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Abstract

Image datasets are essential not only in validating exist-
ing methods in computer vision but also in developing new
methods. Many image datasets exist, consisting of trichro-
matic intensity images taken with RGB cameras, which are
designed to replicate human vision. However, polariza-
tion and spectrum, the wave properties of light that animals
in harsh environments and with limited brain capacity of-
ten rely on, remain underrepresented in existing datasets.
Although there are previous spectro-polarimetric datasets,
they have insufficient object diversity, limited illumination
conditions, linear-only polarization data, and inadequate
image count. Here, we introduce two spectro-polarimetric
datasets, consisting of trichromatic Stokes images and hy-
perspectral Stokes images. These datasets encompass both
linear and circular polarization; they introduce multiple
spectral channels; and they feature a broad selection of
real-world scenes. With our dataset in hand, we analyze
the spectro-polarimetric image statistics, develop efficient
representations of such high-dimensional data, and evalu-
ate spectral dependency of shape-from-polarization meth-
ods. As such, the proposed dataset promises a foundation
for data-driven spectro-polarimetric imaging and vision re-
search.

1. Introduction

Recent progress in computer vision can be largely attributed

to comprehensive studies of real-world image datasets, such

as ImageNet [14]. Foundation models [1, 35, 53, 64] fur-

ther underscore data significance. Most of these datasets

comprise trichromatic intensity images, inspired by human

visual perception, enabling machines to emulate human vi-

sion with trichromatic RGB cameras. As such, the datasets

have facilitated the development of low-cost, camera-based

autonomous agents capable of perceiving and interacting

*These authors contributed equally to this work.

with our world, as we do. However, the reliance on trichro-

matic intensity in existing image datasets also comes with

inherent limitations for analyzing objects in depth. Exam-

ples include textureless surface, low-albedo objects, and

transparent materials.

Light possesses wave properties, including polarization

and spectrum [9], which are not faithfully captured by

trichromatic intensity imaging. While these properties are

invisible to human, animals like honeybees and ants lever-

age the polarization and spectrum for navigation and other

tasks. Horvath and Varju [25] provide diverse examples

and mechanisms of spectral and polarimetric vision in an-

imals. Partly drawing inspiration from nature, researchers

have extended the analysis of spectrum and polarization

to a variety of fields, including computer vision, robotics,

and astronomy. This has spurred interest in polarimet-

ric [7, 8, 38, 49] and hyperspectral imaging [2, 10, 28], and

more recently, their integration into spectro-polarimetric

imaging [3, 17, 18, 23, 26, 45, 47, 50, 54, 67]. Prior work

using spectro-polarimetric images has shown potential for

skin analysis [67], vegetation classification [63], shape re-

construction [27], object recognition [13], and segmenta-

tion [30, 55].

There are existing spectro-polarimetric datasets, summa-

rized in Figure 2, that have been invaluable for these anal-

ysis [19, 38, 39, 52] and training neural networks [4, 11,

22, 36, 40–42, 46, 48]. However, these datasets unfortu-

nately do not capture the diversity of real-world spectro-

polarimetric images as effectively as their trichromatic in-

tensity counterparts do. They typically suffer from limited

object, scene, and illumination diversity, contain primarily

linear polarization information, and offer a small number

of images. To advance the field, we propose a comprehen-

sive spectro-polarimetric dataset that encompasses: (1) Full
Stokes polarimetric data, including both linear and circu-

lar polarization states, represented by Stokes vectors [9] for

each pixel and wavelength. (2) A diverse range of spectral
channels, facilitating in-depth exploration of the interplay

between spectrum and polarization. (3) A broad array of

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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real-world scenes, crucial for extracting meaningful statis-

tics and relationships within spectro-polarimetric images.

To this end, we introduce two spectro-polarimetric

datasets designed to cover real-world spectro-polarimetric

scenes: a trichromatic Stokes dataset consisting of 2,022

images, and a hyperspectral Stokes dataset containing 311

images across 21 spectral channels. The trichromatic

Stokes dataset covers a wider range of scenes thanks to its

convenient capture setup and process. The hyperspectral

Stokes dataset provides richer spectral-polarimetric infor-

mation than the trichromatic Stokes dataset. Both datasets

cover a variety of natural indoor and outdoor scenes.

