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Abstract

Integrating whole-slide images (WSIs) and bulk tran-
scriptomics for predicting patient survival can improve our
understanding of patient prognosis. However, this multi-
modal task is particularly challenging due to the differ-
ent nature of these data: WSIs represent a very high-
dimensional spatial description of a tumor, while bulk tran-
scriptomics represent a global description of gene expres-
sion levels within that tumor. In this context, our work
aims to address two key challenges: (1) how can we tok-
enize transcriptomics in a semantically meaningful and in-
terpretable way?, and (2) how can we capture dense multi-
modal interactions between these two modalities? Here, we
propose to learn biological pathway tokens from transcrip-
tomics that can encode specific cellular functions. Together
with histology patch tokens that encode the slide morphol-
ogy, we argue that they form appropriate reasoning units for
interpretability. We fuse both modalities using a memory-
efficient multimodal Transformer that can model interac-
tions between pathway and histology patch tokens. Our
model, SURVPATH, achieves state-of-the-art performance
when evaluated against unimodal and multimodal baselines
on five datasets from The Cancer Genome Atlas. Our inter-
pretability framework identifies key multimodal prognostic
factors, and, as such, can provide valuable insights into the
interaction between genotype and phenotype. Code avail-
able at https://github.com/mahmoodlab/SurvPath.

1. Introduction
Predicting patient prognosis is a fundamental task in com-
putational pathology (CPATH) that aims to utilize histol-
ogy whole-slide images (WSIs) for automated risk assess-
ment, patient stratification, and response-to-treatment pre-
diction [3, 5, 6, 13, 61, 62]. Patient prognostication is often
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Figure 1. Multimodal interpretability with SURVPATH.
SURVPATH enables visualization of multimodal interactions via
a Transformer cross-attention between biological pathways and
morphological patterns, here exemplified in a high-risk breast can-
cer. The chord thickness denotes attention weight.

framed as a survival task, in which the goal is to learn risk
estimates that correctly rank the survival time from the pri-
mary diagnostic WSI(s) [34, 36, 71, 81, 85]. As WSIs can
be as large as 100,000 × 100,000 pixels, weakly supervised
methods such as multiple instance learning (MIL) are often
employed for survival prediction. In MIL, WSIs are tok-
enized into small patches, from which features are extracted
and fed into pooling networks, such as attention networks,
for downstream classification [30, 59].

While histology provides phenotypic information about
cell types and their organization into tissues, alternate
modalities can provide complementary signals that may in-
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dependently be linked to prognosis. For instance, bulk tran-
scriptomics, which represents the average gene expression
in a tissue, can reveal a richer global landscape of cell types
and cell states [37, 77] and has been shown to be a strong
predictor of patient survival [24, 51, 56]. By combining
both modalities, we can integrate the global information
provided by bulk transcriptomics with the spatial informa-
tion from the WSI. While most existing methods adopt late
fusion mechanisms [11, 37] (i.e., fusing modality-level rep-
resentations), we design an early fusion method that can
explicitly model fine-grained cross-modal relationships be-
tween local morphological patterns and transcriptomics. In
comparison with widely employed vision-language mod-
els [2, 55, 70], multimodal fusion of transcriptomics and
histology presents two key technical challenges:

1. Tokenizing transcriptomics modality: Modalities
based on image and text can be unequivocally tokenized
into object regions and word tokens [38, 70], however, to-
kenizing transcriptomics in a semantically meaningful and
interpretable way is challenging. As transcriptomics data is
already naturally represented as a feature vector, many prior
studies ignore tokenization and directly concatenate the en-
tire feature with other modalities, which limits multimodal
learning to late fusion operations [37, 77]. Alternatively,
genes can be partitioned into coarse functional sets that rep-
resent different gene families (e.g., tumor-suppressor genes
and oncogenes) that can be used as tokens [10]. Neverthe-
less, such sets provide a rudimentary and incomplete depic-
tion of intracellular interactions as one gene family can be
involved in different cellular functions. Consequently, they
may lack semantic correspondence with fine-grained mor-
phologies. Instead, we propose tokenizing genes accord-
ing to established biological pathways [22, 40, 64]. Path-
ways are gene sets with known interactions that relate to
specific cellular functions, such as the TGF-β signaling cas-
cade, which contributes to the epithelial-mesenchymal tran-
sition in breast cancer [75]. Compared to coarse sets (e.g.,
NP = 6 [10]), pathway-based gene grouping can yield hun-
dreds to thousands of tokens that represent unique molecu-
lar processes (NP = 331 in our work), which we hypothe-
size are more suitable representations for multimodal fusion
with histology. In addition, as pathways represent unique
cellular functions, they constitute appropriate basic reason-
ing units for interpretability (see Fig. 1).

