
Transcriptomics-guided Slide Representation Learning

in Computational Pathology

Guillaume Jaume1,2 ∗, Lukas Oldenburg1,3 ∗, Anurag Vaidya1,2, Richard J. Chen1,2,

Drew F.K. Williamson1,2 †, Thomas Peeters1, Andrew H. Song1,2, Faisal Mahmood1,2

1Mass General Brigham, 2Harvard University and 3RWTH Aachen University

gjaume@bwh.harvard.edu, lukas.oldenburg@rwth-aachen.de, faisalmahmood@bwh.harvard.edu

Abstract

Self-supervised learning (SSL) has been successful in

building patch embeddings of small histology images (e.g.,

224 × 224 pixels), but scaling these models to learn

slide embeddings from the entirety of giga-pixel whole-

slide images (WSIs) remains challenging. Here, we lever-

age complementary information from gene expression pro-

files to guide slide representation learning using multi-

modal pre-training. Expression profiles constitute highly

detailed molecular descriptions of a tissue that we hypothe-

size offer a strong task-agnostic training signal for learn-

ing slide embeddings. Our slide and expression (S+E)

pre-training strategy, called TANGLE, employs modality-

specific encoders, the outputs of which are aligned via con-

trastive learning. TANGLE was pre-trained on samples from

three different organs: liver (n=6,597 S+E pairs), breast

(n=1,020), and lung (n=1,012) from two different species

(Homo sapiens and Rattus norvegicus). Across three inde-

pendent test datasets consisting of 1,265 breast WSIs, 1,946

lung WSIs, and 4,584 liver WSIs, TANGLE shows signifi-

cantly better few-shot performance compared to supervised

and SSL baselines. When assessed using prototype-based

classification and slide retrieval, TANGLE also shows a sub-

stantial performance improvement over all baselines. Code

available at https://github.com/mahmoodlab/TANGLE.

1. Introduction

Self-supervised learning (SSL) [7, 97] has recently

gained significant traction in Computational Pathology

(CPath) [10, 13, 60, 72, 74, 84]. SSL is particularly suited

for modeling giga-pixel whole-slide images (WSIs), whose

size can exceed 150,000×150,000 pixels, and which are

consequently challenging to process with Vision Trans-

formers (ViTs) or Convolutional Neural Networks (CNNs).

∗Equal contribution
†Presently at Emory University School of Medicine
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Figure 1. Few-shot performance. TANGLE linear probing per-

formance compared to multiple instance learning (ABMIL) and

intra-modality slide SSL (INTRA). TANGLE uses gene expression

(E) to guide slide pre-training (S) using multimodal contrastive

learning (S+E). Results on independent cohorts for BRCA sub-

typing (human breast, n=1,265 WSIs), NSCLC subtyping (human

lung, n=1,946 WSIs), and TG-GATEs lesion classification (rat

liver, n=4,584 WSIs). k: number of training samples per class.

Because of this size constraint, most CPath approaches

adopt a divide-and-conquer strategy that consists of (1) tes-

sellating the WSI into small patches and (2) extracting low-

dimensional patch embeddings with a frozen pre-trained

network. Until recently, the prevalent practice involved re-

lying on networks pre-trained on ImageNet [16, 26, 55].

However, with the advent of SSL, this step is replaced by

histopathology-specific visual encoders [4, 20, 80, 84] or

vision-language encoders [29, 56], in most cases trained

on human cancer samples. The resulting patch embed-

dings constituting the WSI can then be fed to weakly-

supervised models for classification as done in Multiple In-

stance Learning [17, 32, 44, 55, 69].

SSL can also be pushed one step further to derive slide

embeddings without requiring any human annotations [10,
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42, 43, 77, 94]. The resulting slide embeddings can serve

as input for various downstream tasks with minimal or no

training, enabling slide classification with few-shot learn-

ing and prototyping, slide retrieval, and case stratification.

In addition, as the embedding space is learned without ne-

cessitating pathologist annotations, the risk of using noisy

labels inherent in inter-observer variability is greatly miti-

gated [24]. However, building slide embeddings with SSL

remains challenging as (1) constructing slide “views” based

on patch-level augmentations requires extracting multiple

patch embeddings per patch, which is computationally ex-

pensive; (2) the visual primitives and invariances that need

to be learned (such as being able to detect edges in natu-

ral images) become unclear when scaling to very large in-

puts; and (3) intra-slide heterogeneity can prevent deriving

a consistent and strong training signal, especially when us-

ing masked image modeling.

