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Abstract

This paper proposes Comprehensive Pathology Lan-
guage Image Pre-training (CPLIP), a new unsupervised
technique designed to enhance the alignment of images
and text in histopathology for tasks such as classifica-
tion and segmentation. This methodology enriches vision-
language models by leveraging extensive data without need-
ing ground truth annotations. CPLIP involves construct-
ing a pathology-specific dictionary, generating textual de-
scriptions for images using language models, and retriev-
ing relevant images for each text snippet via a pre-trained
model. The model is then fine-tuned using a many-to-many
contrastive learning method to align complex interrelated
concepts across both modalities. Evaluated across multi-
ple histopathology tasks, CPLIP shows notable improve-
ments in zero-shot learning scenarios, outperforming ex-
isting methods in both interpretability and robustness and
setting a higher benchmark for the application of vision-
language models in the field. To encourage further research
and replication, the code for CPLIP is available on GitHub
at https://cplip.github.io/

1. Introduction
Vision Language (VL) models have substantially pro-
gressed, enhancing a broad spectrum of vision applica-
tions with their ability to understand open vocabularies and
demonstrate capabilities for zero-shot transfer [9, 19, 27,
35, 36, 38]. Key to this progress is the effective alignment
of visual and linguistic data, done using large datasets with
paired images and text [25]. The Contrastive Language-
Image Pretraining (CLIP) model exemplifies this evolution,
using contrastive learning to align visual and text embed-
dings on a large scale [25].

Translating these advances to computational pathology,
VL models have transitioned from being novel to essential,
enabling the fine-tuning of datasets considerably smaller
than those typically used for VL pretraining [14, 18, 21, 22].
Despite this progress, the scarcity of Whole Slide Images
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Figure 1. Comparative analysis of zero-shot classification perfor-
mance between the proposed CPLIP algorithm and existing SOTA
methods such as BiomedCLIP [37], PLIP [14], and MI-Zero [23].
The weighted F1 scores demonstrate CPLIP’s substantial perfor-
mance enhancements across six independent histology datasets.

(WSIs) and diverse cancer morphologies poses a challenge
for the zero-shot transfer capabilities of VL models, par-
ticularly for tasks like patch-based tissue recognition and
WSI-level cancer subtyping, which are crucial during the
inference phase [22]. Nevertheless, the successful deploy-
ment of VL models in classifying and analyzing WSIs un-
derscores their significant role in revolutionizing the field of
computational pathology.

The use of VL models in classifying and analyzing WSIs
has shown their impact on computational pathology [22].
Lu et al. created a dataset of 33.48K histology image-
caption pairs, which helped to fine-tune the CLIP model for
cancer subtyping [23]. Huang et al. collected about 208K
histology images and texts from Medical Twitter to further
fine-tune the CLIP model’s ability for zero-shot classifica-
tion and matching [14]. Zhang et al. also collected a het-
erogeneous dataset of 15 million image-text pairs, strength-
ening the CLIP model’s training foundation [37].
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Figure 2. (a) Displays the traditional one-to-one alignment in computational pathology VL models like PLIP [14], BiomedCLIP [37], and
MI-Zero [23], where each histology image is aligned with a single textual description during fine-tuning. (b) Our proposed approach of
many-to-many alignment, where bags of correlated texts are aligned with bags of correlated histology images during fine-tuning, offers a
richer, interconnected data set for model training.

Textual prompts play a crucial role in improving VL
models’ performance. Yet, the tendency of these models
to rely on just one phrase for each histology image might
limit their zero-shot classification effectiveness [14, 23, 37].
They often use simple noun-based phrases, which may ig-
nore detailed causes and symptoms of specific cancers. In-
troducing richer, more detailed prompts could provide VL
models with a broader range of information during train-
ing, potentially improving their ability to classify and un-
derstand various cancer types. To our knowledge, no ex-
isting histology VL models have incorporated such diverse
textual prompts either during training or at the inference
stage. Unlike existing methods focusing on aligning indi-
vidual textual and visual concepts, we propose the simulta-
neous alignment of numerous interrelated textual and visual
concepts, as depicted in Figs. 2 (a) & (b).

In this paper, we define “comprehensiveness” as the in-
corporation of a broad array of textual descriptions for the
same medical conditions, coupled with a diverse set of his-
tology images for those conditions. This approach acknowl-
edges that a single disease may be described differently by
various medical professionals and can manifest in multiple
ways across patients. Despite these variances, combining
different descriptions and images provides a holistic view,
enhancing the VL models’ ability to make connections be-
tween symptoms, causes, and specific medical conditions.