2. Capturing dense multimodal interactions: Early fu-
sion of histology and pathway tokens can be done with a
Transformer that uses self-attention to capture pairwise sim-
ilarities between all tokens [69]. However, modeling pair-
wise interactions between large sets of histology patch to-
kens (e.g., NH = 15, 000) and pathway tokens (NP = 331)
poses scalability challenges for fusion. Due to the quadratic
complexity of the Transformer attention, modeling all pos-
sible interactions imposes substantial computational and

memory requirements. To tackle this issue, we introduce a
new unified, memory-efficient attention mechanism that can
model patch-to-pathway, pathway-to-patch, and pathway-
to-pathway interactions. Modeling these three forms of in-
teraction is achieved by the following: (1) designing the
queries, keys, and values to share parameters across token
types [31, 32], and (2) simplifying the attention layer to ig-
nore patch-to-patch interactions, which we find through ex-
perimentation to be not as effective for survival analysis.

To summarize, our contributions are (1) a transcrip-
tomics tokenizer that leverages existing knowledge of cel-
lular biology to generate biological pathway tokens; (2)
SURVPATH, a memory-efficient and resolution agnostic,
multimodal Transformer formulation that integrates tran-
scriptomics and patch tokens for predicting patient survival;
(3) a multi-level interpretability framework that enables de-
riving unimodal and cross-modal insights about the predic-
tion; (4) a series of experiments and ablations showing the
predictive power of SURVPATH, using five datasets from
The Cancer Genome Atlas Program (TCGA) and bench-
marked against both unimodal and multimodal fusion meth-
ods.

2. Related Work
2.1. Survival Analysis on WSIs

Recently, several histology-based survival models have
been proposed [60, 63, 79, 85, 89]. Most contributions
have been dedicated to modeling tumor heterogeneity and
the tumor microenvironment using MIL. To this end, sev-
eral MIL pooling strategies have been proposed, such as
using graph neural networks to model local patch inter-
actions [16, 36, 46], accounting for the variance between
patch embeddings [57], or adopting multi-magnification
patch representations [42].

2.2. Multimodal Transformers and Interpretability

In parallel, the use of Transformers for multimodal fu-
sion has gained significant attention in classification and
generative tasks [58, 67, 83]. Multimodal tokens can be
concatenated and fed to a regular Transformer [18, 69], a
hierarchical Transformer [41], or a cross-attention Trans-
former [43, 49, 52]. As the number and dimensionality of
modalities increase, the typical sequence length can become
too large to be fed to vanilla Transformers, hence the need
for low-complexity methods. Several models have proposed
re-formulations of self-attention to reduce memory and
computational requirements [4, 12, 14, 15, 29, 31, 80, 82],
for instance, by approximating self-attention with a low-
rank decomposition [44, 82], using latent bottleneck distil-
lation [31, 32, 50], by optimizing GPU reads/writes [14, 15]
or using sparse attention patterns [4, 53]. Recently, in-
terpretable multimodal models or post-hoc interpretation
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Figure 2. Block diagram of SURVPATH. (1) We tokenize transcriptomics into biological pathway tokens that are semantically meaningful,
interpretable, and end-to-end learnable. (2) We further tokenize the corresponding histology whole-slide image into patch tokens using
an SSL pre-trained feature extractor. (3) We combine pathway and patch tokens using a memory-efficient multimodal Transformer for
survival outcome prediction.

methods [1, 39, 72] have also emerged as a critical area
of research, especially in sensitive human-AI collaborative
decision-making scenarios such as healthcare and human-
computer interactions.