Each image in these datasets is annotated with four spe-

cific parameters: the type of environment (indoor or out-

door), the illumination conditions (clear/cloudy sunlight or

white/yellow office light), the timestamp of capture, and the

scene categorization (either object- or scene-oriented).

Utilizing these datasets, we systematically analyze the

statistics of real-world spectro-polarimetric images. We fo-

cus on examining statistics of Stokes vectors, in addition

to the gradients and polarimetric attributes associated with

them. We also conduct an analysis of unpolarized and po-

larized images derived through polarimetric decomposition.

We then develop two efficient spatio-spectral-polarimetric

representations using principal component analysis (PCA)

and implicit neural representation (INR). These representa-

tions exhibit effective denoising capabilities and low mem-

ory footprints by exploiting the compressible structure of

spectro-polarimetric images. We also analyze the im-

pact of intensity denoising for spectro-polarimetric images,

spectral dependency of shape-from-polarization methods,

and environment dependency on the statistics of spectro-

polarimetric images.

In summary, we make the following contributions.

• We introduce a trichromatic Stokes dataset and a hy-

perspectral Stokes dataset, featuring 2,333 diverse anno-

tated indoor and outdoor scenes under various illumina-

tion conditions, which encompasses full-Stokes polariza-

tion data for linear and circular states.

• We develop efficient spatio-spectral-polarimetric repre-

sentations and analyze real-world spectro-polarimetric

images, encompassing Stokes vectors and their gradients,

unpolarized and polarized images, shape from polariza-

tion, denoising, and environment dependency.

2. Related Work
Spectro-polarimetric Image Dataset Several datasets

have been introduced for analyzing polarization and spec-

tral information. With the advent of trichromatic linear-

polarization cameras, a line of work has attempted to ac-

quire trichromatic linear-polarization images, ranging from

a few objects and scenes [5, 11, 42, 52] to a large number

of scenes for specific target applications such as reflection
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(a) Polarization ellipse (b) Poincaré sphere

Figure 1. Polarization visualizations. (a) Polarization ellipse de-

picts the electric-field oscillation projected onto a plane tangent to

the light propagation. (b) Poincaré sphere visualizes the polariza-

tion state of light on the normalized Stokes-vector axes s′1, s′2, s′3.

separation [40, 46] and glass segmentation [48]. Lapray

et al. [39] acquire linear-polarization images for the near-

infrared spectral band, albeit only on 10 objects. Fan et

al. [19] acquire the first multi-spectral full-Stokes polari-

metric dataset covering linear and circular states, while it

only contains 64 flat objects captured in a lab environment.

Our proposed datasets enables analyzing the statistics of

real-world spectro-polarimetric images, which cannot be

achieved by prior datasets. See Figure 2 for a comprehen-

sive comparison.

Applications of Spectro-polarimetric Imaging Spectro-

polarimetric information has been investigated for diverse

vision and imaging tasks. Using linear-polarization images

has found applications in shape reconstruction [4, 5, 7, 16,

21, 31, 41, 70], appearance acquisition [15, 36], removing

reflections [37, 40, 46, 51, 59, 62], transparent-object seg-

mentation [33, 48], seeing through scattering [20, 43, 68],

and image enhancement [69]. Trichromatic Stokes im-

ages have been used for tone-mapping [12] and seeing

through scattering [6]. Expanding into multi-spectral do-

main, spectral-polarimetric analysis has been applied to ob-

ject recognition [13], skin analysis [67], dehazing [61],

specular reflection inpainting [29], background segmenta-

tion [30] and tensor representation [65]. In addition to

vision tasks, spectro-polarimetric imaging has been used

for various biological applications, such as marsh vegeta-

tion classification [63], coastal wetland classification [55]

and leaf nitrogen determination [44]. While the aforemen-

tioned studies demonstrate the benefits of using spectro-

polarimetric data, we believe that the full potential of

spectro-polarimetric images is still locked by the absence

of real-world spectro-polarimetric datasets.