To generate “comprehensive” textual prompts, we first
compiled a pathology-specific dictionary cataloging various
cancer types and related medical conditions, using a range
of publicly available online glossaries. We then used an ex-
isting VL model [23] to select the most appropriate prompts
for each histology image from this dictionary. With GPT-3

[5], we transformed the selected prompts into five unique
variations and identified three main causes and symptoms
for each condition. Using the Pathology Language Image
Pre-training (PLIP) model [14], we matched these enhanced
prompts with corresponding histology images from a Twit-
ter dataset to enrich our visual database. The number of
textual descriptions and images was capped at 17 and 21 to
manage computational demands, though this limit can be
adjusted according to resource availability.

Using our extensive collection of textual prompts and vi-
sual content, we generated collections—or ’bags’—of tex-
tual descriptions and images through an unsupervised and
automated process. Images that match the prompts from
our pathology dictionary are labeled as positive examples,
while mismatches are negative. These collections are then
used to fine-tune the CLIP model by adjusting the model’s
embeddings to align similar (positive) concepts and push
away dissimilar (negative) ones. This method is aimed to
enhance class-agnostic representations (refer to Fig. 1).
Our resulting fine-tuned model, called Comprehensive PLIP
(CPLIP), is suited for various downstream zero-shot classi-
fication tasks.

This approach aligns with trends in AI that enhance in-
teraction between language and visuals, much like VIS-
PROG [12], which translates language instructions into vi-
sual task actions. Similarly, our proposed CPLIP model in-
tegrates detailed textual and visual information to improve
understanding in computational pathology. In summary, our
contributions include:
• Compilation of a dedicated dictionary for pathology-

related prompts to facilitate the organized collection and
application of comprehensive textual descriptions, im-
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proving model training and evaluation (Sec. 3.1).
• Development of comprehensive textual descriptions

paired with multiple visual concepts to better align text
and image embeddings (Secs. 3.2 & 3.3).

• Advocacy for collective alignment of multiple textual de-
scriptions and visual concepts (Sec. 3.5).

• Demonstrated superior zero-shot performance by our
model on different datasets, highlighting the benefits of
the “comprehensiveness” approach to boosting VL mod-
els for classification and segmentation in computational
pathology (Sec. 4).

2. Related Work

In the effort to advance computational pathology through
various tasks like histology image classification, segmenta-
tion, and survival prediction, numerous methods have been
proposed [7, 29]. These methods can be broadly categorised
as weakly-supervised [15, 26], self-supervised [17, 32], and
Vision-Language (VL) supervised [14, 23, 37].
(i) Weakly-supervised Learning Methods (WSL) use
data with labels at a broad level, without needing detailed
annotations for every instance. In computational pathology,
Multiple Instance Learning (MIL) has evolved as a popular
paradigm for WSI classification. Examples include ABMIL
[15], TransMIL [26], DSMIL [26], CLAM [20], and DTFD-
MIL [34]. In contrast to this paradigm, our VL-based algo-
rithm does not require any label during the training rather
it uses pathology-specific language supervision.
(ii) Self-supervised Learning Methods in computational
pathology learn from the data itself without using labels,
using pretext tasks to boost downstream task performance.
Key in this area is contrastive learning-based methods,
which focus on distinguishing between similar and con-
trasting instances within the data. By using contrastive
loss, these methods train models to discern augmentation-
invariant features crucial for tasks like classification and
anomaly detection. Examples include CTransPath for his-
tology image classification [32], H2T [31], HIPT [6], and
[17]. These techniques help models capture essential inher-
ent data characteristics, enhancing performance on various
computational pathology applications. Our approach goes
beyond contrastive learning methods by not only aligning
bags of images but also aligning bags of texts and addi-
tional strategies to enhance model performance.
(iii) Learning with Pathology Language Supervision
Methods integrate textual descriptions with visual data
to pre-train deep models. Adhering to the conventional
VL model training approach, these methodologies lever-
age paired visual-textual data within a contrastive learning
framework to ensure that representations of similar visual-
textual concepts are drawn closer together, while divergent
ones are distanced [7, 22, 25]. Recently, the VL paradigm
has been extended to zero-shot classification and segmen-

tation tasks, introducing models like PLIP [14], CONCH
[22], MI-Zero [23], and BiomedCLIP [37]. These innova-
tions have brought forth new datasets containing descrip-
tions of histology images and languages to pre-train archi-
tectures resembling CLIP [25]. A limitation of these models
is their potential inability to generalize well across different
datasets due to the training dataset-specific biases consist-
ing of paired textual-visual concepts. Also most of these
approaches primarily focus on aligning single textual and
visual representations. In contrast, we propose the engage-
ment of comprehensive visual and textual data to concur-
rently align multiple correlated positive visual-textual con-
cepts. We argue that such an expansive and robust align-
ment significantly elevates performance across a spectrum
of computational pathology tasks.