Instead, inspired by multimodal vision-language mod-

els, we leverage gene expression data to guide slide repre-

sentation learning into a slide-expression (S+E) pre-training

model. Gene expression data, such as measured with RNA

sequencing, are known to be strong indicators of disease

state, with molecular signatures predictive of cancer sub-

type [59], patient survival [6], and drug toxicity [2], among

others. Intuitively, the histology slide (S) and correspond-

ing expression data (E) provide different views of the same

underlying biological processes: gene expression forms

a highly detailed molecular description of tissue, with as

many descriptors as there are transcriptomic measurements,

albeit lacking spatial information. Conversely, histology

slides offer a finely detailed spatial representation of the tis-

sue but with only two markers, namely, the hematoxylin

and eosin combination represented as RGB channels. Con-

sequently, molecular alterations, as detected through bulk

transcriptomics, can be exhibited as discernible morpho-

logical patterns when examining the associated histology

slides [14, 40, 41]. We hypothesize that guiding slide

representation learning with expression constitutes a much

stronger training signal than using slide augmentations or

masking.

Here, we follow a multimodal contrastive learning

paradigm where (S+E) pairs are aligned during a pre-

training stage. Specifically, we address the modality hetero-

geneity gap by employing modality-specific encoders yield-

ing a slide and expression embeddings that are aligned using

a symmetric contrastive objective. Our models are based

on large cohorts of publicly available (S+E) pairs, namely

The Cancer Genome Atlas (TCGA) developed for studying

human cancer and the Toxicogenomics Project-Genomics

Assisted Toxicity Evaluation System (TG-GATEs) devel-

oped for assessing drug toxicity in rat model animals. (S+E)

models are trained on multiple species (Homo sapiens and

Rattus norvegicus) and sites (liver, breast, and lung), that

we test on a panel of downstream tasks. To summarize,

our contributions are: (1) the first self-supervised vision

encoder for rat tissue trained on 15 million patches from

47,227 WSIs; (2) TANGLE, a transcriptomics-guided slide

representation learning framework trained on thousands of

(S+E) pairs using multimodal contrastive learning; (3) a se-

ries of few-shot classification, prototype-based classifica-

tion, and slide retrieval experiments for lesion classification

in rat liver and cancer subtyping in human breast and lung

cancer that show the predictive capabilities of TANGLE; and

(4) a post-hoc interpretability analysis that enables deriving

insights about the aligned latent space.

2. Related work

2.1. Self­supervised visual representation learning

The combination of Vision Transformers (ViTs) [19, 79]

and SSL [7, 97] has proved to be a powerful tool for build-

ing task-agnostic image representations. SSL can be cate-

gorized into (1) contrastive approaches [7, 66], whose un-

derlying principle is to attract different representations of

the same image (e.g., two distinct augmentations) while

simultaneously pushing away representations of dissimi-

lar images; (2) reconstruction approaches [27, 89], which

aim to recover specific portions of an occluded image from

the remaining parts of the same image; and (3) approaches

combining both objectives [63, 97]. Representation learn-

ing in vision has also evolved towards multimodal vision-

language models [1, 35, 47, 48, 50, 66, 73, 81, 93]. The

same principles remain, where, for instance, the embedding

of an image caption can be pulled close to the image (in a

contrastive fashion), or partially masked with the objective

to reconstruct the caption from the image. Vision-language

models are also becoming prevalent in medical applications,

by leveraging medical reports and textbooks [52, 86]. Our

work aligns with this idea, where we align expression pro-

files with the slide representation.

2.2. Self­supervised learning in CPath

Encoding histology patches: Most works applying SSL to

CPath focus on building embeddings from image patches

(typically 256 × 256-pixel regions) [4, 12, 13, 20, 39, 42,

54, 80, 82, 84]. State-of-the-art methods are using a com-

bination of contrastive- and reconstruction-based objectives

trained with a student-teacher learning paradigm [20, 80].

Patch-level SSL is trained on increasingly large datasets

and models (e.g., ViT-Huge trained on 1.5M slides in [80]).

