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Abstract

Existing NeRF-based inverse rendering methods sup-
pose that scenes are exclusively illuminated by distant
light sources, neglecting the potential influence of emissive
sources within a scene. In this work, we confront this lim-
itation using LDR multi-view images captured with emis-
sive sources turned on and off. Two key issues must be
addressed: 1) ambiguity arising from the limited dynamic
range along with unknown lighting details, and 2) the ex-
pensive computational cost in volume rendering to back-
trace the paths leading to final object colors. We present
a novel approach, ESR-NeRF, leveraging neural networks
as learnable functions to represent ray-traced fields. By
training networks to satisfy light transport segments, we
regulate outgoing radiances, progressively identifying emis-
sive sources while being aware of reflection areas. The re-
sults on scenes encompassing emissive sources with var-
ious properties demonstrate the superiority of ESR-NeRF
in qualitative and quantitative ways. Our approach also
extends its applicability to the scenes devoid of emissive
sources, achieving lower CD metrics on the DTU dataset.

1. Introduction

Extensive research has focused on reconstructing 3D object
structures [16, 43, 47, 86], material properties [18, 29, 65],
and lighting [15, 33, 34, 74, 79] from 2D images, applica-
ble across domains including 3D graphics and augmented
reality [62, 63, 69, 72]. This endeavor not only facili-
tates the creation of life-like virtual objects but also stream-
lines the process of scene manipulation [27, 58, 61, 73].
Recent advancements [24, 30, 36, 71] have built on Neu-
ral Radiance Fields (NeRF) [40] successes in novel view
synthesis [3, 4, 45, 81, 91]. Significant progress in re-
lighting [37, 38, 50] has facilitated scene editing via ma-
nipulating the reconstructed light sources. However, ex-
isting methods predominantly deal with the scenes lit by
distant sources, like environment maps or collocated flash-
lights. Notably, NeRF-based inverse rendering has yet to
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Figure 1. Challenges posed by emissive sources in LDR images.
Green, red, and blue in thresholded images respectively show true
positives, false negatives, and false positives of source identifica-
tion. Thresholding values are scaled down divided by 255. The
contrast between light on and off pixel values is more pronounced
in surroundings than emissive sources. Inaccurate reconstruction
of emissive sources disrupts scene editing, causing reflection areas
to stay static while only the source colors change.

consider scenes with multiple emissive sources, a common
real-world illumination condition.

Emissive sources in a scene introduce critical challenges:
(i) ambiguity in decomposing scene components and (ii)
high computational costs for analyzing the causes of pixel
colors. This ambiguity stems from difficulties in identifying
emissive source regions, as illustrated in Fig. 1. Contrary to
prior setups [6–8, 66, 85, 93], we allow the possibility of nu-
merous emissive sources throughout the scene. In standard
photographs with pixel values from 0 to 255, the distinc-
tion between emissive sources and nearby reflection areas
is challenging. As shown in Fig. 1, relying solely on pixel
value thresholding is insufficient for differentiating between
emissive sources and their reflections. Naive inverse path
tracing is impractical, due to the computational costs rising
exponentially with the number of ray bounces in volume
rendering. This can cause inaccuracy in emissive source re-
construction, yielding unrealistic illumination in reflective
areas as users manipulate emissive sources.

To address these challenges, we introduce ESR-NeRF
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(Emissive Sources Reconstructing NeRF), a novel approach
capable of reconstructing any number of emissive sources
by progressively discovering reflection areas. We assume
that the scenes are observed in two lighting conditions: one
with all emissive sources active and the other with them
inactive. Our approach utilizes neural networks as learn-
able functions for representing ray-traced fields. By train-
ing networks to satisfy each light transport segment, we
sidestep the computational overhead of ray tracing associ-
ated with ray bounces. In this work, we exclusively use
low dynamic range (LDR) images, setting us apart from
prior mesh-based methods that rely on high dynamic range
(HDR) images [2, 19, 48, 76].

Our experiments encompass synthetic and real scenes,
ranging from single to multiple lighting configurations with
complex reflections. The scenes vary in light source counts,
color, and intensity. Qualitative and quantitative evalu-
ations show ESR-NeRF’s superiority over state-of-the-art
NeRF-based re-lighting methods. Furthermore, Chamfer
Distance (CD) metrics on the DTU dataset [23] indicate
ESR-NeRF’s competitive performance in scene reconstruc-
tion, even without emissive sources.