2.3. Multimodal Survival Analysis

Multimodal integration is an important objective in cancer
prognosis [61], as combining histology and omics data such
as genomics or transcriptomics is the current clinical prac-
tice for many cancer types. The majority of these works
employ late fusion mechanisms [9, 68], and mostly differ in
the way modality fusion is operated. Fusion can be based
on vector concatenation [48], modality-level alignment [7],
bilinear pooling (i.e., Kronecker product) [9, 77], or factor-
ized bilinear pooling [37, 54].

Differently, early fusion mechanisms can be employed,
in which cross-modal interactions between individual con-

stituents of the input are modeled [10, 17, 84, 88]. Our work
builds off MCAT [10], which uses a cross-attention module
to model the attention of histology patches (keys, values)
toward gene sets (queries). However, MCAT has several
limitations: (1) cross-attention being one-sided and models
only patch-to-genes interactions, (2) transcriptomics tok-
enization using coarse sets that do not reflect actual molecu-
lar processes, and (3) significant gene overlap between sets,
which leads to redundant cross-attention heatmaps.

3. Method
Here, we present SURVPATH, our proposed method for mul-
timodal survival prediction based on histology and tran-
scriptomics. Sec. 3.1 presents the transcriptomics encoder
to build biological pathway tokens, Sec. 3.2 presents the his-
tology encoder to build patch tokens, Sec. 3.3 presents our
Transformer-based multimodal aggregation, and Sec. 3.4
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presents its application to survival prediction (see Fig. 2).
Finally, Sec. 3.5 introduces our multi-level interpretability
framework.

3.1. Pathway Tokenizer from Transcriptomics

Composing pathways: Selecting the appropriate reason-
ing unit for transcriptomics analysis is challenging, owing
to the intricate and hierarchical nature of cellular processes.
Pathways, consisting of a group of genes or subpathways
involved in a particular biological process, represent a nat-
ural reasoning unit for this analysis. A comparison may be
drawn to action recognition, where an action (i.e., a biolog-
ical pathway) can be described by a series of movements
captured by sensors (i.e., transcriptomics measurements of
a group of genes).

Encoding pathways: Given a set of transcriptomics
measurements of NG genes, denoted as g ∈ RNG , and the
composition of each pathway, we aim to build pathway-
level tokens X(P) ∈ RNP×d, where d denotes the to-
ken dimension. Transcriptomics can be seen as tabular
data, which can be efficiently encoded with multilayer per-
ceptrons (MLPs). Specifically, we are learning pathway-
specific weights ϕi, i.e., x(P)

i = ϕi(gPi
), where gPi

is the
gene set present in pathway Pi. This can be viewed as learn-
ing a sparse multi-layer perceptron (S-MLP) [20, 25, 45]
that maps transcriptomics g ∈ RNG to tokens x(P) ∈
RNPd. The network sparsity is controlled by the gene-to-
pathway connectivity embedded in the S-MLP weights. By
simply reshaping x(P) ∈ RNPd into X(P) ∈ RNP×d, we
define pathway tokens that can be used by the Transformer.
Each pathway token corresponds to a deep representation
of the gene-level transcriptomics that comprises it, which
is both (1) interpretable as it encodes a specific biological
function and (2) learnable in an end-to-end fashion with re-
spect to the prediction task.

3.2. Histology Patch Tokenizer from WSIs

Given an input WSI, we aim to derive low-dimensional
patch-level embeddings defining patch tokens. We start
by identifying tissue regions to ensure that the back-
ground, which carries no biological meaning, is disre-
garded. Then, we decompose the identified tissue regions
into a set of NH non-overlapping patches at 20× magni-
fication (or ∼ 0.5µm/pixel resolution), that we denote as
H = {h1, ...,hNH}. Due to the large number of patches
per WSI (e.g., can be > 50,000 patches or 78 GB as floats),
patch embeddings need to be extracted prior to model train-
ing to reduce the overall memory requirements. Formally,
we employ a pre-trained feature extractor f(·) to map each
patch hi into a patch embedding as x(H)

i = f(hi). In this
work, we use a Swin Transformer encoder that was pre-
trained via contrastive learning on more than 15 million
pan-cancer histopathology patches [73, 74]. The resulting

patch embeddings represent compressed representations of
the patches (compression ratio of 256), that we further pass
through a learnable linear transform to match the token di-
mension d, yielding patch tokens X(H) ∈ RNH×d.

