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Abstract

As with many machine learning problems, the progress
of image generation methods hinges on good evaluation
metrics. One of the most popular is the Fréchet Inception
Distance (FID). FID estimates the distance between a dis-
tribution of Inception-v3 features of real images, and those
of images generated by the algorithm. We highlight impor-
tant drawbacks of FID: Inception’s poor representation of
the rich and varied content generated by modern text-to-
image models, incorrect normality assumptions, and poor
sample complexity. We call for a reevaluation of FID’s use
as the primary quality metric for generated images. We em-
pirically demonstrate that FID contradicts human raters,
it does not reflect gradual improvement of iterative text-to-
image models, it does not capture distortion levels, and that
it produces inconsistent results when varying the sample
size. We also propose an alternative new metric, CMMD,
based on richer CLIP embeddings and the maximum mean
discrepancy distance with the Gaussian RBF kernel. It is
an unbiased estimator that does not make any assumptions
on the probability distribution of the embeddings and is
sample efficient. Through extensive experiments and anal-
ysis, we demonstrate that FID-based evaluations of text-
to-image models may be unreliable, and that CMMD of-
fers a more robust and reliable assessment of image qual-
ity. A reference implementation of CMMD is available at:
https://github.com/google-research/google-

research/tree/master/cmmd.

1. Introduction

Text-to-image models are progressing at breakneck speed.
Recent models such as [16, 19–21, 26] have been incred-
ibly successful at generating realistic images that remain
faithful to text prompts. As with many problems in ma-
chine learning, a reliable evaluation metric is key to driv-
ing progress. Unfortunately, we find that the most popular
metric used in the evaluation of text-to-image models, the

Low Distortion High Distortion

Figure 1. Behaviour of FID and CMMD (lower is better for both)
under noise in the VQGAN latent space. CMMD monotonically
increases with the distortion level, correctly identifying the degra-
dation in image quality with increasing distortions. FID is wrong;
it improves (goes down) for the first few distortion levels, suggest-
ing that quality improves when these more subtle distortions are
applied. See Section 6.2 for more details.

Fréchet Inception Distance (FID) [12], may disagree with
the gold standard, human raters, in some important cases;
and is thus ill-suited for this purpose. We identify some im-
portant limitations of the FID through statistical tests and
empirical evaluations. To address these shortcomings, we
propose an alternative metric: CMMD, which uses CLIP
embeddings and Maximum Mean Discrepancy (MMD) dis-
tance. Figure 1 shows one of our experiments, the details
of which are discussed in Section 6.2, in which FID does
not reflect progressive distortion applied to images while
CMMD correctly ranks the image sets based on the severity
of the distortion.

Evaluating image generation models is a uniquely chal-
lenging task. Unlike traditional vision tasks such as clas-
sification or detection, we need to evaluate multiple dimen-
sions of performance including quality, aesthetics and faith-
fulness to the text prompt. Moreover, these are hard-to-
quantify concepts which depend on human perception. As a
result, human evaluation remains the gold standard for text-
to-image research. Since human evaluation is an expensive

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9307



Fréchet distance MMD distance

Inception embeddings

7 Weak image embeddings 7 Weak image embeddings
7 Normality assumption 3 Distribution-free
7 Sample inefficient 3 Sample efficient
7 Biased estimator 3 Unbiased estimator

CLIP embeddings

3 Rich image embeddings 3 Rich image embeddings
7 Normality assumption 3 Distribution-free
7 Sample inefficient 3 Sample efficient
7 Biased estimator 3 Unbiased estimator

Table 1. Comparison of options for comparing two image distributions. FID, the current de facto standard for text-to-image evaluation is
in the upper-left corner. The proposed metric, CMMD, is in the lower-right corner and has many desirable properties over FID.

solution that does not scale well, researchers often rely on
automated evaluation. Specifically, recent works have used
FID and CLIP distance to measure image quality and faith-
fulness to the text prompts, respectively.

In this work, we call for a reevaluation of this approach,
in particular, the use of FID as a measure of image quality.
We highlight drawbacks of FID, such as incorrectly model-
ing Inception embeddings of image sets as coming from a
multivariate normal distribution and its inconsistent results
when varying the sample size (also noted in [5]). We em-
pirically show that, FID can contradict human raters, does
not reflect gradual improvement of iterative text-to-image
models and does not capture complex image distortions.