We summarize our contributions as follows.
1. Our work presents the first NeRF-based inverse render-

ing that can deal with the scenes with any number of
emissive sources, challenging the distant light assump-
tion of previous research.

2. Unlike existing mesh-based methods relying on HDR
images, we use LDR images for the first time, overcom-
ing the poor representation of emissive sources.

3. We provide a benchmark dataset designed to evaluate the
performance of emissive source reconstruction.

4. Our method is applicable to the scenes with or without
emissive sources, achieving superior mesh reconstruc-
tion results on the DTU dataset.

2. Related work
Neural Rendering. Advancements in implicit representa-
tions [51, 60] and volume rendering [39] have significantly
enhanced neural rendering capabilities, enabling the recon-
struction of scene components from 2D images. One of the
key directions is mesh extraction [44, 70, 77, 78, 80, 97],
with methods like NeuS [68] and VolSDF [87] utilizing
signed distance function (SDF) values for volume render-
ing. Recently, the efficient computation of volume render-
ing has become a focal point due to the substantial com-
putational cost associated with network inference for ray
color calculation [41, 49, 88]. Several methods propose
to directly predict ray color using the 4D light fields con-
cept [1, 52, 55] or leveraging voxel grids for fast inference
of spatial features [5, 11, 12, 14, 31, 56]. NeuralRadios-
ity [17] shares similarity with our method, as it predicts ray-
traced values instead of explicitly tracing individual rays.

Voxurf TensoIR Path Tracing ESR-NeRF

Big O n n · d (n · d)b+1 n2 · d
Indirect illumination ✘ ✔ ✔ ✔

BRDF decomposition ✘ ✔ ✔ ✔
Emissive source control ✘ ✘ ✔ ✔

Table 1. Computational cost comparison for inverse rendering
methods. n is the number of sampled points along a ray, d is the
number of scattering rays, and b is the number of ray bounces.

However, they primarily focus on calculating the final ob-
ject color when all scene information is available. In con-
trast, our inverse rendering approach aims to reconstruct
emissive sources within a scene, addressing the ambiguities
introduced by their presence in LDR images.

Inverse Rendering. A growing emphasis revolves
around the decomposition of materials represented by spa-
tially varying bidirectional reflectance distribution func-
tions (SVBRDF) [46, 83, 99]. To lessen the computational
burden in inverse rendering [25, 54, 96, 98], several meth-
ods have adopted neural networks as lookup tables [9] or
computational caches [54, 90, 95]. While NeRV [54] uti-
lizes caching visibility and NeILF++ [90] adopts caching
surface point radiance with the inter-reflection loss for in-
cident radiance, our method diverges by focusing on trac-
ing radiance origins. Specifically, we aim to identify emis-
sive sources within a scene, moving beyond the simplifica-
tion of incident radiance calculations. Several methods rely
on diverse known lighting configurations to exploit varia-
tions in object appearances [59, 64, 84, 89]. Toggling emis-
sive sources on and off resembles the common one-light-
at-a-time (OLAT) technique, as seen in NLT [94] and ReN-
eRF [82]. However, our setting does not need to know light
source properties and to toggle lights individually. Instead,
we allow for toggling all lights together. Recent works
have also jointly reconstruct the mesh, materials, and light-
ing [20, 35, 42, 57]. They tackle with images captured un-
der a single unknown lighting condition [92, 95], assuming
that radiance already encodes global illumination [75, 96].
However, they confine to the scenes illuminated by far-
distant lights, constrained to an 8-bit color spectrum. Our
work considers the presence of multiple emissive sources
within a scene captured in LDR images, questioning the
prevailing notion that radiance fields trained with the im-
age rendering loss faithfully represents global illumination.
While some methods [2, 19, 32, 48, 76] deal with the scenes
featuring emissive sources, they work outside the volume
rendering framework and depend on HDR input images, as-
suming prior knowledge of scene geometry.