These can be based on public archives such as TCGA or

CPTAC [4, 13, 20, 82, 84], on internal cohorts [80], or a

mix of public and private datasets [38]. Recently, vision-

language encoders designed for pathology have also been

proposed [21, 29, 56], and rely on large-scale paired data

scraped from social media, textbooks, or publications. All
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Figure 2. Overview of TANGLE for (S+E) pre-training. An input histology slide is tessellated into patches and encoded using a pre-

trained vision encoder. The resulting patch embeddings are passed to an ABMIL module to derive a slide embedding. The corresponding

gene expression data are encoded using an MLP. A symmetric contrastive objective LsymCL learns to align embeddings from both modal-

ities. During inference, a query slide is encoded into a slide embedding by the trained pooling module to be used for downstream tasks.

these models are solely based on human tissue, most of

which are cancer samples. Here, we complement these by

introducing the first vision encoder for rodent tissue mi-

croscopy, which plays a pivotal role in drug safety and

biomarker discovery.

Encoding histology slides: Methods to build slide em-

beddings using SSL remain relatively scarce. Chen et

al. [10] proposed a three-stage pre-training pipeline to hi-

erarchically aggregate increasingly large tiles, from patches

to patch embeddings to region embeddings to slide embed-

dings. Follow-up works improved pre-training using more

complex training signals based on intra- and inter-slide sim-

ilarity losses [43, 94], masked autoencoding [36] or patch

prototyping [75].

2.3. Supervised learning in CPath

Multiple Instance Learning: MIL [17] is the current

de-facto approach for WSI classification. In particular,

Attention-based MIL (and its many extensions) has been

used extensively in CPath [15, 32, 34, 46, 51, 55, 64, 65,

70, 76, 78, 83, 87, 91, 92, 95]. Context-aware extensions

have also been proposed, such as based on graph neural net-

works [8, 44, 62] and Transformers [61, 69]. During (S+E)

pre-training, we also employ MIL to pool pre-extracted

patch embeddings into a slide embedding that we further

use for SSL contrastive learning.

Multimodal learning: While the representation learning

capabilities of (S+E) pre-training remain poorly under-

stood, the multimodal integration of histology with gene

expression data has been extensively studied in cancer-

specific and pan-cancer works, especially for prognostica-

tion [3, 9, 11, 33, 49, 58, 68, 85, 88]. Several mechanisms

have been proposed such as late [11] or early fusion using

multimodal token aggregration [33, 90, 96]. Although not

directly connected to our approach, they motivate exploring

the connection between gene expression profiles and tissue

morphology. Notably, recent studies more closely aligned

with (S+E) pre-training and demonstrated improved mul-

timodal downstream performance through multimodal pre-

training utilizing histology and expression data [18, 37, 96].

Computational Toxicologic Pathology (CompToxPath):

The majority of work in CPath is centered around studying

human cancer. CompToxPath is emerging as a new sub-

field that aims to augment drug safety assessment using AI,

especially at the pre-clinical stage [57]. CompToxPath has

been used for organ identification [25], detecting abnormal-

ities [5, 28, 30, 71], such as necrosis and hypertrophy detec-

tion. However, none of these works include SSL or large-

scale evaluations. This work bridges this gap by applying

(S+E) pre-training to large-scale toxicology datasets.

3. Method

Here, we present our framework, TANGLE, for

TrANscriptomics-Guided sLidE representation learn-

ing (see Figure 2). TANGLE is composed of (1) a vision

encoder that encodes patches into patch embeddings, fol-

lowed by a pooling module for learning a slide embedding

(Section 3.1), (2) a gene expression encoder that combines

transcriptomic measurements into an expression embedding

(Section 3.2), and (3) a multimodal alignment module that

learns to align both spaces (Section 3.3). TANGLE is tested

on a variety of downstream tasks (Section 4).
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Figure 3. Downstream tasks. We test TANGLE and baselines on (1) few-shot,(2) prototype-based classification, and (3) slide retrieval.

3.1. Slide encoder

Given a histology slide Xi ∈ R
dx×dy×3, we follow the MIL

paradigm [17, 32, 44, 45, 55, 69], which consists of tessel-

lating the slide into small patches, using a pre-trained vi-

sion encoder to extract patch embeddings, and pooling the

resulting patch embeddings into a slide embedding.

Pre-trained patch encoding: For encoding rat tissue, we

trained from scratch a ViT-Base (86 million parameters)

with iBOT [97] on 15 million H&E patches extracted from

47,227 WSIs for 80 epochs, which we denote as iBOT-Tox.

This is, to date, the largest SSL model for non-human his-

tology tissue (see Supplemental). For encoding human tis-

sue, we use CTransPath [82, 84], a state-of-the-art publicly

available vision encoder. CTransPath was trained on 15

million patches from over 32,000 WSIs using a tiny Swin

Transformer [53]. We denote the resulting patch embed-

dings of the i-th slide Xi as Hi ∈ R
NH×dH , where NH is

the number of patch embeddings and dH their dimension.