3.3. Multimodal Fusion

We aim to design an early fusion mechanism to model
dense multimodal interactions between pathway and patch
tokens. We employ Transformer attention [69] that mea-
sures and aggregates pair-wise interactions between mul-
timodal tokens. Specifically, we define a multimodal se-
quence by concatenating the pathway and patch tokens re-
sulting in (NH +NP) tokens of dimensions d, and denoted
as X ∈ R(NP+NH)×d. Following the self-attention termi-
nology [69], we define three linear projections of the to-
kens using learnable matrices, denoted as WQ ∈ Rd×dq ,
WK ∈ Rd×dk , and WV ∈ Rd×dv to extract the queries
(Q), keys (K), values (V), and self-attention A, setting
d = dk = dq = dv . Transformer attention is then defined
as:

XAtt = σ
(QKT

√
d

)
V =

(
AP→P AP→H
AH→P AH→H

)(
VP
VH

)
(1)

where σ is the row-wise softmax. The term QKT has
memory requirements O

(
(NH+NP)

2
)
, which for long se-

quences becomes expensive to compute. This constitutes a
major bottleneck as a WSI can have NH > 50, 000 patches,
making this computation challenging on most hard-
ware. Instead, we propose to decompose the multimodal
Transformer attention into four intra- and cross-modality
terms: (1) the intra-modal pathway self-attention encod-
ing pathway-to-pathway interactions AP→P ∈ RNP×NP ,
(2) the cross-modal pathway-guided cross-attention encod-
ing pathway-to-patch interactions AP→H ∈ RNP×NH , (3)
the cross-modal histology-guided cross attention encoding
patch-to-pathway interactions AH→P ∈ RNH×NP , and (4)
the intra-modal full histology self-attention encoding patch-
to-patch interactions AH→H ∈ RNH×NH .

As the number of patch tokens is much larger than the
number of pathways, i.e., NH >> NP , most memory re-
quirements come from computing and storing AH→H. To
address this bottleneck, we approximate Transformer atten-
tion as:

X̂Att =

(
X

(P)
Att

X̂
(H)
Att

)
= σ

[
1√
d

(
QPK

T
P QPK

T
H

QHKT
P −∞

)]
V

(2)

where QP (respectively KP ) and QH (respectively KH)
denotes the subset of pathway and histology queries and
keys. Setting pre-softmax patch-to-patch interactions to
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−∞ is equivalent to ignoring these interactions. Expand-
ing Eq. 2, we obtain that X(P)

Att = σ
(

QPKT

√
d

)
VP , and

X̂
(H)
Att = σ

(
QHKT

P√
d

)
VH. The number of interactions be-

comes drastically smaller, enabling computing Â with lim-
ited memory. This formulation can be seen as a sparse at-
tention pattern [4] on a multimodal sequence, where spar-
sity is imposed between patch tokens. This formulation
is parameter-efficient as a unique set of keys, queries, and
values is learned for encoding both modalities. Addition-
ally, this formulation resembles a graph neural network on a
graph where pathways interconnect, and each pathway links
to all patches. After passing X̂Att through a feed-forward
layer with layer normalization, we take the mean represen-
tation of the post-attention pathway and patch tokens de-
noted as x̄P

Att and x̄H
Att, respectively. The final representation

x̄Att, is then defined by the concatenation of x̄P
Att and x̄H

Att.

3.4. Survival Prediction

Using the multimodal embedding x̄Att ∈ R2d, our super-
vised objective is to predict patient survival. Following pre-
vious work [87], we define the patient’s survival state by:
(1) censorship status c, where c = 0 represents an observed
patient death and c = 1 corresponds to the patient’s last
known follow-up, and (2) a time-to-event ti, which cor-
responds to the time between the patient’s diagnostic and
observed death if c = 0, or the last follow-up if c = 1.
Instead of directly predicting the observed time of event t,
we approximate it by defining non-overlapping time inter-
vals (tj−1, tj), j ∈ [1, ..., n] based on the quartiles of sur-
vival time values, and denoted as yj . The problem simpli-
fies to classification, where each patient is now defined by
(x̄Att, yj , c). We define our classifier such that each output
logit (after sigmoid activation) σ(ŷj) represents the prob-
ability that the patient dies during time interval (tj−1, tj).
We further take the cumulative product of the logits as∏j

k=1

(
1 − σ(ŷk)

)
to represent the probability that the pa-

tient survives up to time interval (tj−1, tj). Finally, by tak-
ing the negative of the sum of all logits, we can define a
patient-level risk used for training the network. More infor-
mation are provided in the Supplemental.

