard negative mining pro-
cess proposed in [30], where a pair of image and text is con-
figured as matched or not. ptdm ∈ R2 generates both pos-
itive and negative target-delta matching scores and is com-
puted as:

ptdm(xt, δ) =
∑Ktxt

i=1
pθ(ẑ

t
i)/K

txt,

where ẑti denotes the i-th token embedding in fθ(x
t, δ) and

pθ is a FC layer that outputs a 2-D vector. This loss ensures
the text encoder fully processes the target image features,
improving its understanding of the visual delta.

4. Experiments
Sec. 4.1 details the setup and VDG generation. Sec. 4.2 cov-
ers quality checks of visual deltas. Evaluations and baseline
comparisons are in Sec. 4.3, and further analyses in Sec. 4.4.

4.1. Setup

Implementation Details. We utilize InstructBLIP’s pre-
trained weights [10], which have been trained with both a
ViT-G/14 [13] and the Q-Former based on the Vicuna-13B
model [7], without using prompts for Q-Former. For the
stage 1 training described in Sec. 3.1, we employ 595K fil-
tered image-text pairs from CC3M [43] provided by [33] to
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find alignment with our baseline LLM, LLaMA2-13B [48].
In Stage 2, we implement instruction tuning with LoRA pa-
rameters [19], following the fixed prompt as outlined in
Fig. 3. Visual deltas are generated in an autoregressive
manner, predicted based on the LLaMA2 vocabulary. For
the CLIP-based CIR training, we select the ViT-L/14 model
combined with a Combiner [2]. For the BLIP-based model
[29], we use a dedicated BLIP text encoder for image-text
matching, paired with the ViT-L/16 model. Additional de-
tails can be found in the appendix.

Datasets for CIR Evaluation. There are two standard
benchmarks in CIR, one is CIRR [36] which deals with nat-
ural images, and the other is FashionIQ [52] which focuses
on fashion domain images. Each presents unique challenges
and datasets that help researchers push the boundaries of
what’s possible in CIR. Following the protocols utilized in
benchmarks [36, 52], we report the CIR results with recall
scores at top K retrieval results (R@K), or results under
collected subset (Rs@K). Specifically, CIRR is configured
with 4,351 subgroups (subsets), each containing six sim-
ilar images, sourced from NLVR2 [45]. For experimen-
tal purposes these groups are distributed into train (3,345
subgroups of 16,742 images), validation (503 subgroups of
2,265 images), and test (503 subgroups of 2,178 images)
sets. FashionIQ is divided into three categories of Dress,
Shirt, and Toptee (Tops and Tees). The reference and target
images are paired based on their category similarities. The
18,000 CIR triplets for training are pooled from 45,429 im-
ages of the training set, and 6,016 CIR triplets for the test
are chosen from 15,415 images of the validation set.

Visual Delta Generation. To produce pseudo triplets,
we expand our dataset sources to configure an auxiliary
gallery (G′) which is built upon the grouping strategy in-
troduced in Sec. 3.2, while excluding images that over-
lap with the benchmark sets. Once the subgroups are
constructed, we further filter them to avoid heavy over-
lap. In total, we draw upon 42,390 unique subgroups
from NLVR2 [45], and 79,427 from COCO [32]. Simi-
larly, we build 27,957 individual subgroups from FashionIQ
[52], and 30,880 from DeepFashion [34]. We mark upper
strophe (′) to these datasets. For the semi-supervised set-
tings, we randomly select 3,345 groups from NLVR2′ and
COCO′ for the CIRR case, as well as 3,600 groups from
FashionIQ′ and DeepFashion′. We denote these datasets
used for semi-supervised CIR with the subscript se, (e.g.,
NLVR2′se, COCO′

se). Fig. 6 shows the comparison between
human-annotated visual deltas and those generated by the
VDG in both natural and fashion domains. We observe that
the VDG is effective in generating high-quality visual deltas
– additional results can be found in the appendix.