Our proposed metric uses CLIP embeddings and the
MMD distance. Unlike Inception embeddings, which were
trained on about 1 million ImageNet images, restricted to
1000 classes [23], CLIP is trained on 400 million images
with corresponding text descriptions [18], making it a much
more suitable option for the rich and diverse content gener-
ated by modern image generation models and the intricate
text prompts given to modern text-to-image models.

MMD, is a distance between probability distributions
that offers some notable advantages over the Fréchet dis-
tance. When used with an appropriate kernel, MMD is a
metric that does not make any assumptions about the distri-
butions, unlike the Fréchet distance which assumes multi-
variate normal distributions. As shown in [5], FID is a bi-
ased estimator, where the bias depends on the model being
evaluated. MMD, on the other hand, is an unbiased estima-
tor, and as we empirically demonstrate it does not exhibit
a strong dependency on sample size like the Fréchet dis-
tance. Finally, it admits a simple parallel implementation.
The ability to estimate from a smaller sample size and the
fast computation make MMD fast and useful for practical
applications. Different options for comparing two image
distributions are compared in Table 1. The existing FID
metric is in the upper-left corner and has many unfavorable
properties. Our proposed metric, CMMD, is in the lower-
right corner and avoids the drawbacks of FID.
We summarize our contributions below:

• We call for a reevaluation of FID as the evaluation metric
for modern image generation and text-to-image models.
We show that it does not agree with human raters in some
important cases, that it does not reflect gradual improve-
ment of iterative text-to-image models and that it does
not capture obvious image distortions.

• We identify and analyze some shortcomings of the
Fréchet distance and of Inception features, in the context
of evaluation of image generation models.

• We propose CMMD, a distance that uses CLIP features
with the MMD distance as a more reliable and robust al-
ternative, and show that it alleviates some of FIDs major
shortcomings.

2. Related Works

Generated image quality has been assessed using a va-
riety of metrics including log-likelihood [9], Inception
Score (IS) [1, 22], Kernel Inception Distance (KID) [2,
25], Fŕechet Inception Distance (FID) [12], perceptual
path length (PPL) [13], Gaussian Parzen window [9], and
HYPE [27]. Some of these are not generally applicable.
PPL evaluates the consistency of latent vectors with re-
spect to GANs, HYPE requires human input and comput-
ing Gaussian Parzen windows can be challenging in high-
dimensional spaces.

IS is calculated using the Inception-v3 model [23], which
has been trained on ImageNet, to measure the diversity and
quality of generated images by leveraging the 1000 class
probabilities of the generated images. While IS does not
require the original real images, KID and FID are com-
puted by determining the distance between the distributions
of real and generated images. KID utilizes the squared
MMD distance with a polynomial kernel. FID employs
the squared Fréchet distance between two probability distri-
butions, which is also equal to the Wasserstein-2 distance,
with the assumption that both distributions are multivariate
normal. Both FID and KID suffer from the limitations of
the underlying Inception embeddings: they were trained on
only 1 million images, limited to 1000 classes. Intuitively,
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FD 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FD∞ 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MMD 0.0 0.5875 5.794 17.21 78.88 202.8 244.9

Table 2. Behavior of estimated Fréchet distances and MMD when normality assumption is violated. Going from left to right, the probability
distribution changes more and more from the leftmost distribution. However, the Fréchet distances to the leftmost distribution calculated
with normality assumption remains misleadingly zero. MMD, on the other hand, is able to correctly capture the progressive departure.

we expect this to limit their ability to represent the rich and
complex image content seen in modern generated images.

Previous work pointed to unreliability of evaluation met-
rics in image generation [5, 17]. Chong et al. [5] show that
FID is a biased estimator and that the bias depends on the
model being evaluated. They propose an extrapolation ap-
proach to compute a bias-free estimator: FID∞. Parmar
et al. [17] show that low-level image processing operations
such as compression and resizing can lead to significant
variations in FID, and advocate the use of anti-aliased re-
sizing operations. In this work, we show that FID’s issues
extend well beyond what is discussed in prior works and
that FID∞ and/or anti-aliased resizing do not solve them.