MIL slide encoding: We learn a function f(Hi) :
R

NH×dH → R
d that maps the set of patch embeddings

Hi ∈ R
NH×dH into a slide embedding hi ∈ R

d. Here, we

use the popular attention-based MIL model (ABMIL) [32],

which consists of learning patch-level attention weights

used for pooling embeddings into a slide embedding.

3.2. Gene expression encoder

Given a set of raw transcriptomic measurements quanti-

fied across NG genes, we compute the log2 fold change

relative to a control group, which represents gene expres-

sion deviations from a normal sample and, therefore, en-

code the magnitude of gene overexpression or underexpres-

sion (see Supplemental). The log2 fold change normalized

transcriptomics associated with Xi, denoted as ti ∈ R
NG ,

can be seen as tabular data, which can efficiently be en-

coded with a multilayer perceptron (MLP) and named as

φ(·). Specifically, we train a 3-layer MLP to learn a map-

ping φ(ti) : RNG → R
d to project a set of selected gene

expressions ti ∈ R
NG to an expression embedding gi ∈ R

d.

3.3. Multimodal alignment

Pre-training contrastive alignment: We align the em-

bedding space of the slide and expression encoders us-

ing a symmetric cross-modal contrastive learning objective.

This is a widely employed representation learning formu-

lation [66], especially in visual-language pre-training [56].

Formally, we define a batch as a set of M (S+E) pairs

(hi, gi)
M
i=1, where hi and gi are the i-th slide embedding

and gene expression profiles, respectively. For a given pair

(hi, gi), the objective is given by:

  \label {eq:loss_symcl} \begin {split} \mathcal {L}_{SymCL} = &-\frac {1}{2M}\sum _{i=1}^{M} \log \frac {\exp \left (\tau \boldsymbol {h}_i^{T} \boldsymbol {g}_i\right )}{\sum _{j=1}^{M} \exp \left (\tau \boldsymbol {h}_i^{T} \boldsymbol {g}_j\right )} \\ & -\frac {1}{2M}\sum _{j=1}^{M} \log \frac {\exp \left (\tau \boldsymbol {g}_j^{T} \boldsymbol {h}_j\right )}{\sum _{i=1}^{M} \exp \left (\tau \boldsymbol {g}_j^{T} \boldsymbol {h}_i\right )} \\ \end {split} 































































(1)

where the first term represents the slide-to-expression con-

trastive loss, and the second term represents the expression-

to-slide contrastive loss. Each term maximizes the dot-

product similarity between embeddings from the same pair

normalized (with Softmax) by negative pairs, which can be

interpreted as other “classes”.

Complementary objective: As an alternative to the con-

trastive loss, we introduce (1) an expression reconstruction

objective LREC framed as an expression regression task, and

(2) a vision-only intra-modality objective LINTRA that aims

to align different random subsets of the slide (local–local

alignment) and random subsets with the average patch em-
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bedding (local–global alignment). We express these as,

  \label {eq:rec} \begin {split} \mathcal {L}_{\textsc {Rec}} =& \frac {1}{M} \sum _{i=1}^M \lVert \mathbf {g}_i - c\big (f(\mathbf {H}_i)\big ) \rVert _2 \\ \end {split} 









 





 (2)

  \label {eq:intra} \begin {split} \mathcal {L}_{\textsc {Intra}} =& -\frac {1}{2M} \sum _{i=1}^M \log (\text {Softmax}({\mathbf {h}}_{i,1}^T\overline {\mathbf {h}}_i, \tau ) \\ & -\frac {1}{2M} \sum _{i=1}^M \log (\text {Softmax}({\mathbf {h}}_{i,1}^T{\mathbf {h}}_{i,2}, \tau ) \end {split} 

























(3)

where c(·) is an MLP regressor, hi is the average patch em-

bedding hi =
1

N
(i)
H

∑

j H
N

(i)
H

ij , and where hi,1 and hi,2 are

slide embedding views derived from different random patch

embedding subsets (e.g., 2048 patches). These variants are

referred to as TANGLE-REC and INTRA, respectively.

Inference: During inference, the query slide is passed

through the vision encoder to extract patch embeddings

and then to the MIL module to derive the slide embedding

that encodes the morphological manifestations of the corre-

sponding molecular signatures. We use the resulting slide

embeddings for few-shot classification using linear probing

and prototyping, and slide retrieval (see Figure 3).