Reference Target
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Remove toy, change dog breed and 
position, and add pillow

Show two similar dogs wearing ties
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two corgi in sunglasses and ties
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and more vintage

Dark blue with a couch graphic
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Lighter with a picture of William Shakespeare

Human Annotator VDG

Figure 6. Qualitative comparison on visual deltas, human vs. VDG
on CIRR and FashionIQ datasets. For both natural and fashion
domain images, VDG can produce informative visual deltas.

Table 1. Retrieval results on CIRR validation set. Human + VDG
represents utilizing both human annotated and VDG-generated vi-
sual deltas when training the CIR model. BLIPtdm represents a
model with target-delta matching loss. The best scores for each
Val. set supervision are highlighted in bold.

Training Set
Supervision

Val. Set
Supervision Baseline R@1 R@5 R@10 R@50

(a) Human Human Combiner 37.98 71.49 82.52 95.29
BLIPtdm 53.17 82.09 89.81 97.54

(b) VDG Human Combiner 35.47 68.29 80.29 94.31
BLIPtdm 50.16 80.03 87.78 96.75

(c) Human + VDG Human Combiner 39.11 73.02 84.41 95.96
BLIPtdm 53.67 82.99 89.97 97.84

(d) Human VDG Combiner 38.96 73.31 84.36 96.22
BLIPtdm 51.64 83.33 91.39 97.90

(e) VDG VDG Combiner 41.59 77.57 87.35 97.11
BLIPtdm 52.69 85.17 92.37 98.59

(f) Human + VDG VDG Combiner 41.47 77.90 87.42 97.30
BLIPtdm 52.95 85.27 92.54 98.61

4.2. Quality Check of VDG Responses

To assess the quality of VDG-generated visual deltas, we
executed a series of experiments as outlined in Table 1. We
use two backbones, Combiner, and BLIP with the tdm loss
(denoted as BLIPtdm), as our baselines for evaluation.

Initially, we compare the visual deltas generated by VDG
with those annotated by humans. This is done by replacing
the deltas in the training set with VDG-generated deltas for
the same reference-target pairs. When comparing (a) and
(b), we observe only a marginal drop in performance upon
switching to VDG-generated deltas. This indicates that the
deltas generated by VDG are as effective as those created
by humans. More importantly, the improved performance
observed when comparing (a) with (c) — which combines
human-annotated and VDG-generated deltas — highlights
the effectiveness of this hybrid approach as a robust data
augmentation strategy to enhance CIR models.

To evaluate VDG’s performance on new image pairs, we
conduct experiments by substituting the human-annotated
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Table 2. Retrieval results on CIRR test set. * denotes our base-
lines, † denotes VDG generated visual deltas are applied to aug-
ment original training set. We categorize into two distinct groups:
one is Seen: Supervised / Supervised + External / Supervised +
Aux. with VDG which utilize human-annotated visual delta for
CIR model training, and the other is Unseen: Zero-shot / Aux.
with VDG which does not utilize human-annotated visual delta for
CIR model training. Within each category, best viewed with bold.

Method R@1 R@5 R@10 R@50 Rs@1 Rs@2 Rs@3

(a) Supervised

ARTEMIS [11] 16.96 46.10 61.31 87.73 39.99 62.20 75.67
CIRPLANT [35] 19.55 52.55 68.39 92.38 39.20 63.03 79.49
Combiner [2] 33.59 65.35 77.35 95.21 62.39 81.81 92.02
CASE [28] 48.00 79.11 87.25 97.57 75.88 90.58 96.00
CoVR [49] 48.84 78.05 86.10 94.19 75.78 88.22 92.80
Combiner 34.39 66.22 76.58 91.04 68.55 86.36 93.98
Combiner† 36.91 69.21 79.54 92.04 70.00 87.45 94.39
BLIPtdm 48.94 77.83 86.15 94.17 75.71 89.71 95.81
BLIP†

tdm 49.08 78.98 86.89 94.24 76.18 90.62 95.86

(b) Supervised + External Dataset for Pretraining

CASE + LasCo.Ca. [28] 49.35 80.02 88.75 97.47 76.48 90.37 95.71
CoVR + WebVid [49] 49.69 78.60 86.77 94.31 75.01 88.12 93.16