3. Limitations of FID

In this section we highlight some key limitations of FID.
We start with a background discussion of the metric in or-
der to better understand its limitations. Fréchet Inception
Distance (FID) is used to measure the discrepancy between
two image sets: I and I ′. Usually one set of images are
real (for example, from the COCO dataset) and the other set
is generated using the image generation model to be evalu-
ated. To calculate FID, Inception-v31 embeddings [23] are
first extracted for both image sets using the Inception-v3
model trained on the ImageNet classification task. The FID
between I and I ′ is then defined as the Fréchet distance
between these two sets of Inception embeddings.

3.1. The Fréchet Distance

For any two probability distributions P and Q over Rd hav-
ing finite first and second moments, the Fréchet distance is
defined by [6, 15]:

dist2
F (P,Q) := inf

γ∈Γ(P,Q)
E(x,y)∼γ‖x− y‖2, (1)

1Throughout the paper we use the terms Inception and Inception-v3
interchangeably.

where Γ(P,Q) is the set of all couplings of P and Q. This is
also equivalent to the Wasserstein-2 distance on Rd. In gen-
eral, obtaining a closed-form solution for the Fréchet dis-
tance is difficult. However, the authors of [6] showed that
a closed-form solution exists for multivariate normal distri-
butions in the form:

dist2
F (P,Q) = ‖µP−µQ‖22+Tr(ΣP+ΣQ−2(ΣPΣQ)

1
2 ),
(2)

where µP ,µQ are the means and ΣP ,ΣQ are the covari-
ances of the two multivariate normal distributions P and Q.
Note that this simplified formula is strictly valid only when
both P and Q are multivariate normal distributions [6].

For FID, we need to estimate the Fréchet distance be-
tween two distributions of Inception embeddings, using two
corresponding samples. This is challenging due to the high
dimensionality of inception embeddings, d = 2048. As-
suming that the Inception embeddings are drawn from a
normal distribution simplifies the problem, allowing us to
use Eq. (2) with µP ,µQ and ΣP ,ΣQ estimated from the
two samples I and I ′. There are two kinds of error in this
procedure:

1. As we show in Section 3.3, Inception embeddings for
typical image sets are far from being normally dis-
tributed. The implications of this inaccurate assumption
when calculating the Fréchet distance are discussed in
Section 3.2.

2. Estimating (2048 × 2048)-dimensional covariance ma-
trices from a small sample can lead to large errors, as
discussed in Section 6.3.

3.2. Implications of Wrong Normality Assumptions

When calculating the Fréchet distance between two distri-
butions, making an incorrect normality assumption can lead
to disastrous results. We illustrate this using a 2D isotropic
Gaussian distribution at the origin as the reference distribu-
tion and by measuring the distance between that and a series
of mixture-of-Gaussian distributions generated as described
below. The results are summarized in Table 2.
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To generate the series of second distributions, we start
with a mixture of four Gaussians, each having the same
mean and covariance as the reference Gaussian. Since this
mixture has the same distribution as the reference distribu-
tion, we expect any reasonable distance to measure zero dis-
tance between this and the reference distribution (first col-
umn of Table 2). We then let the second distribution’s four
components get further and further away from each other
while keeping the overall mean and the covariance fixed
(first row of Table 2). When this happens the second dis-
tribution obviously gets further and further away from the
reference distribution. However, the Fréchet distance calcu-
lated with the normality assumption (note that this is not the
true Fréchet distance, which cannot be easily calculated) re-
mains misleadingly zero. This happens because the second
distribution is normal only at the start, therefore the nor-
mality assumption is reasonable only for the first column of
the table. Since the second distribution is not normal after
that, the Fréchet distance calculated with normality assump-
tion gives completely incorrect results. Note that, as shown
in the third row of Table 2, FID∞, the unbiased version
of FID proposed in [5], also suffers from this shortcoming,
since it also relies on the normality assumption. In contrast,
the MMD distance described in Section 4 (bottom row of
Table 2) is able to capture the progressive departure of the
second distribution from the reference distribution. More
details of the experiment setup are in Appendix A.

3.3. Incorrectness of the Normality Assumption

When estimating the Fréchet distance, it is assumed that
the Inception embeddings for each image set (real and gen-
erated), come from a multivariate normal distribution. In
this section, we show that this assumption is wrong. As
discussed in Section 3.2, making a wrong normality as-
sumption about the underlying distribution can lead to com-
pletely wrong results.