3. Background on Polarization
Polarization, the oscillation pattern of the electric field, can

be represented using a Stokes vector, s = [s0, s1, s2, s3]
ᵀ.
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[41] LP 1 522 Outdoor scenes

[5] LP 1 300 Indoor objects

[39] LP 6 10 Indoor objects

[52] LP 3 40 Indoor objects

[11] LP 3 3 Indoor multiview

[11] LP 3 2 Synthetic multiview

[22] LP 3 6 Indoor multiview

[40] LP 3 807 Reflective objects

[42] LP 3 500 Outdoor scenes

[36] LP 3 44,300 Synthetic

[46] LP 3 3,200 Reflective objects

[48] LP 3 4,500 Transparent objects

[38] LP 3 2,000 Indoor/outdoor scenes

[19] LP, CP 18 67 Flat objects

[34] LP, CP 21 4 Synthetic multiview

[34] LP, CP 21 4 Indoor/outdoor multiview

Ours
(RGB) LP, CP 3 2,022 Indoor/outdoor scenes

Ours
(HS) LP, CP 21 311 Indoor/outdoor scenes

Figure 2. Spectro-polarimetric image datasets. We present trichromatic and hyperspectral Stokes datasets of which thumbnails are

shown in (a) and label statistics in (b). The table shown on the right compares our datasets with existing spectro-polarimetric datasets. Ours

are the only datasets that encompass both linear (LP) and circular (CP) polarization over multiple of spectral bands for diverse real scenes.

s0 denotes the total intensity, s1 and s2 describe the dif-

ferences in the intensity of linearly-polarized components

at orientations of 0◦/90◦ and 45◦/-45◦, respectively. s3 is

the difference in intensity between right- and left-circularly

polarized components. Figure 1 shows two visualiza-

tion methods for polarization, the polarization ellipse and

Poincaré sphere. Polarization ellipse can be described in

terms of the orientation angle ψ and ellipticity χ with

respect to the projected Stokes vector x and y axes [9].

The Poincaré sphere visualizes polarization in a three-

dimensional space, using the normalized Stokes-vector el-

ements relative to the total intensity: s′1 = s1/s0, s
′
2 =

s2/s0, s
′
3 = s3/s0. To effectively analyze a Stokes vector,

one can compute the degree of polarization (DoP) denoted

as ρ, the angle of linear polarization (AoLP) represented by

ψ, and the ellipticity angle given by χ, that is

ρ =
P

s0
, ψ =

1

2
arctan

(
s2
s1

)
, χ =

1

2
arctan

(s3
L

)
, (1)

where P =
√
s21 + s22 + s23 and L =

√
s21 + s22. We

also use the polarimetric visualization method proposed by

Wilkie et al. [60] using DoP, AoLP, and chirality of polar-

ization (CoP). CoP describes the left- or right-handedness

of the circularly polarized component, which is related to

χ. Finally, the Mueller matrix M ∈ R
4×4 describes the

change of a Stokes vector: sout = Msin, where sin and sout

are the input/output Stokes vectors. For more details on po-

larization, we refer to the book by Collett [9].

4. Spectro-polarimetric Dataset

We introduce a trichromatic Stokes dataset comprising

2,022 Stokes images and a hyperspectral Stokes dataset

with 311 Stokes images at 21 spectral channels. Both

datasets cover natural real-world indoor and outdoor scenes.

Each Stokes image is accompanied by four labels: (1)

the environment (indoor or outdoor), (2) the illumination

condition, including clear or cloudy sunlight and white

or incandescent light, (3) the time of image capture, (4)

the scene type, distinguishing between object-oriented and

scene-oriented. Figure 2 shows thumbnails, statistics, and

comparison of our datasets to existing ones. Prior datasets

suffer from a narrow range of scenes, restricted illumination

conditions, linear polarization only, and fewer images.

Acquisition We acquire the datasets using two imaging

systems depicted in Figure 3(a), proposed and developed

by previous studies [34, 56]. First, the trichromatic Stokes

camera by Tu et al. [56] incorporates on-sensor quarter-

wave plates (QWPs) and linear polarizers (LPs) [9]. This al-

lows for single-shot capture of trichromatic Stokes images,

enabling convenient data collection on diverse scenes. The
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(c) Multi-channel polarimetric images(a) Stokes imaging system (b) Camera response function
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Figure 3. Acquisition of spectro-polarimetric images. We capture spectro-polarimetric images using (a) trichromatic and hyperspectral

Stokes cameras [34, 57]. (b) Camera response functions. (c) Reconstructed raw Stokes images per each spectral channel.

resolution of a trichromatic Stokes image is 1900 (height)×
2100 (width) × 4 (Stokes elements) × 3 (RGB). Second,

the hyperspectral Stokes camera from Kim et al. [34] cap-

tures images by sequentially scanning 21 spectral channels

from 450 nm to 650 nm in 10 nm increments with a LCTF

which functions as a LP. For each spectral channel, we cap-

ture images by rotating a QWP. The resolution of a hy-

perspectral Stokes image is 512 (height) × 612 (width) ×
4 (Stokes elements) × 21 (wavelengths).