4. Experiments and results

4.1. Dataset

TG-GATEs: We collected all slides from the TG-GATEs

portal [31], which comprises 23,136 liver and 28,747 kid-

ney slides (≈ 25TB of raw data). All slides are liver and

kidney sections from Sprague-Dawley (SD) rats acquired in

pre-clinical drug safety studies on 157 compounds. Each

slide represents the morphological changes (lesions) ob-

served after the administration of a particular drug dosage

at a specified time point of sacrifice, denoted as a sample

group. We manually curated the liver annotations into six

classes (multi-label classification). We used a subset of 29

studies (n=4,584 WSIs, liver only) as an independent test

cohort. Other studies (both liver and kidney slides) are used

for iBOT-Tox pre-training, (S+E) pre-training, and few-

shot training. We additionally collected the corresponding

gene expression profiles (microarrays) of 6,597 liver slides

and selected the top 1,000 genes with the largest log2 fold

change (see Supplemental).

TCGA: We collected 1,041 primary cases from the TCGA

Breast Invasive Carcinoma (TCGA-BRCA) cohort, which

comprises 831 Invasive Ductal Carcinoma (IDC) and 210

Invasive Lobular Carcinoma (ILC). We additionally col-

lected 1,031 primary cases from the TCGA Non-Small

Cell Lung Cancer (TCGA-NSCLC) cohort, among which

∗50 or maximal available labeled samples per class

528 cases of Lung Adenocarcinoma (TCGA-LUAD) and

505 cases of Lung Squamous Cell Carcinoma (TCGA-

LUSC). For each case, we downloaded the correspond-

ing gene expression data (RNA sequencing) from the Xena

database [23] that we curated using the method in [33], re-

sulting in 4,999 gene expression per case.

In-house: We also collected a BRCA (n=1,265 slides,

982 IDC and 283 ILC) and NSCLC (n=1,946 slides,

n=1,621 LUAD and n=325 LUSC) cohort from our in-

house archives. These two cohorts are used as independent

test sets for which gene expression data are not required.

Slides from all datasets were processed at 20× magnifica-

tion (0.5µm/px).

4.2. Linear probing few­shot classification

We evaluate (S+E) pre-training in a few-shot classifica-

tion scenario for lesion detection in liver (Table 1), and

breast and lung cancer subtyping (Table 2). Following stan-

dard practice in SSL [7, 97], we employ linear probing for

benchmarking TANGLE, TANGLE-REC, and INTRA. In ad-

dition, we benchmark HIPT [10] and baselines based on

the average patch embeddings using different backbones

(denoted as ResNet50+Avg., CTransPath+Avg. and iBOT-

Tox+Avg.). Finally, we include two supervised MIL base-

lines, ABMIL [32] and TransMIL [69] (see Figure 3, left).

Baselines are trained five times (Table 1) and ten times (Ta-

ble 2), using k randomly sampled examples per class.

TANGLE vs. supervised MIL: TANGLE significantly out-

performs all MIL baselines in the three datasets with an ab-

solute gain of +5.9% in liver, +11.0% in breast, and +6.2%
in lung compared to ABMIL for k=10. ABMIL leads to

consistently better performance than TransMIL, which we

hypothesize is due to (1) the use of a simpler architecture

beneficial in low-data regimes and (2) tasks where the cel-

lular morphology is more informative than the global tissue

structure.

TANGLE vs. averaging vs. MIL: Despite the simplicity

of these baselines, averaging provides performance that is

on par with MIL in breast subtyping and liver lesion de-

tection. We also observe that employing domain-specific

vision encoders leads to substantial improvements, with

CTransPath+Avg. outperforming ResNet50+Avg., which

our iBOT-Tox+Avg. model in liver lesion detection sig-

nificantly outperforms in TG-GATEs (+9.6% and +11.0%
compared to CTransPath+Avg. and ResNet50+Avg. for

k=10).

TANGLE vs. INTRA vs. HIPT: INTRA and HIPT provide

similar performance in breast and lung, but are both signifi-

cantly outperformed by TANGLE (+12.9% and +16.1% for

k=10 in breast and lung compared to INTRA). Both HIPT

and INTRA are only marginally better or similar to the av-

erage patch embedding, which highlights the complexity of

slide-level SSL.

9636



Table 1. Few-shot lesion classification in rat liver. Comparison of lesion classification (multi-label classification) using MIL vs. TANGLE

and variations with linear probing, and evaluated using Macro-AUC (as %). All models are tested on an independent test cohort comprising

4,584 slides, without any data leakage from unimodal and multimodal pre-training. Standard deviation reported over five runs.