3.5. Multi-Level Interpretability

We propose an interpretability framework that operates
across multiple levels to derive transcriptomics, histology,
and cross-modal interpretability (see Supplemental).

Transcriptomics: We employ Integrated Gradient
(IG) [65] to identify the influence of pathways and genes,
resulting in a score describing the degree to which each
pathway, respectively gene, contributes to predicting the
risk. A negative IG score corresponds to a pathway/gene
associated with a lower risk, while a positive IG score indi-
cates an association with a higher risk. A very small score

denotes negligible influence. Such interpretability analy-
sis serves two purposes: (1) validation of known genes and
pathways associated with prognosis and (2) identification of
novel gene and pathway candidates that could predict prog-
nosis.

Histology: We process analogously with IG to derive
patch-level influence that enables studying the morphology
of low and high-risk-associated patches.

Cross-modal interactions: Finally, we can study
pathway-to-patch and patch-to-pathway interactions using
the learned Transformer attention matrix Â. Specifically,
we define the importance of patch j (respectively pathway)
with respect to pathway i (respectively patch) as Âij (re-
spectively Âji). This enables building heatmaps correlating
a pathway and corresponding morphological features. This
interpretability property is unique to our framework and en-
ables studying how specific cellular functions described by
a pathway interact with histology.

4. Experiments
4.1. Dataset and Implementation

We evaluate SURVPATH on five datasets from TCGA: Blad-
der Urothelial Carcinoma (BLCA) (n=359), Breast Inva-
sive Carcinoma (BRCA) (n=869), Stomach Adenocarci-
noma (STAD) (n=317), Colon and Rectum Adenocarci-
noma (COADREAD) (n=296), and Head and Neck Squa-
mous Cell Carcinoma (HNSC) (n=392). Prior studies have
focused on predicting overall survival (OS) [9], however,
this approach risks overestimating the proportion of cancer-
related deaths as patients may have succumbed to other
causes. Instead, we predict disease-specific survival (DSS)
as a more accurate representation of the patient’s disease
status.

Pathway collection: We used the Xena database [23] to
access raw transcriptomics from TCGA (NG = 60, 499 in
total) along with DSS labels. We extracted pathways from
two resources: Reactome [22] and the Human Molecular
Signatures Database (MSigDB) – Hallmarks [40, 64]. Re-
actome and MSigDB–Hallmarks comprise 1,281 and 50 hu-
man biological pathways, respectively. We further selected
pathways for which at least 90% of the transcriptomics are
available, resulting in 331 pathways derived from 4,999 dif-
ferent genes (281 Reactome pathways from 1,577 genes and
50 Hallmarks pathways from 4,241 genes).

Histology collection: We collected all diagnostic WSIs
used for primary diagnosis, resulting in 2,233 WSIs with
an average of 14,509 patches per WSI at 20× (assuming
256 × 256 patches). In total, we collected over 2.86 TB of
raw image data, comprising around 32.4 million patches.

Implementation: We used 5-fold cross-validation to
train all models. Each split was stratified according to the
sample site to mitigate potential batch artifacts [28]. To
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Table 1. Results of SURVPATH and baselines in predicting disease-specific patient survival measured with c-Index (at 20×). Best perfor-
mance in bold, second best underlined. Cat refers to concatenation, KP refers to Kronecker product. All omics and multimodal baselines
were trained with the Reactome and Hallmark pathway sets.

Model/Study BRCA (↑) BLCA (↑) COADREAD (↑) HNSC (↑) STAD (↑) Overall (↑)

W
SI

ABMIL [30] 0.493±0.126 0.518±0.078 0.630±0.102 0.580±0.019 0.550±0.077 0.554
AMISL [85] 0.500±0.000 0.500±0.000 0.500±0.000 0.518±0.015 0.506±0.014 0.508
TransMIL [59] 0.530±0.057 0.551±0.091 0.632±0.143 0.523±0.043 0.544±0.080 0.556