3. Proposed Methodology

In this work, we propose the Comprehensive Pathology
Language Image Pre-training (CPLIP) algorithm. This al-
gorithm effectively uses a collection of unlabeled histology
images, paired with a predefined comprehensive pathology
prompt dictionary, to fine-tune the CLIP model without any
ground truth annotations (neither at the image level nor
at the text level). The purpose is to tailor CLIP to a di-
verse range of histology data gathered from various sources.
This enhances its ability for zero-shot transfer across differ-
ent computational pathology tasks, especially for unfamiliar
tissue categories not encountered during the training phase.
We represent the comprehensive pathology prompts dictio-
nary as V and denote the collection of unlabeled histology
images as H = {hj}nh

j=1, where nh indicates the total count
of these histology images.

Fig. 3 illustrates the process of constructing the bag of
textual descriptions and the bag of visual concepts within
our CPLIP framework. It depicts the primpary phases, in-
cluding the construction of a predefined pathology prompt
dictionary and the aggregation of corresponding textual de-
scriptions, followed by the formation of visual concepts.
These elements are integral to our many-to-many con-
trastive learning approach, which seeks to align positive
visual-textual pairs and separate negative ones. The details
of these processes are discussed in the following sections.

3.1. Predefined Pathology Dictionary (Fig. 3 A(a))

The ARCH dataset is the only publicly accessible histol-
ogy image-caption pairing [11]. This dataset has been used
in MI-Zero [23]. This method, however, restricts them to
paired image-text data, which might not be comprehen-
sively available to the public. To address this limitation, we
propose a set pathology prompt dictionary. This serves as a
foundational prompt to extract more comprehensive images
and textual descriptions in subsequent phases.

We have created a strong dictionary tailored to histology
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Figure 3. Diagram outlining the construction of comprehensive textual descriptions and visual concept bags. (A) illustrates the construction
process of the textual description bag, while (B) shows the procedure for constructing the visual concept bag. Within (A), there are three
primary steps: using MI-Zero to identify the best text match, leveraging GPT-3 to enrich the textual descriptions of the best-matched text,
and employing the PLIP text encoder to generate more in-depth descriptions of the input unlabeled histology image. Within (B), there are
also three primary steps: (a) using PLIP to identify the best-matching images, (b) leveraging PLIP to enrich the histology images of the
best-matched textual descriptions, and (c) employing the PLIP to retrieve relevant histology images of the input unlabeled histology image.

descriptions, which includes terms commonly used by ex-
pert pathologists to describe various cancer forms, related
medical conditions, and their prognoses through histology
images. To generate this resource, we merged cancer glos-
saries from esteemed institutes [1, 2] manually refining the
collected data to form a more precise pathology-specific
dictionary. Our experiments compare the effectiveness of
these two vocabularies, assessing the outcomes of each. The
combined dictionary holds 500 varied prompts, incorporat-
ing 1,500 terms covering the range of cancer types and mor-
phologies for diagnosis. After refinement (cleaning and fil-
tering), the dictionary has 200 wide-ranging and in-depth
prompts totaling 700 terms. This refinement process first re-
moves irrelevant prompts, like those not directly connected
to a histology image. It then omits non-histopathology
prompts, sidestepping those related to radiology, X-rays,
CTs, and so on. Every prompt is thereafter denoted with
a suitable acronym and corresponding description. The re-
fined predefined prompts dictionary is designed to cover
major cancer types and morphologies across various tissue
types. We have provided it as supplementary material in
this paper and intend to release it to the public.

3.2. Building a Comprehensive Textual Descrip-
tions Bag (Fig. 3 A(g))

Given the collection of input unlabelled histology images,
denoted as H, and the predefined pathology prompts dictio-
nary, V, we generate a detailed textual description bag, Bt

i ,
for each image hj ∈ H. This process uses three distinct tex-
tual sources: MI-Zero [23], GPT-3 [5], and PLIP [14]. Each
source is elaborated on below.

3.2.1 Matching with MI-Zero (Fig. 3 A(c))

While the widely used visual text encoder CLIP is trained
on generic data, our work necessitates a domain-specific
VL encoder. With limited options available, we opted for
the MI-Zero model [23]. This model, recently launched,
is trained on matched histopathological image-caption data.
MI-Zero includes a visual encoder, represented as f(·; θ),
and a text encoder, g(·;ϕ), both of which compute image
and text embeddings, respectively. For a given histology
image hj , we identify its most related prompts from the pre-
defined dictionary V using the formula:

v̂i = argmax
vi∈V

sim(f(hj), g(vi)), (1)

Here, sim(x, t) = x⊤t/(||x|| ||t||) denotes the cosine sim-
ilarity measure. The resulting v̂i is then added to the tex-
tual descriptions bag, Bt

i . Fig. 3 (A) provides a visual rep-
resentation of this process. It begins with the predefined
pathology prompt dictionary (shown in Fig. 3 A(a)) and an
unlabelled histology image (Fig. 3 A(b)). From here, we
identify the top five matching prompts (Fig. 3 A(c)). Of
these, only the best-matching text, termed “squamous cell
carcinoma”, is chosen and added to the bag Bt

i (See Fig.
3 A(g)). For more examples of closely matched prompts,
refer to our supplementary material.
3.2.2 GPT-3 for Comprehensive Textual Descriptions