(c) Supervised + Auxiliary Gallery with VDG

Combiner† + COCO′
se 38.77 69.25 79.21 91.52 71.25 87.49 94.34

Combiner† + NLVR2′
se 38.89 69.84 79.41 91.18 71.92 87.89 94.29

BLIP†
tdm + COCO′

se 49.37 78.12 85.52 93.74 76.68 90.46 96.05
BLIP†

tdm + NLVR2′se 50.96 80.15 86.86 94.46 77.45 90.65 96.10

(d) Zero-shot

Pic2Word by CC3M [42] 23.90 51.70 65.30 87.80 - - -
SEARLE by ImageNet [3] 24.22 52.41 66.29 88.63 53.71 74.63 87.61
CASE by LasCo.Ca. [28] 35.40 65.78 78.53 94.63 64.29 82.66 91.61
CoVR by WebVid [49] 38.48 66.70 77.25 91.47 69.28 83.76 91.11

(e) Auxiliary Gallery with VDG

Combiner by COCO′ 26.80 54.05 65.30 83.88 67.28 85.42 92.99
Combiner by NLVR2′ 31.57 61.37 72.10 88.94 67.98 86.18 93.18
BLIPtdm by COCO′ 43.49 72.07 81.59 93.21 72.36 87.98 94.72
BLIPtdm by NLVR2′ 45.74 75.01 82.52 93.13 72.60 87.90 94.77

deltas in the validation set with deltas generated by VDG.
The comparison of (a) and (d) reveals comparable perfor-
mance levels, suggesting that deltas generated by VDG are
as effective as human annotations. When we incorporate
VDG-generated deltas into the training set (cases (e) and
(f)), we achieve a notable performance improvement over
the human-annotated validation set across all metrics, with
the exception of a small reduction in R@1. For example,
there is a 5.14%p increase in R@5 between (b) and (e). The
improvement observed may stem from the varied text de-
scriptions by different human annotators, leading to incon-
sistencies in style and detail that potentially affect the distri-
bution of visual differences between the annotated triplets.
VDG offers a more consistent solution in generating visual
deltas, thereby reducing errors associated with differences
in human annotation. Our comprehensive testing demon-
strates VDG’s reliability as an annotation tool for CIR.

4.3. Comparison with Other Methods

Tables 2 and 3 present comparative evaluations between
our method and other CIR approaches on CIRR and Fash-

Table 3. Retrieval results on FashionIQ validation set. We utilize
the same notations and same categorizations as Table 2.

Method Dress Shirt Toptee

R@10 R@50 R@10 R@50 R@10 R@50

(a) Supervised

ARTEMIS [11] 27.16 52.40 21.78 43.64 29.20 53.83
DCNet [22] 28.95 56.07 23.95 47.30 30.44 58.29
FashionVLP [14] 32.42 60.29 31.89 58.44 38.51 68.79
Combiner [2] 31.63 56.67 36.36 58.00 38.19 62.42
CoVR [49] 43.51 67.94 48.28 66.68 51.53 73.60
*Combiner 31.95 55.05 39.21 56.82 38.55 62.16
*Combiner† 35.40 59.99 42.30 61.63 43.09 66.96
*BLIPtdm 44.87 66.83 49.61 66.93 50.54 72.26
*BLIP†

tdm 46.90 68.86 50.28 68.04 52.73 74.45

(b) Supervised + External Dataset for Pretraining

CASE + LasCo.Ca. [28] 47.44 69.36 48.48 70.23 50.18 72.24
CoVR + WebVid [49] 44.55 69.03 48.43 67.42 52.60 74.31