3. Preliminaries
Surface Representation. Analgous to NeRF [40], neu-
ral network fθ predicts SDF values at arbitrary 3D spa-
tial locations. NeuS [68] integrates surface representa-
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Figure 2. The pipeline of emissive source reconstruction. Given LDR images with emissive sources on and off, scene components are
reconstructed by synthesizing training images and enforcing LTS requirements. Emissive sources are progressively refined via categorizing
training rays into uncertain and certain groups. The scenes can be edited with new lighting conditions using reconstructed emissive sources.

tion into volume rendering using the SDF-based opacity

ρ(x) = max(
− dΦs

dx (f(x))

Φs(f(x))
, 0). Here Φs(x) = (1 + e−sx)

−1

is the sigmoid function where s controls the sharpness of
surfaces. The color of a ray can be calculated as

Ĉ(r) =

∫ ∞

0

T (r(t))ρ(r(t))Lo(r(t), ωo) dt, (1)

where Ĉ(r) denotes the predicted ray color, r(t; c, ωo) =
c− t ·ωo is the ray with camera center c along direction ωo,
T (r(t)) = exp (

∫ t

0
−ρ(r(u)) du) is the transmittance, and

Lo(r(t), ωo) is the outgoing radiance. Henceforth, we use
x to denote a point in r(t; c, ωo) for notational simplicity.

Light Transport in Volume Rendering. Extracting light
sources necessitates analyzing the causes affecting the final
ray colors. Kajiya’s rendering equation [26] factorizes the
outgoing radiance Lo(x, ωo) into emission and reflections:

Lo(x, ωo) = E(x) +

∫
Ω

Li(x, ωi)R(x, ωo, ωi; b)dωi, (2)

where E(x) is the emission, R(x, ωo, ωi; b) represents the
SVBRDF parametrized by parameters b with Lambert co-
sine multiplied, and Li(x, ωi) is the incident radiance. In
volume rendering, computing the incident radiance at point
x is akin to evaluating Eq. 1, with x serving as the cam-
era center. By iteratively factorizing the outgoing radiance
in the incident radiance, the contribution of a path length i
for a pixel can be decomposed as in Eq. 3, where Hi =
Πi−1

j=1T (xj)ρ(xj)R(xj , ωj−1, ωj) is the path throughput,
S(ωi) is the environment map strength in direction ωi, and
V (x, ωi) = exp

(∫∞
0

−ρ(r(u;xi,−ωi)) du
)

is the visibil-
ity of the environment map at point x along direction ωi:

Pi =

∫
l1

∫
Ω

· · ·
∫
li−1

∫
Ω

(

∫
li

T (xi)ρ(xi)E(xi) dti+

S(ωi−1)V (xi−1, ωi−1))Hidt1dω1 · · · dti−1dωi−1.

(3)

Extending the analysis to longer light paths, or equiva-
lently, increasing the number of ray bounces, leads to ex-
ponential growth in computation complexity. This poses
a challenge when attempting to decompose the influence of
unknown emissive sources, as their ability to produce strong
reflections makes ignoring indirect illumination infeasible.

4. Methodology
None of the previous works address the reconstruction of
emissive sources from LDR multi-view images. Sec. § 4.1
through § 4.5 detail our method, ESR-NeRF, which recon-
structs emissive sources without prior knowledge of scene
geometry, materials, or lighting specifics (including their lo-
cation, number, or colors). We also show how these recon-
structed sources can be used for scene editing in § 4.5.

4.1. Learnable Tone-mapper

Throughout the paper, we use R to represent camera rays,
C for pixel values, and a binary flag I to indicate whether
an image is captured with emissive sources on or off.

To extract HDR values from LDR images, we employ the
softplus activation for outgoing radiance prediction and ap-
ply a clipping and gamma function τ [21] for the rendering
loss such that Ĉτ (r) = τ(Ĉ(r)). Unlike previous NeRF-
based works [25, 37, 54, 57] that limit radiance to the range
of [0, 1], our approach allows for any positive radiance val-
ues. Yet, it creates difficulties in differentiating between
the surface weight T (x)ρ(x) and the magnitude of radiance
value Lo(x, ωo), since it allows for the possibility of assign-
ing extreme radiance to the points with low surface weights
to render same ray colors. Such ambiguity poses chal-
lenges, particularly in dark and high-contrast scenes, aggra-
vating surface reconstruction (see Fig. 3). To address this,
we introduce a learnable tone-mapper mθ : R3

+ → [0, 1]
3,

that takes positionally encoded HDR linear values as input:
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(a) Image (b) w/o mθ (c) ESR-NeRF

Figure 3. Reconstructed surfaces with the learnable tone-mapper.