(Fig. 3 A(d))

To derive multiple descriptions of the top-ranked textual
prompt from the previous process (Sec. 3.2.1), we can turn
to Large Language Models (LLM) like GPT-3 [5]. Such
models have demonstrated strong capabilities in various lin-
guistic tasks [33]. By inputting the highest ranked prompt
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v̂i into LLM, we ask it to produce five alternate descrip-
tions based on its extensive linguistic knowledge. Addition-
ally, we generate three primary etiologies/causes and three
dominant symptoms related to the top-ranked prompt us-
ing the LLM. An example presented in Fig. 3 A(e) reveals
five unique descriptions for the top-rated prompt “squamous
cell carcinoma”. Some descriptions include “squamous cell
carcinoma is a common form of skin cancer” and “squa-
mous cell carcinoma malignancy often appears as a scaly,
red patch...” and so on. The model also provides poten-
tial causes like “prolonged exposure to ultraviolet radia-
tion” and noticeable symptoms like “skin alterations” and
“lingering wound”. Together with the identified pathology
prompt “squamous cell carcinoma”, this brings forth twelve
varied textual descriptions that will be considered during the
formulation of our bag Bt

i . Moreover, our text augmenta-
tion includes the lemmas of verbs, helping the model to treat
different verb forms as the same action. Additional illustra-
tions are made available in the supplementary material.
3.2.3 Image-to-Text Description with PLIP (Fig.3 A(f))

In this phase, we use the PLIP model to identify relevant
text descriptions linked to given unlabeled histology im-
ages, pulling information from the vast Medical Twitter
dataset [14]. From this, we select the top five most ap-
propriate descriptions and add them to our textual bag, Bt

i .
The PLIP model consists of both visual and text encoders,
specifically adapted based on the large-scale medical Twit-
ter dataset. With PLIP’s assistance, we can integrate de-
scriptions from a variety of sources into our textual bag,
Bt

i . Fig. 3 A(f) displays the top five descriptions matched
to the unlabeled histology image shown in Fig. 3 A(a).

3.3. Compiling Visual Concepts Bag (Fig. 3 B(e))

The visual concepts repository, denoted as Bv
i , is con-

structed based on the comprehensive textual descriptions
sourced from the textual bag Bt

i and the unlabeled histol-
ogy image hj . This process consists of two primary stages,
as depicted in Fig. 3 (B).

3.3.1 Image Retrieval with PLIP Based on Textual
Prompts (Fig. 3 B(a)-(b))

Starting with a top-matched prompt from MI-Zero match-
ing, we identify several histology images that match this
prompt using PLIP’s image and text encoders. Similarly,
using a set of textual descriptions from LLM, we find re-
lated histology images that go with each description through
the PLIP model. It is important to note that our approach
uses only the pre-trained PLIP model without any extra fine-
tuning. For example, with the prompt “squamous cell carci-
noma” as our top match, and using textual information from
LLM (as shown in Fig. 3 A(e)), we were able to identify a
total of 16 images that were relevant.

3.3.2 PLIP Image-to-Image Retrieval (Fig. 3 B(c))

With the unlabelled histology image, hj , we retrieve the five
most related images using PLIP’s image encoder from the
Medical Twitter dataset. When these are added to Bv

i , the
total comes to 21 visual concepts. The top five images, as an
example (Fig. 3 B(c)), can be viewed in the supplementary
material.

3.4. Textual and Visual Bags Pruning

Considering the textual descriptions in Bt
i come from vari-

ous sources, there is a chance some may not be as relevant.
To improve the Bt

i bag quality, we make sure each descrip-
tion ti,n ∈ Bt

i closely matches with input image hj , ex-
ceeding a specific similarity value sim(f(hj), g(vi)) ≥ δt.
Adjusting this δt value can either reduce the number of de-
scriptions in Bt

i (if the value is higher) or keep most of them
(if it is lower). Since Bv

i is constructed using the pruned
textual bag and the PLIP model, the pruning applied on the
Bt

i consequently reflects in the Bv
i . Please note no further

pruning is applied on bag Bv
i .

3.5. MIL-based Contrastive Loss (Fig. 2 (b))

To fine-tune the PLIP model, we use the Multiple Instance
Learning-Noise Contrastive Estimation (MIL-NCE) loss in-
troduced in [24]. Contrary to the original MIL-NCE design
that aligns a single positive text with a single positive video,
our algortihm CPLIP connects a bag of text, Bt

i , with a
corresponding set of visual bags, Bv

i (the specific sequence
of items from the bags is inconsequential). This approach
facilitates the association of multiple textual descriptions
with multiple histology images. Our defined MIL-NCE loss
function is presented as follows:

L = − 1

B

∑
i

log

[ ∑
m

∑
n exp

(
f(vi,m)⊤g(ti,n)/σ

)
∑

m

∑
j

∑
n exp

(
f(vi,m)⊤g(tj,n)/σ

)],
(2)

Here, vi,m ∈ Bv
i , tj,n ∈ Bt

j , 0 < n ≤ nbag , and 0 <
m ≤ mbag . mbag represents the size of Bv

i , while nbag

denotes the size of Bt
i . B and σ indicate the batch size and

the constant temperature parameter, respectively.