Model/Data k=1(↑) k=5(↑) k=10(↑) k=25(↑) k=50(↑)∗
M

IL

ResNet50+TransMIL [69] 53.3 ± 3.1 48.2 ± 2.9 53.2 ± 2.3 52.5 ± 3.7 52.9 ± 4.2

CTransPath+TransMIL [69] 50.1 ± 4.1 51.1 ± 0.8 55.4 ± 3.9 58.1 ± 3.8 65.9 ± 4.2

iBOT-Tox+TransMIL [69] 55.6 ± 6.1 66.5 ± 6.4 66.3 ± 6.2 68.6 ± 9.8 70.4 ± 10.6

ResNet50+ABMIL [32] 56.0 ± 4.5 59.1 ± 7.1 64.1 ± 5.9 74.2 ± 8.6 80.3 ± 5.8

CTransPath+ABMIL [32] 59.5 ± 4.4 71.7 ± 8.0 73.8 ± 9.5 78.7 ± 9.4 81.0 ± 7.3

iBOT-Tox+ABMIL [32] 61.7 ± 5.3 73.2 ± 6.8 78.8 ± 9.3 81.6 ± 6.9 83.8 ± 8.1

L
in

ea
r

p
ro

b
in

g ResNet50+Avg. [26] 55.0 ± 3.3 57.7 ± 11.8 60.5 ± 9.6 68.6 ± 8.0 72.7 ± 7.8

CTransPath+Avg. [84] 56.9 ± 4.4 56.5 ± 10.5 61.9 ± 8.3 70.5 ± 8.1 73.9 ± 6.1

iBOT-Tox+Avg. (ours) 53.9 ± 5.3 63.5 ± 6.9 71.5 ± 6.1 79.7 ± 5.0 81.9 ± 6.2

iBOT-Tox+Intra (ours) 56.3 ± 7.3 62.6 ± 10.3 72.7 ± 7.4 80.2 ± 8.4 83.3 ± 8.0

TANGLE-Rec (ours) 73.8 ± 13.5 75.5 ± 14.3 78.3 ± 12.2 81.8 ± 10.8 82.7 ± 8.8

TANGLE (ours) 72.1 ± 11.6 80.1 ± 11.3 84.7 ± 9.0 86.3 ± 7.9 86.9 ± 7.6

Table 2. Few-shot cancer subtype classification in human breast and lung. All models are tested on an independent test cohort

comprising 1,265 breast slides and 1,946 lung slides and evaluated using Macro-AUC. Standard deviation reported over ten runs.

Model/Data Breast Lung

k=1(↑) k=5(↑) k=10(↑) k=25(↑) k=1(↑) k=5(↑) k=10(↑) k=25(↑)

M
IL

ResNet50+TransMIL [69] 49.4 50.5 53.7 51.8 55.9 55.0 54.2 52.8

(± 13.0) (± 7.6) (± 8.8) (± 4.9) (± 5.4) (± 5.6) (± 6.1) (± 5.4)

CTransPath+TransMIL [69] 55.5 63.0 63.9 71.2 54.1 64.8 68.4 80.5

(± 9.5) (± 9.1) (± 7.8) (± 12.7) (± 8.6) (± 8.9) (± 10.4) (± 10.8)

ResNet50+ABMIL [32] 53.9 58.0 67.6 71.0 58.2 65.9 65.6 64.8

(± 14.4) (± 9.9) (± 9.6) (± 3.7) (± 7.4) (± 6.1) (± 4.6) (± 1.4)

CTransPath+ABMIL [32] 57.4 70.9 73.8 83.5 62.8 78.7 85.3 87.2

(± 14.0) (± 10.5) (± 7.1) (± 8.6) (± 9.0) (± 11.7) (± 4.5) (± 3.4)

L
in

ea
r

p
ro

b
in

g

ResNet50+Avg. [26] 65.7 67.4 68.0 76.6 57.4 60.1 60.7 59.5

(± 17.3) (± 13.1) (± 13.9) (± 8.0) (± 6.5) (± 4.7) (± 4.2) (± 2.1)

CTransPath+Avg. [84] 68.6 71.3 71.3 80.0 58.2 66.0 71.0 75.2

(± 16.9) (± 11.1) (± 14.4) (± 7.5) (± 6.6) (± 6.6) (± 2.6) (± 3.3)

HIPTCLS-4K [10] 62.2 63.7 71.0 78.1 59.8 70.5 74.1 79.1

(± 10.3) (± 11.6) (± 11.1) (± 6.2) (± 6.5) (± 6.6) (± 3.4) (± 4.1)