Ĉmθ (r) =

∫ ∞

0

T (x)ρ(x)mθ(Lo(x, ωo)) dt, (4)

Lo(x, ωo) = LS
o (x, ωo) + LE

o (x, ωo) · I, (5)

where LS
o (x, ωo) is radiance when emissive sources are

turned off, while LE
o (x, ωo) stands for radiance added to

the scene by emissive sources. Our rendering loss is then
formulated as follows, with λτ as a hyper-parameter:

Lrender =
∑
r∈R

(∥C(r)− Ĉmθ (r)∥
2
2+λτ∥C(r)− Ĉτ (r)∥22). (6)

4.2. Learning of Light Transport Segments

The computational complexity of object appearance analy-
sis in volume rendering is notably high, as shown in Eq. 3.
We take an alternative approach by leveraging neural net-
works to represent ray-traced fields, rather than explicitly
tracing every rays. Our distinct contribution to inverse ren-
dering lies in precise adjustment of radiance. Specifically,
we impose constraints on the predicted radiance to satisfy
each light transport segments. The light transport segments
(LTS) loss, Llts, plays a pivotal role in our method:

LS
lts =

∑
x,ωo

∥LS
o (x, ωo)− L̂S

o (x, ωo)∥22, (7)

LE
lts =

∑
x,ωo

∥LE
o (x, ωo)− L̂E

o (x, ωo)∥22, (8)

L̂S
o (x, ωo) =

∫
Ω

S(ωi)V (x, ωi)R(x, ωo, ωi)︸ ︷︷ ︸
direct illumination by an environment map

dωi+

∫
Ω

∫ ∞

0

T (x′)ρ(x′)LS
o (x

′,−ωi) dt
′R(x, ωo, ωi)︸ ︷︷ ︸

indirect illumination by an environment map

dωi.

(9)

L̂E
o (x, ωo) = E(x)︸ ︷︷ ︸

emission

+

∫
Ω

∫ ∞

0

T (x′)ρ(x′)LE
o (x

′,−ωi) dt
′R(x, ωo, ωi)︸ ︷︷ ︸

direct & indirect illumination by emissive sources

dωi.
(10)

We ensure consistency between the radiance directly pre-
dicted by the network Lo(x, ωo) and the radiance achiev-
able based on the scene context L̂o(x, ωo). Previous ap-
proaches have focused on matching L̂o(x, ωo) to training
views, overlooking the relations to Lo(x, ωo). This hinders
the restoration of HDR radiance by supervising scene com-
ponents to LDR training views. In contrast, our LTS loss
enables volumetric energy transfer of radiance, adjusting
outgoing radiance based on their interrelations.

To implement this concept, we train six dedicated net-
works for SDF f(x), SVBRDF parameters b(x), emis-
sion E(x), environment map S(ωi), outgoing radiances
LS
o (x, ωo) and LE

o (x, ωo), to adhere to these LTS require-
ments. For the environment map, we represent it using 48
Spherical Gaussians [67] :

∑M
k=1 µke

λk(ωi·ξk−1), followed
by the softplus activation. µ ∈ R3, λ ∈ R+, and ξ ∈ S2
respectively denote the lobe amplitude, sharpness, and axis.

4.3. Progressive Discovery of Reflection Areas

Figure 4. Left: Image with ac-
tive emissive sources. Right:
Identified emissive sources w/o
progressive discovery of reflec-
tion areas.

Relying solely on LTS is
insufficient for addressing
ambiguity arising from low
pixel values of emissive
sources and intense reflec-
tions in adjacent regions,
often leading to confusion
between emission and re-
flection. The right image in
Fig. 4 shows self-emitting
objects restored with the

naive LTS loss. While emissive sources are small, large ar-
eas affected by them are also identified as emissive sources.
We propose a reflection-aware progressive approach for
precise identification of emissive sources. By leveraging
LTS learning, we extend the regions that can be regarded as
reflection areas. Fig. 5 illustrates our progressive algorithm.