(c) Supervised + Auxiliary Gallery with VDG

Combiner† + DeepFashion′
se 35.50 60.09 42.54 62.86 43.27 67.86

Combiner† + FashionIQ′
se 36.30 60.19 43.98 62.27 44.33 68.06

BLIP†
tdm + DeepFashion′se 47.10 69.10 49.95 69.96 53.90 74.35

BLIP†
tdm + FashionIQ′

se 47.89 69.81 51.36 71.08 53.29 74.65

(d) Zero-shot

Pic2Word by CC3M [42] 20.00 40.20 26.20 43.60 27.90 47.40
SEARLE by ImageNet [3] 20.32 43.18 27.43 45.68 29.32 50.17
CoVR by WebVid [49] 21.95 39.05 30.37 46.12 30.78 48.73

(e) Auxiliary Gallery with VDG

Combiner by DeepFashion′ 23.30 46.36 30.86 49.02 31.87 51.96
Combiner by FashionIQ′ 28.26 51.46 32.58 51.28 34.88 55.79
BLIP†

tdm by DeepFashion′ 32.67 54.39 35.48 55.05 39.47 59.92
BLIP†

tdm by FashionIQ′ 37.48 58.70 37.29 57.11 42.12 62.32

ionIQ evaluation protocols. We categorize the experiments
into two distinct groups. The first group, Seen, includes
scenarios where the CIR model is trained with human-
annotated training triplets. In contrast, the second group,
Unseen, comprises scenarios in which the CIR model is
trained without human-annotated triplets. Our implemen-
tations of Combiner and BLIP are denoted by grey box .
Specifically, methods under (a) are trained with supervised
triplets, while those notated with the symbol (†) are addi-
tionally augmented with VDG-generated visual deltas from
supervised image pairs (i.e., the same setting as Human +
VDG in Table 1). The methods in (b) have been pretrained
on external datasets for CIR tasks, resulting in enhanced
performances. In our semi-supervised setup (c), the models
are trained with augmented supervised triplets and pseudo
triplets sub-sampled from the auxiliary gallery as described
in Secs. 3.2 and 4.1. Methods in (d) are trained with large-
scale datasets with the intention of producing zero-shot per-
formances. In (e), we only use pseudo triplets generated
from the auxiliary gallery for training.

The results clearly demonstrate that our VDG implemen-
tation significantly improves the performance of both Com-
biner and BLIPtdm baselines. In (a), a detailed comparison
shows that models augmented with VDG samples (with †)
consistently outperform their counterparts (without †) in all
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Table 4. Ablation results on BLIPtdm baseline for CIRR validation
set with NLVR2′

se as auxiliary gallery. Best viewed with bold.

grouping concat. tdm loss R@1 R@5 R@10 R@50

52.45 81.18 88.62, 96.88
✓ 55.66 83.45 91.21 97.33
✓ ✓ 56.28 84.39 91.41 97.92
✓ ✓ ✓ 57.88 85.58 93.21 98.33

82.37 82.76 82.99 84.76 85.58 85.10 85.20

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Additional Data Ratio

53.67 53.77 54.36
57.28 57.88 57.12 57.59

R@1 R@5

Re
ca

ll

(a) CIRR validation

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Additional Data Ratio

50.28 50.31 50.46 51.21 51.36 51.17 51.20

68.04 68.41 68.63
70.30 71.08 70.63 70.88

R@10 R@50
Re

ca
ll

(b) FashionIQ-Shirt

Figure 7. Analysis on the scale for (c) Supervised + Auxiliary
Gallery with VDG of NLVR2′

se and FashionIQ′
se. The x-axis de-

notes the ratio of additional images to training images.
Table 5. Analysis on the scale for (e) Auxiliary Gallery with VDG.
The dataset is scaled from one eighth (1/8) to the full set (1). Eval-
uated on CIRR Test set.