Spectro-polarimetric Image Formation Using the two

imaging systems, we capture raw images from which a

per-pixel Stokes vector for each spectral channel is recon-

structed. We introduce an unified image formation model

that can be applied to both cameras. Suppose a light ray

with a Stokes vector sλ at wavelength λ impinges on a

Stokes camera. As the light passes through polarization fil-

ters modeled by the Mueller matrix M(Θ), its Stokes vector

transforms. Θ denotes the polarization-filter configuration.

The camera sensor then captures light intensity, represented

by the first element of the Stokes vector. The recorded in-

tensity, Ic(Θ), at a spectral channel c and polarimetric filter

configuration Θ, is described by

Ic(Θ) =

[∫
Ωc,λMc(Θ)sλdλ

]
0

=

[
Mc(Θ)

∫
Ωc,λsλdλ

]
0

= [Mc(Θ)sc]0 , (2)

where Ωc,λ is the spectral transmission per channel at wave-

length λ shown in Figure 3(b). [x]0 denotes the first-

element of the Stokes vector x, which is the total intensity.

For a spectral channel c, Mc is the Mueller matrix of the

polarization-modulating optics, and sc is the Stokes vector.

For polarization modulation, both cameras utilize a

QWP and a LP, yielding the Mueller matrix

Mc(Θ) = CcQc(θ1)Pc(θ2), (3)

where Cc is the error-compensating calibration matrix [34,

57]. Qc and Pc are the QWP and LP Mueller matrices [9],

respectively. The set Θ = {θ1, θ2} denotes the correspond-

ing angles of the QWP fast axis and the LP polarization

axis, which is set for accurate Stokes vector reconstruc-

tion [34, 57]. Lastly, we determine the per-channel Stokes

vector sc by solving the least-squares problem

argmin
sc

|Θ|∑
i=1

(Ic(Θi)− [M(Θi)sc]0)
2
. (4)

For the hyperspectral Stokes camera, we use four configu-

rations with the rotating QWP. For the trichromatic Stokes

camera, the fixed micro-filter setup shown in Figure 3(a)

gives four/eight configurations for the (red, blue) channels

and the green channel, respectively.

Figure 3(c) shows the reconstructed Stokes images. A

Stokes vector is physically-valid if DoP meets the follow-

ing inequality: 0 ≤ ρ ≤ 1. 99% of the reconstructed

Stokes vectors in our datasets satisfy this condition. For

the following analysis, we filter out Stokes vectors violat-

ing the DoP condition and the unstable Stokes vectors re-

constructed from saturated/underexposed pixel intensity.

5. Dataset Analysis
Noise and Intensity Denoising Spectro-polarimetric im-

ages are susceptible to noise due to the low-light through-

put of spectral and polarimetric filters. Our datasets are not

exempt from these issues. To assess noise in Stokes im-

ages, we capture and average 100 images of a scene shown
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(b) Qualitative results (DoP/AoLP)
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Figure 4. Efficient spatio-spectral-polarimetric representations. (a) PCA basis of the hyperspectral Stokes dataset in sRGB. (b) Quali-

tative results of PCA and INR compared to single-shot denoising [66] at 550 nm. (c) Proportion of variance with respect to each PCA basis

in order, log(σ2
i /

∑
n σ2

n), where σi denotes standard deviation of the i-th basis. (d) BPP and MSE analysis of PCA with respect to the

number of PCA bases. (e) Training PSNR curve of INR. (f) BPP and MSE value of INR with respect to the number of MLP layers.
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Figure 5. Noise in Stokes images and intensity denoising. (a)

Stokes vector s1 reconstructed from a single-shot, single-shot with

a learned intensity denoiser [66], and burst imaging (Pseudo GT)

averaged over 100 shots. (b) Reconstruction accuracy of a Stokes

image with varying number of averaged images. (c) Reconstruc-

tion accuracy of normalized Stokes elements with and without in-

tensity denoising.