3.6. Zero-shot Transfer for Histology Landscape

Radford et al. have introduced a method that uses prompts
for zero-shot classification [25]. In this method, class names
are converted into prompts by attaching them to specific
keyword templates. For instance, the class name “Tumor
Adenocarcinoma” is expanded using the template “An H &
E image of {}”. Subsequently, the trained text encoder cal-
culates the embeddings of these prompts. Meanwhile, the
trained visual encoder deduces the embeddings of test im-
ages. These embeddings are normalized using ℓ2, and their
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Table 1. Ablations 1-3: Zero-shot classification performance comparison in terms of weighted F1 score using different heterogeneous
textual descriptions. 95% Confidence Interval (CI) is included in parentheses.
Ablation Study D500+GPT-3+PLIP D200+GPT-3+PLIP D200 only D200+GPT-3 GT+GPT-3+PLIP

CRC100K 0.804(0.791,0.815) 0.844( 0.833, 0.856) 0.697(0.682,0.704) 0.774(0.752,0.703) 0.861(0.852,0.874)
DigestPath 0.842(0.833, 0.859) 0.903( 0.891, 0.915) 0.734(0.707,0.764) 0.831(0.820,0.834) 0.912 (0.904,0.922)

SICAP 0.441(0.401,0.485) 0.511( 0.498, 0.526) 0.292(0.276,0.317) 0.422(0.375,0.475) 0.533(0.508,0.571)
W4SSSLUAD 0.801(0.772,0.835) 0.882( 0.876, 0.894) 0.644(0.605,0.683) 0.716(0.685,0.743) 0.891(0.876,0.916)

PanNuke 0.761(0.744,0.786) 0.811( 0.799, 0.827) 0.685(0.613,0.749) 0.761(0.753,0.772) 0.841(0.815,0.873)

Table 2. Ablation 5: Zero-shot classification performance compar-
ison in terms of weighted F1 score for a bag of text vs. a bag of
visual concepts. 95% CI is included in parentheses.

Ablation Study Text bag (Bt) Visual bag (Bv) Proposed
CRC100K 0.761(0.753,0.774) 0.744(0.723,0.765) 0.844(0.833,0.856)
DigestPath 0.854(0.831, 0.872) 0.861(0.852,0.871) 0.903(0.891,0.915)

SICAP 0.477(0.465,0.487) 0.471(0.451,0.495) 0.511(0.498,0.526)
W4SSSLUAD 0.772(0.752,0.793) 0.786(0.772,0.796) 0.882(0.876,0.894)

PanNuke 0.766(0.734,0.795) 0.756(0.723,0.785) 0.811(0.799,0.827)

similarity is measured using the cosine similarity measure.
The labels of the test images are determined based on the
highest similarity scores. Given the variance in the perfor-
mance of different prompts, we expand the prompt genera-
tion process. We use a set of templates tailored for pathol-
ogy and introduce alternative names for each class, drawing
inspiration from earlier studies [22, 23]. When making in-
ferences, the various prompts for each class are combined
by averaging their embeddings. Our experiments present
results both with and without the merging of prompts.

4. Experiments
We conduct several experiments to evaluate the proposed
CPLIP algorithm, including tile-level zero-shot classifica-
tion, WSI-level zero-shot classification, and zero-shot seg-
mentation of gigapixel WISs. For the tile-level zero-shot
classification, we use five independent datasets: CRC100K
[16], WSSS4LUAD [13], PanNuke [11], DigestPath [8],
and SCIAP [28]. For the WSI-level zero-shot classification,
we use four datasets: CAMELYON-16 (CAM16) [4] and
others from The Cancer Genome Atlas (TCGA) including
BRCA, RCC, and NSCLC [30]. Finally, for the zero-shot
segmentation, we use the SICAP and DigestPath datasets.
Through these diverse experiments spanning tiles, WSIs,
and segmentation tasks, we comprehensively assess the per-
formance of the proposed CPLIP method.