O
m

ic
s MLP 0.611±0.080 0.627±0.062 0.625±0.060 0.548±0.045 0.586±0.098 0.599

SNN [35] 0.528±0.094 0.584±0.113 0.521±0.109 0.550±0.065 0.565±0.080 0.550
S-MLP [20] 0.512±0.028 0.595±0.114 0.581±0.066 0.542±0.052 0.515±0.081 0.549

M
ul

tim
od

al

ABMIL (Cat) [48] 0.541±0.158 0.562±0.067 0.592±0.102 0.580±0.089 0.523±0.098 0.560
ABMIL (KP) [11] 0.615±0.083 0.566±0.038 0.584±0.109 0.566±0.066 0.525±0.140 0.571
AMISL (Cat) [85] 0.462±0.179 0.518±0.055 0.510±0.137 0.478±0.051 0.538±0.025 0.501
AMISL (KP) [85] 0.533±0.106 0.554±0.055 0.567±0.182 0.516±0.068 0.552±0.035 0.544
TransMIL (Cat) [59] 0.598±0.087 0.630±0.047 0.539±0.189 0.542±0.091 0.536±0.090 0.569
TransMIL (KP) [59] 0.629±0.144 0.625±0.079 0.566±0.081 0.515±0.116 0.552±0.035 0.577
MOTCat [84] 0.600±0.095 0.596±0.079 0.641±0.182 0.560±0.062 0.550±0.103 0.589
MCAT [10] 0.652±0.117 0.598±0.094 0.634±0.204 0.531±0.049 0.557±0.101 0.594
SURVPATH (Ours) 0.655±0.089 0.625±0.056 0.673±0.170 0.600±0.061 0.592±0.047 0.629

increase variability during training, we randomly sampled
4,096 patches from the WSI. At test time, all patches were
used to yield the final prediction (see Supplemental).

4.2. Baselines

We group as: (1) unimodal histology methods, (2) unimodal
transcriptomics methods, and (3) multimodal methods (fur-
ther sub-categorized into early vs. late fusion methods).

Histology baselines: All baselines use the same pre-
trained feature extractor as SURVPATH based on [73].
We compare with ABMIL [30], which uses a gated-
attention pooling, AMISL [85], which first clusters patch
embeddings using K-means before attention, and Trans-
MIL [59], that approximates patch self-attention with
Nyström method [82].

Transcriptomics baselines: All baselines use the same
input defined by aggregating Reactome and Hallmarks tran-
scriptomics. (a) MLP [27] uses a 4-layer MLP, (b) SNN [9,
27] supplements MLP with additional alpha dropout layers,
and (c) S-MLP [20, 25] uses a 2-layer sparse pathway-aware
MLP followed by a dense 2-layer MLP. This baseline shares
similarities with our transcriptomics encoder.

Multimodal baselines: (a) Late fusion: We combine
ABMIL [30], AMISL [85], and TransMIL [59] with an S-
MLP using concatenation [48], denoted as ABMIL (Cat),
AMISL (Cat), and TransMIL (Cat), and Kronecker prod-
uct [9, 21, 78, 86], denoted as ABMIL (KP), AMISL (KP),
and TransMIL (KP). (b) Early fusion: MCAT [10] which
uses genomic-guided cross-attention followed by modality-
specific self-attention blocks, and MOTCat [84] which uses
Optimal Transport (OT) for matching the patch token and
genomic token distributions.

4.3. Survival Prediction Results

Table 1 present results of SURVPATH and baselines eval-
uated at 20× magnification (see Supplemental for 10×
analysis). SURVPATH reaches best overall performance,
outperforming unimodal and multimodal baselines at both
20× and 10×. At 20×, SURVPATH reaches +7.3% com-
pared to TransMIL, +3.0% compared to MLP, and +3.5
compared to MCAT. We attribute the high performance of
SURVPATH to (1) the use of both modalities, (2) a unified,
simple, and parameter-efficient fusion model, and (3) a se-
mantically meaningful transcriptomics tokenizer.

Transcriptomics vs. Histology vs. Multimodal: Mul-
timodal baselines significantly outperform histology base-
lines. Interestingly, a simple MLP trained on our set of tran-
scriptomics constitutes a strong baseline that outperforms
several multimodal methods. This highlights the challenge
of performing robust feature selection and integrating het-
erogeneous and high-dimensional data modalities. In addi-
tion, the relatively small dataset size further complicates the
learning of complex models and risk over-fitting. Compar-
isons against clinical variables are provided in Supplemen-
tal.