CTransPath+Intra (ours) 57.2 73.2 71.9 83.2 59.6 70.3 75.4 83.2

(± 14.7) (± 5.5) (± 9.1) (± 6.8) (± 7.0) (± 9.8) (± 6.7) (± 4.4)

TANGLE-Rec (ours) 56.3 73.6 68.3 83.4 81.6 84.1 85.5 86.6

(± 19.6) (± 6.8) (± 10.1) (± 6.6) (± 10.3) (± 4.9) (± 1.8) (± 2.3)

TANGLE (ours) 67.3 82.6 84.8 90.3 70.9 89.3 91.5 93.9

(± 19.1) (± 8.0) (± 5.0) (± 3.7) (± 6.0) (± 4.1) (± 2.1) (± 1.3)

TANGLE vs. TANGLE-REC: TANGLE-REC shows surpris-

ingly high performance for k=1, but is outperformed for

larger values of k. We hypothesize that TANGLE-REC ren-

ders simplified embeddings (i.e., low-rank, see next Sec-

tion), which makes one-shot learning easier but cannot ex-

press complex morphological subtleties.

Loss ablation: In TG-GATEs relative to TANGLE, adding a

TANGLE-REC objective gives +0.05% AUC, adding INTRA

on top gives -0.8% AUC, and -2.0% AUC when solely

complementing TANGLE with INTRA. We hypothesize that

staining differences between train and test cause the INTRA

objective to overfit, leading to worse performance. Replac-

ing the cross-modal contrastive loss with an L1 objective

gives -6.7% AUC and -7.0% AUC with an L2 (some designs

conceptually similar to [18, 37, 96], see Supplemental).

4.3. Prototyping few­shot classification

We also assess the capacity of TANGLE to construct slide-

level prototypes capable of predicting specific morpholog-

ical characteristics. Specifically, we define a positive slide
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Figure 4. Prototype-based classification. Comparison of

TANGLE and baselines for identifying study-level morphologies

evaluated using macro-AUC. Prototypes are defined as the aver-

age of k slides selected from the study. Full training is an ABMIL

trained on TG-GATEs train set (n=18,552). Standard deviation

reported over 100 bootstrapping iterations.

prototype p+ as the average of k (k=1,3,5) slide embed-

dings with a morphology of interest. Similarly, a normal

prototype p0 is defined using k normal slides, where the

morphology under consideration is absent. Subsequently,

we gauge the similarity between a query slide qi and the

two prototypes using the L2-distance – the distances inter-

preted as confidence prediction used for classification, i.e.,

∥qi − p+∥ and ∥qi − p0∥, (see Figure 3, center). We ap-

ply this method to detect two types of lesions within the

TG-GATEs test set, namely (1) eosinophilic degeneration

in thioacetamide (n=170), and (2) bile duct proliferation in

methylene dianiline (n=170). This setup mirrors a realistic

application of AI, where the identification of a drug-induced

morphology on k slides enables detecting if this morphol-

ogy is present in slides from the same study, thereby en-

abling synergies between doctors and AI systems.

As shown in Figure 4, TANGLE and TANGLE-REC out-

perform all baselines in both studies. Compared to an AB-

MIL model trained on 100% of TG-GATEs (n=18,552),

TANGLE with k ≥ 3 leads to better performance. This

highlights that (1) TG-GATEs includes study-specific mor-

phologies that can be challenging to model, and (2) proto-

typing can help address this gap with minimal effort.

4.4. Slide retrieval

We further evaluate TANGLE on slide retrieval using TG-

GATEs test set. Each slide is associated with four others

that share the same sample group. We extracted a subset

of 594 slides with known drug-induced lesions. Our task is

TANGLE

TANGLE-REC

(S+E)

CTransPath+Avg.
ResNet50+Avg.

iBOT-Tox+Avg.

Averaging

INTRA

(S)

Recall@5 Recall@10 Recall@20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
et

ri
ev

al
p
er

fo
rm

an
ce

Figure 5. Slide retrieval. Comparison of TANGLE and baselines

for retrieving slides with drug-induced lesions from the same sam-

ple group in TG-GATEs test. Recall@k quantifies the count of re-

trieved instances within the top-k most similar slides normalized

by the number of instances to retrieve (four per sample group).