4.1. Training and Implementation Details
In histopathology, the ARCH dataset [10] is the only widely
available image-text paired dataset, containing 8,617 pairs
from clinical and research pathology articles. We fine-
tuned our CPLIP algorithm on this dataset, extending it
to around 180,000 images and 146,000 textual descriptions
without using their paired texts. This unpaired many-to-
many image-text alignment is a novelty compared to the
paired data approach used by MI-Zero [23]. Our fine-tuning

process involved various architectures, leveraging domain-
specific and general models, with modifications to suit our
many-to-many alignment needs. We used a batch size of
256 for 50 epochs, applying specific filtering thresholds to
refine the data further. While single prompts were used for
reporting results, additional details on the use of merged
prompts and further implementation details are provided in
the supplementary material section.
4.2. Datasets and Evaluation Metrics
We used nine independent publicly available computa-
tional pathology datasets for classification and segmen-
tation tasks (more detailed descriptions of each dataset are
provided in the supplementary material), spanning diverse
cancer types and image modalities including (i) CRC100K
[16] colorectal cancer dataset used for zero-shot tile classi-
fication on 7,180 test images across nine tissue types; (ii)
WSSS4LUAD [13] lung adenocarcinoma dataset used for
zero-shot tumor vs. normal classification on 3,028 test im-
ages; (iii) SICAP [28] prostate cancer dataset used for zero-
shot classification on 2,122 test images with 4 Gleason pat-
tern labels; (iv) PanNuke [11] diverse tissue dataset used for
zero-shot tumor vs. normal classification on 1,888 test im-
ages with 19 tissue types; (v) DigestPath [8] colonoscopy
tissue dataset used for zero-shot tumor vs. normal tile
classification on 18,814 test images; (vi) Camelyon 16
(CAM16) [4] breast cancer dataset used for zero-shot slide
classification on 130 test slides; and (vii-ix) TCGA [30] in-
vasive BRCA, RCC, and NSCLC datasets used for zero-
shot slide classification on 75 slides per class. In summary,
these diverse ranges of computational pathology datasets
are used to evaluate zero-shot classification and segmenta-
tion performance across testing sets ranging from thousands
of image tiles to hundreds of WSIs. Our evaluation met-
rics include balanced accuracy, weighted F1 score, and AU-
CROC for classification tasks, and the Dice score, precision,
and recall for segmentation tasks, in line with current SOTA
VL methods [14, 22, 23]. Balanced accuracy is calculated
by averaging the recall of each class.

4.3. SOTA Methods for Comparison

We compared the performance of our proposed CPLIP
algorithm with several recently proposed SOTA meth-
ods on zero-shot classification and segmentation tasks for
histopathology images. We included five recently proposed
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Table 3. Ablation 4: Zero-shot classification performance in terms of bags pruning using weighted F1 score with 95% CI.

Matching ratio δt CRC100K DigestPath SICAP W4SSSLUAD PanNuke
MI-Zero matching 100% 0.806(0.791,0.813) 0.871(0.867,0.884) 0.446(0.402,0.485) 0.871(0.864,0.885) 0.798(0.775,0.817)
MI-Zero matching 90% 0.844(0.833,0.856) 0.903(0.891,0.915) 0.488(0.474,0.493) 0.882(0.876,0.894) 0.811(0.799,0.827)
MI-Zero matching 70% 0.833( 0.821, 0.841) 0.896( 0.861, 0.928) 0.511(0.498,0.526) 0.880( 0.861, 0.890) 0.804(0.791,0.813)
MI-Zero matching 50% 0.829(0.814,0.838) 0.883(0.864,0.905) 0.507( 0.472, 0.534) 0.875(0.866,0.886) 0.805( 0.775, 0.836)
MI-Zero matching 30% 0.827(0.831,0.858) 0.881(0.876,0.898) 0.501(0.485,0.525) 0.873(0.854,0.895) 0.803(0.786,0.825)

VL-based methods in our comparison: baseline CLIP [25],
PLIP [14], MI-Zero [23], BiomedCLIP [37], and CONCH
[22]. To ensure a fair comparison, we used the official
source code for all methods and kept the same settings for
testing splits and inference prompts, except for CONCH,
whose source code is not yet available.

4.4. Ablation Studies

All ablation studies use CTransPath [32] as the image en-
coder and BioClinicalBert [3] to initialize the text encoder,
with performance reported using merged prompts. For more
details and ablation studies, see supplementary material.
1. Cleaned vs. Uncleaned Pathology Prompts dictio-
nary. This experiment compares the performance of zero-
shot classification using the original unsupervised pathol-
ogy prompts dictionary consisting of 500 prompts (D500)
vs. a manually cleaned pathology prompts dictionary con-
taining 200 prompts (D200) (see Sec. 3.1). As shown in
Table 1, D200+GPT-3+PLIP achieved better performance
on five datasets compared to D500+GPT-3+PLIP. This in-
dicates that a smaller, curated dictionary of 200 cleaned
pathology prompts yields better zero-shot classification re-
sults than a larger, uncleaned noisy set of 500 prompts.
2. Effect of paired image-text supervision. This exper-
iment removed the pathology prompts dictionary step and
used the ARCH paired text as the best match prompt in Sec.
3.1. The paired text data was then used to construct the
textual bag using GPT-3 and PLIP text encoder to obtain
a similar textual bag as in Sec. 3.3. The zero-shot classi-
fication performance of this strategy (GT+GPT-3+PLIP) is
also shown in Table 1. The results showed that ground truth
text-based results were better than the unsupervised dictio-
nary results. This indicates that using ARCH’s paired text
data to construct textual bags via GPT-3 and PLIP text en-
coder, as opposed to an unsupervised dictionary, improves
zero-shot classification performance.
3. Importance of heterogeneous textual and visual re-
sources. We conducted experiments using only D200
pathology dictionary (using a single best match prompt and
a single image), D200+GPT-3 (using 12 textual descriptions
and 12 images), and D200+GPT-3+PLIP (using 17 textual
descriptions and 21 images). The results in Table 1 show
that adding more textual resources during training improves
performance on all datasets.
4. Effect of Bags Pruning. In this experiment, the tex-