It should not be surprising that Inception embeddings
for a typical image set do not have a multivariate normal
distribution with a single mode. Inception embeddings
are activations extracted from the penultimate layer of the
Inception-v3 network. During training, these activations
are classified into one of 1000 classes using a linear classi-
fier (the last fully-connected layer of the Inception-v3 net-
work). Therefore, since the Inception-v3 network obtains
good classification results on the ImageNet classification
task, one would expect Inception embeddings to have at
least 1, 000 clusters or modes. If this is the case, they cannot
be normally distributed.

Figure 2 shows a 2-dimensional t-SNE [24] visualiza-
tion of Inception embeddings of the COCO 30K dataset,
commonly used as the reference (real) image set in text-to-
image FID benchmarks. It is clear that the low dimensional
visualization has multiple modes, and therefore, it is also

Figure 2. t-SNE visu-
alization of Inception
embeddings of the COCO
30K dataset. Even in the
reduced-dimensional 2D
representation, it is easy
to identify that embeddings
have multiple modes and do
not follow a multivariate
normal distribution.

clear that the original, 2048-dimensional distribution is not
close to a multivariate normal distribution.

Finally, we applied three different widely-accepted sta-
tistical tests: Mardia’s skewness test, Mardia’s kurtosis test,
and Henze-Zirkler test to test normality of Inception em-
beddings of the COCO 30K dataset. All of them strongly
refute the hypothesis that Inception embeddings come from
a multivariate normal distribution, with p-values of virtu-
ally zero (indicating an overwhelming confidence in reject-
ing the null hypothesis of normality). The details of these
tests can be found in Appendix B.

To be clear, we do not expect CLIP embeddings to
be normally distributed either. It is FID’s application of
Fréchet distance with its normality assumption to non-
normal Inception features, that we object to. In fact, CLIP
embeddings of COCO 30K also fail the normality tests with
virtually zero p-values, indicating that it is not reasonable to
assume normality on CLIP embeddings either.

4. The CMMD Metric

In this section, we propose a new metric to evaluate image
generation models, using CLIP embeddings and the Maxi-
mum Mean Discrepancy (MMD) distance, with a Gaussian
RBF kernel. The CMMD (stands for CLIP-MMD) metric
is the squared MMD distance between CLIP embeddings of
the reference (real) image set and the generated image set.

CLIP embeddings [18] have changed the way we think
about image and text representations by learning them in a
joint space. CLIP trains an image encoder and a text en-
coder jointly using 400 million image-text pairs containing
complex scenes. In contrast, Inception-v3 is trained on Im-
ageNet, which has on the order of 1 million images which
are limited to 1000-classes and only one prominent object
per image. As a result, CLIP embeddings are better suited
for representing the diverse and complex content we see in
images generated by modern image generation algorithms
and the virtually infinite variety of prompts given to text-to-
image models.

To compute the distance between two distributions we
use the MMD distance [10, 11]. MMD was originally de-
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veloped as a part of a two-sample statistical test to deter-
mine whether two samples come from the same distribution.
The MMD statistic calculated in this test can also be used to
measure the discrepancy between two distributions. For two
probability distributions P and Q over Rd, the MMD dis-
tance with respect to a positive definite kernel k is defined
by:

dist2
MMD(P,Q) := Ex,x′ [k(x,x′)] + Ey,y′ [k(y,y′)]

− 2 Ex,y[k(x,y)], (3)

where x and x′ are independently distributed by P and y
and y′ are independently distributed by Q. It is known that
the MMD is a metric for characteristic kernels k [8, 11].

Given two sets of vectors , X = {x1,x2, . . . ,xm} and
Y = {y1,y2, . . . ,yn}, sampled from P and Q, respec-
tively, an unbiased estimator for d2

MMD(P,Q) is given by,

ˆdist
2

MMD(X,Y ) =
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi,xj)

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi,yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi,yj).

(4)

Some advantages of MMD over the Fréchet distance are:
1. MMD metric, when used with a characteristic kernel [8],

is distribution-free. That is, it does not make any as-
sumptions about the distributions P and Q. In contrast,
the Fréchet distance in Eq. (2) assumes normality and is
liable to give erroneous results when this assumption is
violated.