in Figure 3(c) for each polarization configuration Θ. From

these averaged images, we reconstruct pseudo ground-truth

Stokes image, shown in Figure 5(a). Figure 5(b) reports

the MSE and PSNR of reconstructed Stokes images with

respect to the number of averaged images. To achieve a

PSNR exceeding 35 dB, we need to average over 4/25 shots

for the trichromatic/hyperspectral Stokes cameras, indicat-

ing lower SNR of the hyperspectral Stokes dataset. We

find that state-of-the-art learning-based intensity denois-

ing methods, such as KBNet [66], can effectively reduce

noise for each polarization configuration, leading to accu-

rate Stokes-vector reconstruction, despite lack of polariza-

tion images during training. For the denoised single-shot

capture, we achieve a PSNR of 34.5 dB, demonstrating the

potential of using pretrained intensity restoration networks

for Stokes imaging. Figure 5(c) shows PSNRs of recon-

structed Stokes images per each spectral channel and nor-

malized Stokes element. With the intensity denoising, we

find that the PSNR significantly increases for s1, s2, and s3.

Efficient Spatio-spectral-polarimetric Representations
Each pixel in a hyperspectral Stokes image contains a

Stokes vector for every spectral channel, leading to a total

of 21 × 4 × 32 bits using single-precision floating format.

This results in a bit-per-pixel (BPP) value of 2,688, equat-

ing to 100 MB for storing a single hyperspectral Stokes im-

age of 512 × 612 pixels. Given the substantial memory

required to store a spectro-polarimetric image, we investi-

gate efficient representations of real-world spatio-spectral-

polarimetric data, for which we explore two methods: a

PCA-based model and an implicit neural model.

First, we apply PCA on non-overlapping hyperspectral

Stokes patches. Figure 4(a) shows the 40 most significant
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PCA bases, revealing varied spatial and spectral features

for each Stokes element: s0, s1, s2, s3. Notably, spatial

structures are more evident in s0, while s1, s2, s3 shows

spectral features, suggesting a stronger correlation between

spectrum and polarization than spatial features. To visual-

ize hyperspectral intensity, we convert it to sRGB, which

means that the same sRGB color may originate from dif-

ferent spectra. Figure 4(c) shows the variance of the coef-

ficients for the top 200 PCA bases, indicating that spatio-

spectral-polarimetric data can indeed be compressed. This

is further evidenced by Figure 4(d), which shows the re-

construction error and BPP when varying number of PCA

bases used to recreate a hyperspectral Stokes image. Using

2.22 MB coefficients adequately represents a 100 MB hy-

perspectral Stokes image as shown in Figure 4(b), exhibit-

ing a high compression rate with the reconstruction error of

2.69 × 10−5. See the Supplemental Document for further

details on PCA analysis.

Second, we devise an INR for hyperspectral Stokes im-

ages by modifying NeSpoF [34]. The original NeSpoF ar-

chitecture models a volumetric hyperspectral Stokes field.

Here, instead, we aim to represent a hyperspectral Stokes

image. Specifically, our INR, modeled by an MLP Fγ , out-

puts the Stokes vector s for a given pixel position px, py and

spectral channel index c, that is

s = Fγ(px, py, c), (5)

where γ is the network parameters. We fit the MLP to a

hyperspectral Stokes image by minimizing the reconstruc-

tion loss between the network output and the hyperspectral

Stokes image. The training curve is shown in Figure 4(e).

Figure 4(f) shows the reconstruction error and BPP of our

INR with respect to varying number of the MLP layers.

With just 8 layers corresponding to a BPP of 60, we achieve

a converged reconstruction error of 1.90×10−5, resulting in

just 2.22 MB of network parameters to represent a 100 MB

hyperspectral Stokes image. See Supplemental Document

for architecture details.

Both PCA and INR experiments validate that a natu-

ral spectro-polarimetric image is compressible. PCA pro-

vides PCA basis vectors that can be applied to any instance,

however with a lower reconstruction accuracy than INR.

INR is overfitted to a single instance, while higher recon-

struction accuracy can be achieved. These representations

are also beneficial for denoising spectral-polarimetric im-

ages, as shown in Figure 4(b), which even outperforms the

learning-based intensity denoiser [66].