tual bags (Bt) were pruned to retain 90%, 70%, 50%, and
30% of the best matching textual descriptions with the in-
put image using cosine similarity (see Sec. 3.4). The corre-
sponding visual bags (Bv) were also pruned subsequently.
A 100% bag means no pruning, and it may contain some
noisy text. As shown in Table 3, the best zero-shot clas-
sification performance over four datasets was observed for
δt = 90%. Further pruning reduced performance due to
data reduction, which resulted in reduced heterogeneity.
5. Which Bag is more important? We conducted two ex-
periments to compare the importance of the textual and vi-
sual bags for contrastive training. In the first experiment, we
used a bag of text along with the input image (Bt

j + hj). In
the second experiment, we used only the bag of visual con-
cepts Bv . Both experiments observed performance degra-
dation compared to the proposed Bt + Bv based training,
as shown in Table 2. This suggests that both the textual and
visual bags are important for achieving good performance.

4.5. Tile-Level Zero-shot Classification Results

We conducted tile-level zero-shot classification on five dis-
tinct datasets, evaluating only their test splits. The out-
comes, detailed in Table 4, benchmark our CPLIP algo-
rithm against current SOTA VL-based methods across bal-
anced accuracy, weighted F1, and AUROC scores, all based
on a single prompt. Comprehensive results using merged
prompts are available in the supplementary material. Our
CPLIP model consistently outperformed others in both sin-
gle and merged prompt scenarios on all datasets. The
CONCH algorithm was the next best, showing strong re-
sults on the CRC100K and SICAP datasets, though its per-
formance on the other datasets was not documented.

CPLIP notably enhanced performance compared to
CONCH, with gains of 13.5% in balanced accuracy, 13.9%
in weighted F1, and 2.1% in AUROC for the CRC100K
dataset using single prompts. For the SICAP dataset, the
improvements were 1.7% in balanced accuracy and 14.30%
in weighted F1. Against MI-Zero/PLIP on the Digest-
Path and PanNuke datasets, CPLIP’s enhancements were
(1.3%, 4.5%, 2.2%) and (2.2%, 6.90%, 3.0%), respectively.
On WSSS4LUAD, CPLIP outperformed MI-Zero by 5.6%
in balanced accuracy, 4.9% in weighted F1, and 3.1% in
AUROC. These significant performance improvements over
SOTA methods demonstrate the advantages of our CPLIP
algorithm.
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Table 4. Tile-level zero-shot classification performance comparison using single prompt in terms of balanced accuracy, weighted F1, and
AUROC scores with other SOTA methods across five datasets. The CPLIP algorithm outperforms existing models. For the WSSS4LUAD
dataset, CONCH used a different split, denoted by an asterisk (∗).

Methods CRC100K DigestPath SICAP WSSS4LUAD PanNuke
CLIP baseline [25] 0.234|0.185|0.727 0.11|0.030|0.203 0.231|0.139|0.201 0.451|0.481|0.705 0.322|0.352|0.683
BiomedCLIP [37] 0.422|0.372|0.859 0.591|0.622|0.781 0.381|0.361|0.506 0.466|0.495|0.698 0.522|0.572|0.711

PLIP [14] 0.520|0.517|0.879 0.815|0.832|0.901 0.319|0.255|0.603 0.702|0.734|0.822 0.629|0.656|0.805
MI-Zero [23] 0.544|0.536|0.872 0.822|0.811|0.911 0.308|0.251|0.605 0.722|0.742|0.805 0.659|0.688|0.755
CONCH [22] 0.566|0.542|0.901 - 0.349|0.245|- 0.598∗|0.590∗|0.795∗ -

Proposed CPLIP 0.701|0.681|0.922 0.835|0.856|0.933 0.366|0.388|0.711 0.778|0.791|0.836 0.681|0.757|0.835

Table 5. WSI-level zero-shot classification performance comparison using single prompts, in terms of balanced accuracy, weighted F1,
and AUROC on four datasets. Both our Out-of-Domain (OoD) CPLIP1 and In-Domain (InD) CPLIP2 outperform across all metrics.