Context vs. No context: ABMIL and TransMIL per-
form similarly despite TransMIL modeling path-to-patch
interactions using Nyström attention. This observation sup-
ports our design choice of disregarding patch-to-patch in-
teractions. In addition, SURVPATH performance is similar
across magnifications (0.629 overall c-index in both cases).
This observation also holds for most histology and multi-
modal baselines.

Sparse vs. dense transcriptomics encoders: A dense
MLP yields better performance than a sparse pathway-
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Table 2. Studying design choices for tokenization (top) and fusion (bottom) in SURVPATH at 20× magnification. Top: Single refers to no
tokenization, using tabular transcriptomics features as a single token. Families refers to the set of six gene families in MutSigDB, as used
in [10]. React.+Hallmarks refers to the main SURVPATH model reported in Table 1. Bottom: AP→P and AP↔H refers to pathway-to-
pathway, pathway-to-patch, and patch-to-pathway interactions, which is the main SURVPATH model reported in Table 1. Ã refers to using
Nyström attention to approximate A.

Model/Study BRCA (↑) BLCA (↑) COADREAD (↑) HNSC (↑) STAD (↑) Overall (↑)

To
ke

ni
ze

r Single 0.625±0.149 0.560±0.086 0.604±0.176 0.580±0.075 0.563±0.140 0.586
Families 0.620±0.094 0.613±0.061 0.671±0.111 0.600±0.076 0.540±0.071 0.609
Hallmarks 0.645±0.039 0.635±0.093 0.633±0.151 0.589±0.076 0.581±0.039 0.615
Reactome 0.579±0.044 0.604±0.080 0.639±0.200 0.574±0.061 0.619±0.047 0.602
React.+Hallmarks 0.655±0.089 0.625±0.056 0.673±0.170 0.600±0.061 0.592±0.047 0.629

Fu
si

on

AP→P , AP→H 0.446±0.116 0.603±0.038 0.565±0.166 0.526±0.030 0.582±0.053 0.544
AP→P , AH→P 0.546±0.118 0.589±0.037 0.633±0.130 0.498±0.037 0.480±0.083 0.549
AP→P , AH→P , AP→H 0.655±0.089 0.625±0.056 0.673±0.170 0.600±0.061 0.592±0.047 0.629

Ã [82] 0.555±0.066 0.565±0.101 0.612±0.194 0.508±0.032 0.493±0.086 0.547

aware MLP. However, sparse networks have shown to be
particularly parameter-efficient when the number of genes
considered drastically increases and are more interpretable
than regular MLPs [20]. As the number of genes increases,
this trend might evolve.

Early vs. Late fusion: Early fusion methods
(MCAT [10], MOTCat [84] and SURVPATH) outperform
all late fusion methods. We attribute this observation to
the creation of a joint feature space that can model fined-
grained interactions between transcriptomics and histology
tokens. Overall, these findings justify the need for (1) mod-
eling dense interactions between pathway and patch tokens
and (2) unifying fusion in a single Transformer attention.

4.4. Ablation Study

To evaluate our design choices, we performed a series of
ablations studying different Tokenizers and Fusion schemes.

Tokenizer: SURVPATH employs the Reactome and Hall-
marks databases as sources of biological pathways. We as-
sess the model performance when using each database in
isolation, as well as using all genes assigned to one to-
ken (Single) and the gene families used in [10]. With in-
creased granularity of transcriptomics tokens, the overall
performance increases, showing that building semantic to-
kens brings interpretability properties and improves perfor-
mance. We attribute this observation to the fact that each
token encodes more and more specific biological functions,
enabling better cross-modal modeling.

Fusion: We ablate SURVPATH by further simplifying
Transformer attention to its left part considering AP→P
and AH→P , and to its top part AP→P and AP→H (this
design resembles MCAT [10] where a single, shared mul-
timodal attention layer is learned). Both branches bring
complementary information (observed decrease of −5.6%
and −7.5% in c-index), justifying the need to model both
pathway-to-patch and patch-to-pathways interactions. We

further adapt SURVPATH with Nyström attention that en-
ables training on very long sequences by simplifying self-
attention with a low-rank approximation. This yields signif-
icantly worse performance −6.9%. We hypothesize that the
“true full attention” has low-entropy, making it more chal-
lenging to be approximated by low-rank methods [8], and
that sparse attention patterns offer better approximations.