R@1 1/8 1/4 1/2 1 R@10 1/8 1/4 1/2 1

COCO 42.15 42.89 43.10 43.49 COCO 79.81 81.01 81.16 81.59
NLVR2 44.31 44.99 45.13 45.74 NLVR2 82.48 82.75 82.43 82.52

recall metrics. Moreover, in (c), when we enhance our CIR
baselines with additional pseudo triplets, there is a notable
performance improvement. Specifically, when BLIPtdm is
combined with the auxiliary gallery, it surpasses the pre-
vious state-of-the-art results in most recall metrics, show-
casing the advantages of VDG. Additionally, it’s important
to highlight that our semi-supervised CIR method achieves
these improvements with considerably fewer images than
methods like CASE or CoVR, demonstrating its efficiency.

In the unseen scenario, our implemented Combiner base-
line not only outperforms Pic2Word, which uses the same
CLIP backbone, but our BLIPtdm also significantly exceeds
the former best-performing SEARLE or CoVR in most met-
rics. VDG’s key advantage is its ability to generate visual
deltas that align with the targeted domain, such as using
COCO for natural images and DeepFashion for fashion im-
ages, by solely utilizing images without any accompanying
captions. As a result, VDG significantly reduces the num-
ber of training samples required, yet achieves enhanced re-
trieval performances compared to zero-shot approaches like
Pic2Word, CASE, or CoVR. This demonstrates that by fo-
cusing on similar domain, image-only datasets, we can sub-
stantially improve the efficacy of CIR model training.

4.4. Further Analyses

Ablation study on Each Component. To showcase the
effectiveness of our proposed learning strategies, we con-
ducted an ablation study and presented the findings in Table
4. We consider three scenarios: (1) without grouping, where
we randomly sample images from the auxiliary gallery to
create pairs; (2) without concat., where we remove the con-
catenation step used in Eqn. 2 and use pseudo triplets only;

Longer and has floral 
and more flowing

Shows a similar dog 
standing on all four 
paws with a teddy 
bear in its mouth.

Rank #1 Rank #2 Rank #3 Rank #4 Rank #5

Figure 8. Retrieval results on auxiliary galleries, COCO, and
DeepFashion. Actual user intents are used as text queries.

and (3) without tdm loss, where we exclude the tdm loss
during training. The results indicate that each element suf-
ficiently contributes to enhancing the performance.
Impact of Generated Data Scale. Figs. 7a and 7b demon-
strate the effect of the size of VDG-generated data. In a
semi-supervised setup, we find that the performance peaks
when the number of pseudo-selected images approximates
the size of the training set, and then saturates. This satu-
ration might arise because additional pseudo triplets fail to
represent the test sample distribution, particularly as we rig-
orously remove overlapping images with the test set when
forming G′. For the unseen case as shown in Table 5, per-
formance is enhanced with an increase in VDG-generated
data. This suggests that even in the absence of supervised
triplets for CIR model training, a larger set of pseudo triplets
not only expands the model’s comprehension of visual com-
positions but also aligns more closely with the distribution
of supervised triplets. This alignment facilitates improved
targeted domain retrieval performances, striking a balance
between generalization and performance enhancement.
Qualitative Retrieval Results. We facilitate retrieval by
providing user intents along with query images, drawing
from auxiliary galleries. The retrieval results, as depicted in
Fig. 8, demonstrate accurate and relevant image retrieval.
Additional results are detailed in the appendix.

5. Conclusion
In this study, we investigate a novel semi-supervised learn-
ing approach in the context of Composed Image Retrieval
(CIR). Our findings reveal that integrating human-annotated
data with pseudo triplets generated by the Visual Delta Gen-
erator (VDG) significantly enhances the generalization ca-
pacity of CIR models. The VDG approach not only stream-
lines the generation of visual deltas but also emerges as a
cost-efficient and effective alternative to extensive human
annotation. This work paves the way for future research in
semi-supervised learning and showcases VDG as a promis-
ing direction for advancing CIR systems.
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