Reflection-Aware Emission Refinement. Since surface
points are unknown and are updated during learning, we opt
to utilize rays rather than surface points. This process in-
volves categorizing training rays into two groups: uncertain
(RU ) and certain (RC). The certain group contains the rays
confidently identified as reflection, aiding the transfer of ra-
diance energy to nearby points. For the points in the certain
group, we use the Eq. 11 instead of Eq. 10 to exclusively at-
tibute outgoing radiances to reflections. Satisfying the LTS
loss on the certain group results in adjusting the outgoing
radiances of influential points, as illustrated in Fig. 5(a):

L̂E
o (x, ωo) =

∫
Ω

∫ ∞

0

T (x′)ρ(x′)LE
o (x

′,−ωi) dt
′R(x, ωo, ωi) dωi.

(11)
The uncertain group includes the rays indicating the ar-

eas that are undetermined yet as reflection or emission. Us-
ing Eq. 12 to compute L̂E

o (x, ωo), this group adjusts emis-
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sions E(x) based on the radiance updates by the certain
group, where “sg” represents the stop-gradient:

L̂E
o (x, ωo) = E(x)+

sg
(∫

Ω

∫ ∞

0

T (x′)ρ(x′)LE
o (x

′,−ωi) dt
′R(x, ωo, ωi) dωi

)
.

(12)
As shown in Fig. 5(b), this leads to increased emissions for
the regions whose radiances are adjusted to account for the
reflections in the certain group. Conversely, emissions de-
crease for the regions where there is little change in outgo-
ing radiance, but incident radiances are increased by sur-
rounding influential points.

Ray Group Management. As emissions and radiances are
adjusted, the groups are dynamically updated at predefined
training intervals through the following process. Within the
uncertain group, we evaluate the expected emission strength
of rays, retaining only those above a threshold ki. Rays
below this threshold are then merged to the certain group:

RU
i = {r|max

RGB

(∫ ∞

0

T (x)ρ(x)E(x) dt

)
≥ ki, r ∈ RU

i−1},

(13)

RC
i =

(
RU

i−1 −RU
t

)
∪RC

i−1. (14)

Subsequently, newly added rays to the certain group can
be used to localize influential points and update their outgo-
ing radiances. This iterative process progressively refines
the separation between reflective and emissive regions, at-
taining more accurate identification of emissive sources.

LTS Loss Decomposition. The LTS loss, as detailed in
Eq. 15, can be decomposed using a stop-gradient operation
to refine the adjustment process.

LE
lts =

∑
x,ωo

(λl∥sg(LE
o (x, ωo))− L̂E

o (x, ωo)∥1+

λr∥LE
o (x, ωo)− sg(L̂E

o (x, ωo))∥1).
(15)

We prioritize λl to enhance the update of scene con-
text, affecting other points’ radiance given the predicted
Lo(x, ωo). λr prevents severe deviation of every Lo(x, ωo)
within the current scene context. This aligns with our focus
on HDR source reconstruction from LDR images, address-
ing under-represented information in training data.

4.4. Training Details

We employ the Voxurf architecture [80] as backbone and
adopt the simplified Disney BRDF model [10] for SVBRDF
representation, with parameters including base color ∈
[0, 1]3, roughness ∈ [0, 1], and metallic ∈ [0, 1]. The learn-
able tone-mapper, structured as a two-layer MLP, is utilized
for the rendering loss only. Initially, we pre-train our net-
works using the rendering loss, subsequently integrating the
basic LTS loss (Eq. 7 and Eq. 8) into our training regimen.

(a) LTS on 𝑅!

𝐿"# ↑ 

(b) LTS on 𝑅$

𝐸 ↓

𝐸 ↑

(c) Ray Group Managing

Figure 5. Illustration of the progressive emissive source recon-
struction with reflection awareness. Gray color represents the ar-
eas belonging to the certain group, while the red (emissive sources)
and orange (their reflections) areas belong to the uncertain group.

This phase transitions to the reflection-aware progressive
training scheme, where we adopt the ℓ1 loss due to its em-
pirical stability in refining emissive source reconstruction.
We use a smoothing regularization to promote local consis-
tency in normals, BRDFs, and emissions. To ensure view-
consistent labeling of 3D points as either reflective or emis-
sive, we implement the emission suppression loss for points
beloning to the certain group:

LE
supp =

∑
r∈RC

t

∥
∫ ∞

0

T (x)ρ(x)E(x) dt∥22, (16)

The threshold ki linearly increases with each time step t,
utilizing a grid search within a range of [10−3, 10−5] to find
the slope. We construct mini-batches via stratified sampling
within each group. For a detailed description of our training
procedure, please refer to Appendix.