2. As shown in [5], the FID estimated from a finite sample
has a bias that depends on the model being evaluated,
to the extent that the sample size can lead to different
rankings of the models being evaluated. Removing this
bias requires a computationally expensive procedure in-
volving computation of multiple FID estimates [5]. In
contrast, the MMD estimator in Eq. (4), is unbiased.

3. When working with high-dimensional vectors such as
image embeddings, MMD is sample efficient. Fréchet
distance, on the other hand, requires a large sample to
reliably estimate the d × d covariance matrix. This will
be further elaborated on in Section 6.3.

As the kernel in the MMD calculation, we use the Gaussian
RBF kernel k(x,y) = exp(−‖x − y‖2/2σ2), which is a
characteristic kernel. Details about this choice are in Ap-
pendix C. We set the bandwidth parameter set to σ = 10.
Empirically, we observed that the bandwidth does not sig-
nificantly affect the overall trends of the metric. We there-
fore fixed it at 10 to obtain consistent values for the metric.
Since the MMD metric with the Gaussian kernel is bounded
above at 2 (when the two distributions are maximally dif-
ferent), it gives small values for general distributions. We

therefore scale up the value in Eq. (4) by 1000 to obtain
more readable values. For the CLIP embedding model, we
use the publicly-available ViT-L/14@336px model, which
is the largest and the best performing CLIP model [18].
Also note that we have m = n in Eq. (4) for text-to-image
evaluation since we evaluate generated images against real
images sharing the same captions/prompts. Our code for
computing CMMD has been made publicly available.

5. Human Evaluation
We now present a human evaluation to show that FID (and
KID) do not agree with human perception of image quality.
To this end, we picked two models, Model-A: the full Muse
model as described in [3] with 24 base-model iterations
and 8 super-resolution model iterations. Model-B: an early-
stopped Muse model with only 20 base-model iterations and
3 super-resolution model iterations. This was done inten-
tionally to reduce the quality of produced images. We use
a Muse model trained on the WebLI dataset [4], generously
made available to us by the Muse authors. The choice of
early-stopping iterations is arbitrary: as shown in Figure 4,
FID is consistently better (lower) for all early-stopped mod-
els when compared with the full model (Model-A).

We performed a side-by-side evaluation where human
raters were presented with two images, one generated from
Model-A and the other generated from Model-B. We used
the same random seeds to ensure that image content and
degree of alignment to the prompt are the same. This al-
lowed the raters to focus on image quality. The raters were
asked to evaluate which image looked better. Raters had
the option of choosing either image or that they are indiffer-
ent. All image pairs were rated by 3 independent raters,
hired through a high-quality crowd computing platform.
The raters were not privy to the details of the image sets
and rated images purely based on the visual quality. The
authors and the raters were anonymous to each other.

We used all PartiPrompts [26], which is a collection of
1633 prompts designed for text-to-image model evaluation.
These prompts cover a wide range of categories (abstract,
vehicles, illustrations, art, world knowledge, animals, out-
door scenes, etc.) and challenge levels (basic, complex fine-

Model Model-A Model-B

FID 21.40 18.42
FID∞ 20.16 17.19
KID 0.0105 0.0080
CMMD 0.721 0.951
Human rater preference 92.5% 6.9%

Table 3. Human evaluation. FID and KID contradict human eval-
uation while CMMD agrees. Lower is better for all metrics.
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(a) Step 1 (b) Step 3 (c) Step 6 (d) Step 8

Figure 3. The quality of the generated image monotonically improves as we progress through Muse’s refinement iterations. CMMD
correctly identifies the improvements. FID, however, incorrectly indicates a quality degradation (see Figure 4). Prompt: “The Parthenon”.
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Figure 4. Behavior of FID and CMMD for Muse steps. CMMD
monotonically goes down, correctly identifying the iterative im-
provements made to the images (see Figure 3). FID is com-
pletely wrong suggesting degradation in image quality as itera-
tions progress. FID∞ has the same behavior as FID.

grained detail, imagination, etc.). Evaluation results are
summarized in Table 3. For each comparison, we consider
a model as the winner if 2 or more raters have preferred
the image produced by that model. If there is no consen-
sus among the raters or if the majority of the raters selected
are indifferent, no model wins. We observed that Model-A
was preferred in 92.5% of the comparisons, while Model-B
was preferred only 6.9% of the time. The raters were indif-
ferent 0.6% of the time. The Cohen’s kappa coefficient for
rater agreement was 0.9937, indicating a very high agree-
ment rate. It is therefore clear that human raters overwhelm-
ingly prefer Model-A to Model-B. However, COCO 30K
FID, its unbiased variant FID∞, and KID unfortunately say
otherwise. On the other hand, the proposed CMMD metric
correctly aligns with the human preference.