Models (Single prompts) Image encoder pretraining Text encoder pretraining CAM16 TCGA-BRCA TCGA-RCC TCGA-NSCLC
CLIP baseline [25] ViT-B/16-224 GPT-2/77 0.134|0.175|0.325 0.512|0.328|0.551 0.321|0.178|0.578 0.496|0.358|0.536
BiomedCLIP [37] ViT-B/16-224 PMB/256 0.311|0.377|0.545 0.527|0.422|0.761 0.677|0.646|0.872 0.699|0.684|0.851

PLIP [14] ViT-B/32-224 GPT/347 0.399|0.416|0.681 0.451|0.331|0.611 0.726|0.739|0.915 0.676|0.666|0.781
MI-Zero [23] CTransPath/224 BioClinicalBert/512 0.456|0.461|0.755 0.781|0.723|0.856 0.805|0.782|0.881 0.802|0.792|0.866
CONCH [22] ViT-B/16-256 HistPathGPT/512 - 0.643|0.600|0.873 0.796|0.797|0.961 0.807|0.803|0.915

CPLIP1 (Ours) ViT-B/16-224 (OoD) GPT-2/77 (OoD) 0.502|0.477|0.705 0.500|0.544|0.722 0.754|0.749|0.865 0.761|0.788|0.821
CPLIP2 (Ours) PLIP-ViT-B/32-224 (InD) PLIP-GPT/347 (InD) 0.591|0.587|0.827 0.824|0.786|0.889 0.844|0.855|0.926 0.854|0.835|0.936

4.6. WSI-Level Zero-shot Classification Results

For zero-shot classification of gigapixel WSIs, we adopted
an approach akin to MI-Zero [23]. We binarized each WSI
to distinguish tissue from the background using the OTSU
method and extracted N number of tiles each with 224×224
pixels. Each tile’s embedding was obtained via the CPLIP
image encoder and ℓ2-normalization. We then calculated
cosine similarities between tile embeddings and text embed-
dings, producing C similarity scores per tile. These were
aggregated using top-K pooling, averaging the highest K
scores per class to determine the slide-level class predic-
tion, with K chosen from 1, 5, 10, 50, 100 based on best
performance metrics (i.e., the highest balanced accuracy,
weighted F1, and AUROC scores for classification tasks).

Table 5 compares our CPLIP algorithm’s zero-shot per-
formance with SOTA VL models on CAM16, TCGA-
BRCA, TCGA-RCC, and TCGA-NSCLC datasets, using a
single prompt. Detailed results with merged prompts are
in the supplementary material. CPLIP’s performance was
also assessed with various out-of-domain and in-domain en-
coders. CPLIP consistently outperformed in-domain VL
models like PLIP, BiomedCLIP, MI-Zero, and CONCH. For
instance, CPLIP2 in-domain zero-shot balanced accuracy
reached 59.10% for lymph node metastasis in CAM16, sur-
passing MI-Zero by 13.50%. In NSCLC and RCC subtyp-
ing, CPLIP2 achieved balanced accuracies of 85.40% and
84.40%, respectively, outperforming CONCH and MI-Zero
by margins up to 5.20%. Notably, in the BRCA subtyping
task, CPLIP2 achieved an 82.40% balanced accuracy, sig-
nificantly ahead of CONCH and MI-Zero by 18.10% and
4.30%, respectively. These results highlight CPLIP2 SOTA
performance in cancer subtyping using zero-shot learning.

4.7. Zero-shot Segmentation of Gigapixel Images
We also performed zero-shot slide-level segmentation simi-
lar to CONCH [22] using the SICAP (31 WSIs) and Digest-
Path (250 large images) datasets. Overall, CPLIP outper-
formed other VL methods in both datasets by a significant
margin demonstrating the advantages of heterogeneous tex-
tual descriptions and histology images. For further details,
consult our supplementary material.

5. Conclusion
Existing visual learning (VL) models in computational
pathology require paired image and text data for zero-shot
learning. In contrast, we propose an algorithm that en-
ables unpaired alignment of image and textual data for zero-
shot learning in histopathology. We construct a comprehen-
sive bag of textual descriptions using heterogeneous sources
including cancer glossaries, GPT-3, and off-the-shelf VL
models. These are used to build a corresponding bag of
visual concepts. A bag-based contrastive learning approach
then aligns the textual and visual concepts semantically. Ex-
tensive experiments on nine independent datasets demon-
strate the superior zero-shot classification and segmenta-
tion performance of our proposed Comprehensive Pathol-
ogy Language Image Pre-training (CPLIP) algorithm com-
pared to SOTA VL models. Our framework is inherently
translational to other applications and, in the future, we aim
to develop a comprehensive pathologyGPT model to en-
hance cancer diagnosis and prognostications.
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