Polarized and Unpolarized Intensity We decompose

hyperspectral Stokes images into the polarized images P =√
s21 + s22 + s23 and unpolarized images U = s0 − P per

each spectral channel. Figure 6(a) shows specular reflec-

tions such as the glow of leather sofa separated into po-

(a) Separation into polarized and unpolarized light
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Figure 6. Polarized and unpolarized light distributions. (a)

Separation into polarized and unpolarized light. (b) Intensity dis-

tributions for polarized and unpolarized components. (c) Variance

of PCA basis of polarized and unpolarized intensity across spec-

tral channel.

larized light. Note that the polarized image typically en-

codes the illumination colors for dielectric surfaces. Fig-

ure 6(b) reveals that the intensity distributions of polarized

light, obtained from the entire hyperspectral Stokes dataset,

is skewed towards low and high-intensity values compared

to the unpolarized light. This is because polarized images

mostly contain specular reflections, which is sparsely dis-

tributed and has high intensity values. We then compute

the variance of the PCA bases for polarized intensity along

the spectral channel. Figure 6(c) highlights that the spectral

variance for polarized intensity is lower than that of unpo-

larized intensity. We speculate that the color of polarized

light lies in a lower dimensional space than that of unpo-

larized light, since diffuse reflection with diverse spectral

variations is mostly captured by unpolarized light, making

the spectral variation of unpolarized light more pronounced.

Stokes Vector Distributions in Natural Stokes Images
Next, we analyze the distribution of all Stokes vectors in

our Stokes dataset. Figure 7 shows the histograms of Stokes

elements s0, s1, s2, s3 across all spectral channel. We find

that the distributions of Stokes elements (s1, s2, s3) have

symmetric shapes of positive and negative sides. Stokes el-

ements of s1 and s2 have similar shapes meaning that the

directions of linearly-polarized light are equally distributed

in natural images. The circular component s3 is more con-

densed near zero than the linear elements, resulting in a
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s2, and s3 at the green channel. (b) Stokes-vector distributions of

s0, s1, s2 and s3 for trichromatic and hyperspectral datasets.

higher peak both in trichromatic and hyperspectral datasets.

This indicates that pixels are often more linearly polarized

than circularly polarized. Refer to the Supplemental Docu-

ment for further analysis.

Gradient Analysis of Stokes Images Gradient distribu-

tion of images has been often used as priors for image-

based applications including image restoration, understand-

ing, and editing. Here, we perform gradient analysis of

Stokes and polarization-feature images. Figure 8(b) shows

that the gradient of Stokes and normalized Stokes vectors

exhibits a similarity to Hyper-Laplacian priors, commonly

used to describe the gradient of natural intensity-images.

An interesting finding is that total intensity s0 has more

high-gradient values than the linear components of s1 and

s2, and the circular component s3 has the lowest-value dis-

tribution.

We analyze the gradient distributions of polarization fea-

tures, including AoLP, degree of linear polarization (DoLP),

degree of circular polarization (DoCP), and CoP. DoLP

and DoCP are computed as DoLP =
√
s21 + s22/s0 and

DoCP = |s3|/s0 respectively. To compute the gradient of

AoLP images, we consider the angular wrapping property.

That is, AoLP has a range from −π
2 to π

2 and the AoLPs of

−π
2 and π

2 are identical. Thus, if the gradient exceeds π
2 ,

we estimate the gradient as ∇AoLP−π×sign(∇AoLP),
where ∇ is the gradient operator and sign is the sign

operator that returns 1 if positive, otherwise −1. Fig-

ure 8(c) shows that the gradients of AoLP are generally

higher than DoLP and DoCP. This implies that sparsity in

the measurement gradient is milder for AoLP than DoLP

and DoCP. DoLP and DoCP have shapes similar to Hyper-

Laplacian priors while DoCP is sharper than DoLP. The

Gradient
(b) Gradient distributions of Stokes vector 

(a) Visualization of polarization features and gradients 

(c) Gradient distributions of polarization features 
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Figure 8. Gradient analysis of Stokes images. (a) Visualization

of AoLP, DoLP, DoCP and CoP values and their gradients. Exam-

ining the log probability of the gradient for (b) Stokes vectors s0,

s1, s2, s3 and normalized Stokes vectors s′1, s′2, and s′3, and (c)

polarization features including DoLP, DoCP, AoLP and CoP.

gradient of CoP shows symmetric distributions for right-

circular and left-circular directions. Unlike AoLP, the prob-

ability decreases as the gradient approaches extreme values.