4.5. Interpretability

Examination of the multi-level interpretability can lead to
novel biological insight regarding the interplay between
pathways and histology in determining a patient’s risk.
Here, we compare a low (top) and high (bottom) risk case
of breast invasive carcinoma (BRCA) (Fig. 3) and bladder
urothelial carcinoma (BLCA) (see Supplemental).

In analyzing Fig. 3, we observe that several path-
ways have high absolute importance scores in the low
and high-risk cases, most notably the Hallmark Epithelial-
Mesenchymal Transition (EMT) [76] and COX Reactions
pathways [47], both of which are known to be involved
in breast cancer. EMT is thought to underlie tumor cells’
ability to invade and metastasize [33], and the inverse im-
portance of this pathway for the low- and high-risk cases
is compatible with this analysis. This finding is enforced
by studying the cross-modal interpretability that highlights
the association of EMT with nests of tumor cells invad-
ing stroma. Members of the COX family of cyclooxy-
genases, especially COX-2, have also been implicated in
breast carcinogenesis and are being investigated as a com-
ponent of therapeutic regimens [26]. Cross-modal inter-
pretability demonstrates stromal and immune cells in both
cases. Though there is some overlap between important
pathways in the two cases in Fig. 3, the majority differ
between the two. For instance, in the high-risk case, a
pathway relating to iron metabolism (a known contribu-
tor to breast carcinogenesis and prognosis [66]) was iden-
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Figure 3. Multi-level interpretability visualization in a breast cancer patient. Top: Low-risk patient. Bottom: High-risk patient. Genes
and pathways in red increase risk, and those in blue decrease risk. Heatmap colors indicate importance, with red indicating high importance
and blue indicating low importance. The pathways and morphologies identified as important in these cases generally correspond well with
patterns that have been previously described in invasive breast cancer (e.g. Estrogen Response Late).

tified, with patches showing small nests of tumor cells in-
vading through a dense stroma. In the low-risk case, a
pathway relating to the cellular response to estrogen was
found to be important, with corresponding patches demon-
strating lower-grade invasive carcinoma or carcinoma in
situ morphologies, consistent with others’ observation that
hormone-positive breast cancers tend to be lower grade and
have longer survival times [19]. Interestingly, the Hallmark
Myogenesis pathway is assigned relatively high positive im-
portance for both cases in Fig. 3. Myogenesis has not been
extensively studied in breast cancer, but it is plausible that
tumor cells either themselves express genes involved in this
pathway as part of their epithelial-mesenchymal transition
or they induce stromal cells to do so. This highlights the
ability of our method to drive novel biological insight for
subsequent investigation.

The flexibility of our approach in providing unimodal
and cross-modal interpretability allows us to uncover novel
multimodal biomarkers of prognosis that could conceivably
be used to design better cancer therapies. As our under-
standing of the molecular underpinnings of disease grows,
the interpretability of SURVPATH may spur research into the
possibility of targeting specific combinations of morpholo-
gies and pathways.

5. Conclusion

This paper addresses two challenges posed by the multi-
modal fusion of transcriptomics and histology: (1) we ad-
dress the challenge of transcriptomics tokenization by defin-
ing biological pathway tokens that encode semantically
meaningful and interpretable functions, and (2) we over-
come the computational challenge of integrating long mul-
timodal sequences by designing a multimodal Transformer
with sparse modality-specific attention patterns. Our model
achieves state-of-the-art survival performance when tested
on five datasets from TCGA. In addition, our interpretabil-
ity framework reveals known and candidate prognostic fea-
tures. While our interpretability framework enables iden-
tifying prognostic features, these findings remain qualita-
tive. Future work could focus on interpretability metrics
that generalize findings at dataset-level, e.g., with quantita-
tive morphological characterizations of specific pathways.
In addition, our findings suggest that including patch-to-
patch interactions does not lead to improved performance.
Nonetheless, the absence of a performance boost should not
be an evidence that patch-to-patch interactions are unneces-
sary, but rather that modeling such interactions is a chal-
lenging problem that remains to be solved.
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