4.5. Scene Editing

Reconstructed emissive sources enable scene editing; users
select emissive sources using binary masks Mj=1...N and
specify lighting conditions using colors cj=1...N and inten-
sities ij=1...N within the HSV color space [53].

We identify the rays in the uncertain group that match M
by projecting expected surface points p of the rays onto the
camera with the pose R|t:

p =

∫ ∞

0

T (x)ρ(x)x dt, (17)

Ihitj (x) = interp(Mj , p
′) > 0, where p′ = K[R|t][p|1]T . (18)

For the rays satisfying Ihitj (x), we apply the designated
lighting conditions. The new emission values are com-
puted by substituting the original hue (H) and saturation (S)
of E(x) with the user-specified color cj and adjusting the
value (V) of v(x) with the new intensity ij :

E(x) = hsv to rgb ([cj | (v(x)× i)]) · Ihitj + E(x) · ¬Ihitj . (19)

These modifications influence scene appearance by opti-
mizing the loss in Eq. 20. During this process, all networks,
except for LE

o (x, ωo), are frozen:

Ledit =
∑
x,ωo

∥LE
o (x, ωo)− sg(L̂E

o (x, ωo))∥22. (20)
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White colored Vivid colored
Lego Gift Book Cube Billboard Balls Lego Gift Book Cube Billboard Balls

IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE

Twins 0.22 20.19 0.49 8.59 0.63 3.91 0.95 31.83 0.69 1.12 0.90 0.06 0.25 6.96 0.24 6.09 0.55 2.63 0.95 10.64 0.09 0.75 0.83 0.04
NeILF++ 0.43 20.88 0.07 9.38 0.95 4.64 0.93 32.67 0.01 1.95 0.91 0.80 0.30 7.65 0.09 6.86 0.95 3.36 0.94 11.49 0.02 1.57 0.92 0.78
TensoIR 0.71 20.13 0.15 8.55 0.95 3.87 0.95 31.73 0.76 1.11 0.95 0.05 0.33 6.93 0.15 6.05 0.95 2.59 0.96 10.60 0.77 0.74 0.95 0.03

ESR-NeRF 0.81 8.38 0.60 3.49 0.96 1.19 0.97 17.87 0.84 0.46 0.95 0.04 0.51 5.48 0.59 2.50 0.96 0.51 0.97 7.94 0.88 0.26 0.94 0.03

Table 2. Results of emissive source identification. ESR-NeRF outperforms state-of-the-art re-lighting methods in reconstructing emissive
sources, regardless of their color. The IoU measures the source area identification (a higher value is better), and the MSE quantifies the
difference between reconstructed images and HDR ground truth images (a lower value is better).

5. Experiments

We assess ESR-NeRF in reconstructing emissive sources by
focusing on both identification and intensity restoration. To
showcase its effectiveness, we conduct a range of experi-
ments, including scene editing, ablation studies, illumina-
tion decomposition, and surface reconstruction, providing
both quantitative and qualitative results.

5.1. Experiment Settings

We curate 6 diverse synthetic scenes, each with 200 train-
ing images evenly distributed between on and off lighting
conditions. To evaluate the robustness of our approach
against light colors, we consider two distinct settings of
white colored and vivid colored emissive sources, result-
ing in a total of 12 scenes. The vivid colors are selected
with full saturation in the HSV color space. We measure
source identification and radiance reconstruction using IoU
and MSE metrics on novel view test images, comparing
against ground truth data from Blender-rendered emission
masks and EXR files. The emission strengths, the maxi-
mum EXR file values, range from 2 to 200. For quanti-
tative scene editing evaluation, we alter the white-colored
sources to various colors—red, green, blue, cyan, magenta,
yellow—and adjust intensities to half or double their orig-
inal values. Qualitative results include scene editing for
vividly colored sources and real scenes captured with a Fuji
100s camera using Philips smart bulbs as emissive sources.
Quantitative assessments are based on 50 test images from
novel camera poses, except for MSE measured for 25 test

Threshold

Progressive reconstruction of emissive sources

Step=0 Step=1000 Step=3000 Step=5000 Final…

Image TensoIR ESR-NeRF G.T.

Figure 6. Comparison of identified emissive sources. ESR-NeRF
excels through the reflection-aware progressive refinement.