6. Performance Comparison
We now compare FID with the proposed CMMD metric
under various settings to point out the limitations of FID

while highlighting the benefits of CMMD. In all our exper-
iments, we use the COCO 30K dataset [14] as the reference
(real) image dataset. Zero-shot evaluation on this dataset is
currently the de facto evaluation standard for text-to-image
generation models [3, 20, 21]. Throughout our experiments,
where applicable, we use high-quality bicubic resizing with
anti-aliasing as suggested in [17]. This prevents any ad-
verse effects of improperly-implemented low level image
processing operations on FID as those reported in [17].

For Stable Diffusion [20], we use the publicly available
Stable Diffusion 1.4 model. We evaluate all models without
any additional bells and whistles such as CLIP sorting.

6.1. Progressive Image Generation Models

Most modern text-to-image generation models are itera-
tive. For example, diffusion models [20, 21] require mul-
tiple denoising steps to generate the final image, the Parti
model [26] auto-regressively generates image tokens one at
a time. While the Muse model [3] generates multiple to-
kens at a time, it still requires iterative sampling steps to
generate the final image, as shown in Figure 3. Gradually
improving the quality of the generated images in each step,
these methods go from poor quality images or pure noise
images to unprecedented photo-realism. This progression
in quality is obvious to a human observer and we would ex-
pect any reasonable metric to monotonically improve as we
progress through iterations of image generation.

Figure 4 shows FID, FID∞, and CMMD values for pro-
gressive Muse iterations. FID and FID∞ incorrectly sug-
gest that the image quality degrades, when the quality im-
provements are obvious as illustrated in Figure 3. In con-
trast, CMMD correctly identifies the quality improvements
made during Muse’s iterative refinements. As seen in Fig-
ure 4, we consistently observe in our experiments that FID
and FID∞ have the same behavior although absolute values
are different. This is not surprising since FID∞ is derived
from FID and inherits many of its shortcomings.

Figure 6 shows an evaluation of the last 5 iterations
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Figure 5. Behavior of FID and CMMD under distortions. Images in the first row (FID: 21.40, CMMD: 0.721) are undistorted. Images
in the second (FID: 18.02, CMMD: 1.190) are distorted by randomly replacing each VQGAN token with probability p = 0.2. The image
quality clearly degrades as a result of the distortion, but FID suggests otherwise, while CMMD correctly identifies the degradation.
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Figure 6. Behavior of FID and CMMD for StableDiffusion steps.
CMMD monotonically improves (goes down), reflecting the im-
provements in the images. FID’s behavior is not consistent, it mis-
takenly suggests a decrease in quality in the last two iterations.

of a 100-iteration Stable Diffusion model. Our proposed
CMMD metric monotonically improves (decreases) with
the progression of the iterations, whereas FID has unex-
pected behavior. We focus on the more subtle differences
in the final iterations of Stable Diffusion, since both FID
and CMMD showed monotonicity at the easily-detectable
high noise levels in the initial iterations.

6.2. Image Distortions

Here, we provide additional evidence that FID does not ac-
curately reflect image quality under complex image distor-
tions. It was shown in [12] that FID accurately captures
image distortions under low-level image processing distor-
tions such as Gaussian noise and Gaussian blur. Since In-
ception embeddings are trained on ImageNet images with-
out extreme data augmentation, it is not surprising that FID

is able to identify these distortion. However, in this section,
we show that FID is unable to identify more complex noise
added in the latent space.