The difference in tendency between linear-polarization and

circular-polarization features, as well as their distributions,

means that we need distinct priors for each polarization fea-

ture, emphasizing the importance of a full Stokes dataset

that measure not only linear but also circular polarization.

Shape from Polarization and Spectral Channels Meth-

ods that recover shape from polarization, SfP, have made

rapid progress in the last decade. SfP aims to extract

normals by analyzing the normal-dependent polarization

change of reflected light. Specifically, SfP analyzes the DoP

and AoLP based on Fresnel theory [9], which describes

the polarization change of light upon reflection and trans-

mission at a smooth surface [32, 41]. Here, we analyze

an overlooked problem in SfP: the spectral dependency of

estimated normals. Surface normals, as a geometric sur-
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Figure 9. Spectral dependency of conventional SFP method. (a)

Trichromatic Stokes image and estimated surface normals [41] for

each red, green, and blue spectral channels shown in (b), (c), and

(d). Graphs (e) and (f) show the probability distributions of stan-

dard deviation of normal component x, y, and z along the spectral

channels for both datasets.

face property, should be consistent regardless of the input

spectral channels used for SfP. In Figure 9, we test the

state-of-the-art SfP method by Lei et al. [41], designed for

in-the-wild scenes. The evaluation results on our normal-

ized Stokes dataset clearly reveal that normal maps recon-

structed from different spectral channels exhibit variations.

We compute the standard deviations of spectral variations

for each x, y, and z component of the estimated normals.

Figures 9(e) and (f) show the probability distributions of the

standard deviation, highlighting the large variations in the

estimated normals for both hyperspectral and trichromatic

datasets. Interestingly, the x and y components of normals

show larger standard deviations than the z component. This

implies that the spectral variation of DoP, which determines

the z component, has less impact on the distribution than

that of AoLP, which governs the x and y components.

Environment Dependency Figure 10 shows the Poincaré

spheres projected onto the s′1−s′2 and s′1−s′3 planes for the

three data labels: Indoor, Sunlight and Cloudy. Sunlight is

known to contain more circularly polarized light compared

to other artificial lighting [25]. As shown in Figure 10(a),

Stokes vectors are distributed more widely across s′3 axis

under sunlight compared with Indoor scene. In addition,

we find that DoCP is distributed at higher values for the

sunlight compared to the indoor: pixels with DoCP over 0.5
are rarely observed in indoor scenes. This is also confirmed

in the example s3 images for indoor and sunlight scenes.

Another interesting finding is that cloudy or sunny il-

lumination result in different polarization statistics. Fig-

ure 10(a) shows that Stokes vectors of cloudy scenes are

more concentrated near the origin, meaning that light is

more depolarized compared to light under clear sunlight.

Indoor Sunlight Cloudy

(a) Poincaré sphere projections

(b) DoCP distribution

Indoor
Sunlight

Lo
g 

pr
ob

ab
ilit
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(c)       visualization 

0

1

Figure 10. Environment dependency. (a) Projected Poincaré

spheres onto the s′1−s′2 and s′1−s′3 planes with repsect to dataset

labels. Colorbar is based on the normalized pixel count. (b) DoCP

distributions for indoor and sunlight categories. (c) Example s3
images.

This is aligned with previous studies [24, 58] that report the

impact of cloud-particle scatterings on light depolarization.

6. Conclusion

In this work, we have introduced a trichromatic and hy-

perspectral Stokes image dataset that encompasses diverse

natural scenes and various illumination conditions, total-

ing more than 2,333 scenes. We analyze the empiri-

cal distribution of the Stokes vectors of natural spectro-

polarimetric images. To efficiently represent spatio-

spectral-polarimetric data, we devise a PCA-based model

and an implicit neural representation. We further provide

detailed analysis on Stokes gradient distributions, denois-

ing characteristics, spectral dependency of SfP, and envi-

ronment dependency. As such, our work provides a foun-

dation for future research on spectral-polarimetric imaging

and vision.
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