NV NV + I NV+ C NV + I + C

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

Twins 36.52 0.0141 27.91 0.0252 31.02 0.0252 28.21 0.0310
NeRF-W 36.44 0.0142 24.77 0.0417 - - - -
NeILF++ 24.40 0.0556 24.71 0.0579 24.06 0.0750 23.24 0.0770
TensoIR 38.04 0.0103 27.28 0.0418 26.36 0.0505 25.18 0.0531

PaletteNeRF 33.66 0.0233 23.27 0.0483 24.44 0.0646 22.58 0.0703

ESR-NeRF 38.79 0.0083 29.99 0.0193 31.73 0.0196 31.63 0.0199

Table 3. Scene editing results. NV: novel view synthesis, I: inten-
sity editing, and C: color editing. A higher PSNR or lower LPIPS
value is better.

images. We denote the best performance with blue and the
second-best with green. Additionally, we utilize the DTU
dataset [23] to evaluate ESR-NeRF’s performance in sur-
face reconstruction tasks where emissive sources are absent.

Baselines. We select two state-of-the-art re-lighting meth-
ods, TensoIR [25] and NeILF++ [90], that do not require
prior lighting information. For thorough evaluation, we also
implement a simple method, Twins, where separate models
are trained under light on and off conditions. The Twins uti-
lize the radiance discrepancies between the on and off mod-
els to distinguish and adjust emissive sources. For scene
editing, we add NeRF-W [38] and PaletteNeRF [28] as
baselines. Both NeRF-W and Twins adopt the Voxurf [80]
architecture for fair comparison. For methods unable to in-
dividually control emissive sources, all sources are adjusted
together to match the last lighting condition by a user. For
the DTU dataset, we include state-of-the-art surface recon-
struction methods that use object masks, such as NeuS [68]
and Voxurf, as well as Neural-PBIR [57], that jointly recon-
structs surfaces, materials, and environment maps.

5.2. Results

Emissive Source Recosntruction. Tab. 2 shows that our
approach excels in accurately identifying emissive source
regions and restoring their intensity, regardless of the source
color. While TensoIR and NeILF++ can restore emissions
by modifying their physical rendering equations, they suf-
fer from emissive source ambiguity, leading to near-zero
IoU performance (see Appendix). For a comprehensive
comparison, we report the best performance of the baseline
methods using thresholding on the reconstructed emission
strength at 0.01 intervals. ESR-NeRF consistently outper-
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Figure 7. Comparison of scene editing. ESR-NeRF provides precise source control and faithfully represents reflection effects. For easy
comparison in the Cube scene of low intensity, the bottom-right images are presented with a 40% increased brightness.

forms the baselines in identifying emissive source regions
across all scenes. Our method also achieves significantly
lower MSE values for restoring LDR to HDR images com-
pared to the baselines, demonstrating its effectiveness of
handling the ill-posed nature of the scenes with emissive
sources. This is visually confirmed in Fig. 6, where ESR-
NeRF surpasses the baselines in a complex scene with nu-
merous small light bulbs.

Scene Editing. Tab. 3 and Fig. 7 showcase the scene editing
results under novel lighting conditions. Baseline methods
struggle to adapt to lighting changes due to their inability
to reconstruct emissive sources accurately. For example,
in the Lego scene, TensoIR fails to adjust the illumination
in surrounding regions when the color of emissive sources
is changed, and in the Cube scene, both the hidden iPad
screen and the cube surface covered by the user input mask
change together. Twins introduces blue light onto yellow
and red surfaces, leading to unintended white and purple ap-
pearances, even though there should be no reflection. Palet-
teNeRF, which manipulates scenes through re-colorization,
lacks precise control over illumination, as seen in the syn-
chronous color changes in the yellow ribbon and lighting. In
contrast, ESR-NeRF demonstrates superior performance in

Image Emission Re-light (ours) Re-light (G.T.)

Figure 8. Reconstructed emitter and re-lighting at novel view.

scene editing outshining all baselines thanks to the accurate
identification of emissive sources, as detailed in Table 3.
ESR-NeRF effectively balances source reconstruction and
novel view synthesis, ensuring high performance in both
tasks. NeRF-W is excluded from color adjustments since
it doesn’t support direct color change through interpolating
latent variables learned with light on and off conditions.