Standard deviation reported over 100 bootstrapping iterations.

to retrieve all slides that share the same sample group char-

acteristics as the query, thereby demonstrating the capabil-

ity of TANGLE to capture compound-, dose- and sacrifice-

specific features. Specifically, we compute the Recall@k

(k=5, 10, 20), which measures the proportion of relevant

slides that appear among the k most similar slides, with four

being the total number of slides to retrieve in this context.

The slide similarity is quantified using the cosine distance

metric applied to the unnormalized slide embeddings (see

Figure 3, right).

As presented in Figure 5, TANGLE reaches the best re-

trieval performance with on average 2.88/4 slides correctly

retrieved among the top-k=10 instances and 3.44/4 among

the top-k=20 instances. This result highlights that TANGLE

can capture subtle morphological differences, such as those

induced by administering different doses or sacrifice times.

Overall, results from Figure 4 and 5 ascertain the con-

clusion from the few-shot evaluation in that (1) (S+E)

pre-training can capture task-agnostic features that can be

used for downstream tasks, (2) intra-modality pre-training

can outperform averaging, but their training signal remains

weak, and (3) in-domain patch feature extractors greatly

improve downstream performance. Additional experiments

ablating TANGLE and INTRA losses, and showing the im-

pact of hyper-parameters (batch size, temperature, number

of sampled patches) are presented in the Supplemental.

4.5. Interpretability

To better understand TANGLE properties, we analyzed the

rank of the space spawned by the test slide embeddings

(computed using the entropy of the d largest singular val-

ues of the embedding matrix, see Supplemental). Indeed,

rank has been shown to be a predictor of downstream per-

formance – and constitute a necessary (but not sufficient)

condition for discriminative latent spaces [22]. We observe
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Figure 6. Interpretability of TANGLE. Top: Visualization of the attention weights of TANGLE in a TG-GATEs liver slide. High-attention

regions highlight lesions (hepatocellular hypertrophy and fatty change). Left: Integrated Gradient (IG) scores of the gene expression

encoder. High-importance genes map to well-known markers of liver toxicity, such as CYP1A1. Right: Percentage of occurrence of the

top-k genes in test. Many genes consistently appear as influential (>40% of tok-k genes). * denotes the number of publications referencing

this gene as connected to drug-induced liver injury according to the CTD database (*: >500, **: >1,000, ***: >2,000).

a strong positive correlation between rank and few-shot per-

formance in all datasets among methods of the same family,

(S+E), (S), and Averaging, as exemplified with k=10 (see

Supplemental). This confirms the importance of building

domain-specific feature encoders for increased expressivity.

This also suggests that reconstruction-based methods suffer

from some degree of dimensionality collapse, which we hy-

pothesize stems from over-fitting (and might disappear with

larger cohorts). Finally, INTRA models have high ranks

despite performing significantly worse than (S+E), which

might be explained by the latent space expressing clinically

irrelevant factors, such as staining variations.

Furthermore, we investigated whether salient histologic

and expression features align with previously established

biological findings. First, we visualized the attention

weights learned during TANGLE pre-training (Figure 6,

top). Important regions with high attention (visible in red)

correlate with lesions (fatty change and hepatocellular hy-

pertrophy, see Supplemental for heatmaps of lung and

breast cancer samples). Next, we applied Integrated Gra-

dients (IG) to derive gene-level importance scores (Fig-

ure 6, left) on TG-GATEs test samples with reported le-

sions. From there, we identified genes that consistently ap-

pear in the top-k most influential genes, such as ABBC3

and CYPP1A1 (Figure 6, right). We then quantitatively as-

sessed their relevance by querying the Comparative Tox-

icogenomics Database (CTD) that aggregates all the lit-

erature on toxicology. 9/10 of the most important genes

have more than 1,000 references connecting them to drug-

induced liver injury, highlighting their relevance for slide

representation learning.

5. Conclusion

In this paper, we introduced Slide+Expression (S+E) pre-

training for slide representation learning. Our approach,

TANGLE, was trained and tested on several species (Homo

sapiens and Rattus norvegicus) and tissue sites (breast,

lung, and liver). Overall, TANGLE outperforms all base-

lines significantly on several downstream tasks, includ-

ing few-shot classification, prototype-based classification,

and slide retrieval. These results highlight the potential

of (S+E) pre-training and pave the way for additional de-

velopments [67]. Future work includes exploring multi-

modal SSL objectives that extend beyond or synergize with,

contrastive approaches, such as reconstruction of multi-

modal masks. Concurrently, evaluating (S+E) pre-training

on more tasks, such as predicting hormone receptor status

from H&E slides, are promising research directions.
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