To this end, we take a set of images generated by Muse
and progressively distort them by adding noise in the VQ-
GAN latent space [7]. For each image, we obtain VQGAN
tokens, replace them with random tokens with probability
p, and reconstruct the image with the VQGAN detokenizer.
Example distortions are shown in Figure 5. The images get
more and more distorted with increasing p and the qual-
ity loss with increasing p is visibly obvious. However, as
shown in Figure 7, FID fails to reflect the degradation in
image quality for increasing values of p. Our CMMD met-
ric, on the other hand, monotonically worsens (increases)
with the distortion level p, correctly identifying the qual-
ity regression. We replicated the same results with images
generated by a Stable Diffusion as well. Furthermore, Fig-
ure 1 shows that FID behaves poorly also when we measure
the distances between progressively distorted versions (us-
ing the same procedure) of the COCO 30K dataset and the
reference clean version of that dataset.

Figure A in the appendix shows how CMMD increases
with increasing levels of image distortions such as blur,
Gaussian noise and JPEG compression artifacts.

6.3. Sample Efficiency

As stated in Section 4, calculating FID requires estimating a
2048× 2048 covariance matrix with 4 million entries. This
requires a large number of images causing FID to have poor
sample efficiency. This has also been noted by the authors
of [5]. The proposed CMMD metric does not suffer from
this problem thanks to its usage of MMD distance instead
of the Fréchet distance.
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Low Distortion High Distortion

Figure 7. Behavior of FID and CMMD under latent space noise
added to generated images. CMMD monotonically goes up, re-
flecting the quality degradation of the images. FID’s behavior is
inconsistent, it mistakenly suggests an increase of quality. Image
sets highlighted in green and yellow are visualized in Figure 5’s
top and bottom rows, respectively.

In Figure 8 we illustrate this by evaluating a Stable Dif-
fusion model at different sample sizes (number of images)
sampled randomly from the COCO 30K dataset. Note that
we need more than 20,000 images to reliably estimate FID,
whereas CMMD provides consistent estimates even with
small image sets. This has important practical implications:
development of image generation models requires fast on-
line evaluation, e.g. as a metric tracked during training. An-
other relevant scenario is comparing a large number of mod-
els. Since reliable estimation of FID requires generating a
large number of images, FID evaluation is costly and time
consuming. In contrast, CMMD can be evaluated fast by
generating only a small number of images. CMMD eval-
uation is faster than FID evaluation for two reasons: 1) it
requires only a small number of images to be generated. 2)
once the images are generated the computation of CMMD
is faster than the FID computation as discussed in the next
section.

6.4. Computational Cost

Let n be the number of images, and let d be the embedding
length. The cost of computing the Fréchet distance (FD) is
dominated by the matrix square root operation on a d × d
matrix, which is expensive and not easily parallelizable.
The cost of computing the unbiased version FD∞ is even
higher, since it requires computing FD multiple times with
different sample sizes. The asymptotic complexity of com-
puting MMD is O(n2d). However, in practice, MMD can
be computed very efficiently, since it only involves matrix
multiplications which are trivially parallelizable and highly
optimized in any deep learning library such as Tensorflow,
PyTorch, and JAX.

Table 4 shows an empirical runtime comparison of com-
puting FD and MMD on a set of size n = 30, 000 with
d = 2048 dimensional features on a TPUv4 platform with a
JAX implementation. For FD calculations, we use our JAX
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Figure 8. Behavior of FID and CMMD under different sample
sizes. Top: absolute values of the metrics. Bottom: Values relative
to the value at 30k sample size.

Operation Time

Fréchet distance 7007.59 ± 231 ms
MMD distance 71.42 ± 0.67 ms
Inception model inference 2.076 ± 0.15 ms
CLIP model inference 1.955 ± 0.14 ms

Table 4. Comparing runtime for computing Fréchet/MMD dis-
tances and Inception/CLIP feature extractions.

implementation and publicly available PyTorch/numpy im-
plementations from [17] and [5] and report the best runtime.
In the same table, we also report the runtime for Inception
and CLIP feature extraction for a batch of 32 images.

7. Discussion
We encourage image generation researchers to rethink the
use of FID as a primary evaluation metric for image quality.
Our findings that FID correlates poorly with human raters,
that it does not reflect gradual improvement of iterative text-
to-image models and that it does not capture obvious dis-
tortions add to a growing body of criticism [5, 17]. We are
concerned that reliance on FID could lead to flawed rank-
ings among the image generation methods, and that good
ideas could be rejected prematurely. To address these con-
cerns we propose CMMD as a more robust metric, suitable
for evaluation of modern text-to-image models.
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