Fig. 8 to 9 present additional examples of emissive
source reconstruction and scene editing results. Fig. 10
shows results on real scenes, for which due to the impracti-
cality of precise control over smart bulb colors, we offer
emission reconstruction results with pseudo ground truth
data. Our method effectively identifies emissive sources in
real scenes, while it faces challenges in capturing complex

Lego Gift Book Billboard
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E
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d

Figure 9. Results of source reconstruction and scene editing.
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Figure 10. Source reconstruction and scene editing on real scenes.

reflections within light bulbs, as evident in the bright spot at
the center of the bulbs in the ground truth edit results.

Ablation Analysis. Progressive refinement with the stop-
gradient operation in Eq. 15 improves the identification
of emissive sources and reduces MSE values. Without
mθ, surface reconstructions become unreliable, complicat-
ing the accurate reconstruction of emissive sources. This is-
sue is evident from the CD metrics and illustrated in Fig. 3.
Further analyses are provided in Appendix.

Illumination Decomposition. Fig. 11 demonstrates ESR-
NeRF’s decomposition of scene illumination into direct and
indirect lighting from an environment map, as well as emis-
sions and their reflections. The shadow behind the yellow
ribbon in the direct figure and the illumination in the in-
direct figure showcase ESR-NeRF’s ability to model both
direct and indirect illumination. The reflection figure shows
that our method accurately captures how emissive sources
contribute to reflections on nearby regions.

Surface Reconstruction. Interestingly, our approach can
be applied to the scenes without emissive sources to en-
hance surface reconstruction, as evidenced by the lower CD
values in Tab. 4 on the DTU dataset. For this experiment,
we use Eq. 7 to 10 without our progressive refinement tech-
nique. ESR-NeRF’s ability to adjust interrelated outgoing
radiances helps prevent surface formations where radiances
cannot be produced, considering the predicted scene con-
text. Additional visualizations of the normals, BRDF, and
environment maps are provided in Appendix.

On Image

Direct (envmap) Indirect (envmap) Off Image

Emission Reflection Emission Effects

Figure 11. An example of illumination decomposition.

Scan NeuS Voxurf Neural-PBIR ESR-NeRF

24 0.83 0.65 0.57 0.58
37 0.98 0.74 0.75 0.71
40 0.56 0.39 0.38 0.38
55 0.37 0.35 0.36 0.33
63 1.13 0.96 1.04 0.93
65 0.59 0.64 0.73 0.57
69 0.60 0.85 0.65 0.78
83 1.45 1.58 1.28 1.18
97 0.95 1.01 0.97 0.95

105 0.78 0.68 0.76 0.58
106 0.52 0.60 0.53 0.54
110 1.43 1.11 0.84 1.08
114 0.36 0.37 0.38 0.33
118 0.45 0.45 0.46 0.40
122 0.45 0.47 0.49 0.44

mean 0.77 0.72 0.68 0.65

Table 4. Results of surface reconstruction via the Chamfer dis-
tance on the DTU dataset. A lower value is better.

White Vivid
IoU ↑ MSE ↓ IoU ↑ MSE ↓

w/o progressive 0.40 9.92 0.41 3.93
w/o sg 0.71 6.45 0.60 3.47

ESR-NeRF 0.86 5.24 0.81 2.79

DTU
CD ↓

w/o mθ 0.93
w/o LTS 0.71

ESR-NeRF 0.65

Table 5. Ablation studies on the sruface reconstruction (left) and
the emissive source reconstruction (right).

6. Conclusion
We present ESR-NeRF as the first NeRF-based inverse
rendering method for the scenes with emissive sources.
Our approach uses LDR images, eliminating the need of
HDR images to reconstruct emissive sources. Furthermore,
we demonstrate the application of reconstructed sources in
scene editing, enabling color and intensity modifications.
Limitations. Future work could explore using a single
lighting condition to disentangle emissive sources, environ-
mental lighting, and object texture. It is also promising to
address the challenge of volume ray tracing in unbounded
scenes to extend to indoor scenes. Additionally, LTS based
re-lighting may be weak in representing new colors that tra-
verse unobserved light paths during training. An alterna-
tive approach could be extracting emission texture maps and
modifying it using the engines such as Blender [13] or Mit-
suba [22]. More details on alternative re-lighting methods
and radiance fine-tuning are provided in Appendix.
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