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Abstract

Human pose forecasting garners attention for its di-
verse applications. However, challenges in modeling the
multi-modal nature of human motion and intricate in-
teractions among agents persist, particularly with longer
timescales and more agents. In this paper, we propose an
interaction-aware trajectory-conditioned long-term multi-
agent human pose forecasting model, utilizing a coarse-
to-fine prediction approach: multi-modal global trajec-
tories are initially forecasted, followed by respective lo-
cal pose forecasts conditioned on each mode. In doing
so, our Trajectory2Pose model introduces a graph-based
agent-wise interaction module for a reciprocal forecast of
local motion-conditioned global trajectory and trajectory-
conditioned local pose. Our model effectively handles the
multi-modality of human motion and the complexity of long-
term multi-agent interactions, improving performance in
complex environments. Furthermore, we address the lack
of long-term (6s+) multi-agent (5+) datasets by construct-
ing a new dataset from real-world images and 2D anno-
tations, enabling a comprehensive evaluation of our pro-
posed model. State-of-the-art prediction performance on
both complex and simpler datasets confirms the general-
ized effectiveness of our method. The code is available at
https://github.com/Jaewoo97/T2P.

1. Introduction
Human pose forecasting aims to predict future human mo-
tion based on observed past motion [20, 31, 32, 35, 37,
53, 86]. Humans instinctively perform such tasks, allowing
them to naturally navigate in crowded areas or identify and
circumvent potential dangers. For this reason, human pose
forecasting plays an important role in various computer vi-
sion tasks [21, 23, 27, 54, 85, 91]. Indeed, recent years have
seen a proliferation of work on multi-agent motion forecast-
ing which aim towards modeling complex multi-agent inter-

*Denotes equal contribution.

Figure 1. Human motion is goal-directed and influenced by other
entities. Therefore, global intention contains hints for local inten-
tion, allowing us to infer local pose from global trajectories. Our
method first forecasts global trajectories, upon which local poses
are conditioned for subsequent forecasts. Pose and trajectory-wise
inter-agent interactions are considered for both predictions.

action [20, 47, 53, 71, 74].
Although various methods have been proposed, they

share two major limitations. The first is a limitation on
long-term predictions, as previous studies predicted up to
3 seconds at most [4, 47, 74, 75]. However, a sufficiently
long forecast horizon is essential to fully leverage human
pose forecasting for diverse downstream tasks in the scope
of identifying potential danger or understanding human be-
havior. The second is that multi-person interactions are
not proficiently learned. Existing methods consider the
joints of multiple people all at once as objects of interac-
tion [47, 65, 74], resulting in an excessive complexity with
respect to the number of joints. Due to such inefficient mod-
eling, these approaches are found to be incompetent in long-
term (3s+) multi-agent (6+) settings, limiting their practi-
cality on complex real-world environments.

Moreover, these challenges are also due to the limitations
of datasets. Existing pose forecasting datasets have limited
sequence length (∼3s) and number of agents (∼2). There-
fore, previous works [47, 69, 75] have randomly blended
disparate datasets to model multi-agent interaction with up
to 10 agents. Yet, such naively merged data lacks authentic
interaction as agents from different scenes remain uninflu-
enced. As such, there was no opportunity to develop and
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evaluate a model in a long-term multi-agent environment.
To this end, we present a solution from both model and

dataset perspectives to tackle long-term multi-agent human
pose forecasting. First, from a model perspective, we pro-
pose an interaction-aware trajectory-conditioned pose fore-
casting method. We point out that the limitations of ex-
isting methods on long-term multi-agent environments lead
to poor performance in handling the multi-modal nature of
human motion and correspondingly complex interactions.
To improve upon handling multi-modality in these complex
settings, we use a coarse-to-fine approach to enjoy effective
interaction modeling by propagating agent-wise coarse rep-
resentations. Agent-wise pose and trajectory embeddings
are obtained in their respective local coordinates, followed
by a holistic interaction modeling via our proposed Traj-
pose module. Interaction-aware forecasts are then made by
initial coarse global hip joint trajectory forecast followed
by fine local pose forecasts in its hip joint coordinates, con-
ditioned on the global trajectory as shown in Fig. 1. As
discovered in previous research [2, 54], learning an agent-
wise global intention as coarse trajectories is less challeng-
ing than predicting every joint-wise motion. We leverage
these hints from global trajectories, which are further con-
ditioned towards forecasting local motion that embodies the
interaction-aware spatio-temporal context.

From a dataset perspective, we parsed a novel real-world
dataset for long-term multi-agent human pose forecasting.
We utilize JRDB dataset [66] which consists of multi-view
video and collected in various environments. Since 3D pose
annotations are not provided in the original JRDB, we ex-
tracted sequences of 3D human pose from visible agents
in omnidirectional images using the latest algorithm for 3D
pose extraction from image [59]. We then ensure the re-
liability of 3D pose information by filtering and adjusting
the extracted 3D poses based on 2D pose and 3D bound-
ing box annotations. As a result, we construct a real-world
3D human pose forecasting dataset, JRDB-GlobMultiPose
(JRDB-GMP), where up to 24 agents exist for up to 5
seconds. The proposed pose forecasting model is vali-
dated on both previous datasets and newly created JRDB-
GMP dataset. Our method shows state-of-the-art forecast-
ing performance in both global and local accuracy metrics,
not only on JRDB-GMP but also on all previous datasets.
Therefore, our contributions are as follows:

- We propose a interaction-aware trajectory-conditioned
pose forecasting method (T2P) for long-term multi-agent
3D human pose forecasting.

- We propose a long-term, multi-agent real-world 3D hu-
man pose forecasting dataset which contains up to 24 per-
sons and forecasts up to 5 seconds.

- We validate our T2P model on both previous datasets
and our new JRDB-GMP dataset. Our method achieves
state-of-the-art forecasting performance on all datasets.

2. Related works
2.1. Human pose forecasting

Human Pose Forecasting involves predicting a future pose
sequence with temporal length of a prediction horizon,
given a historical pose sequence [5, 8, 11, 16, 36, 45, 49,
52, 68, 71]. In the early stage, methods were developed to
forecast single person motion within a short timeframe (∼
1s) [9, 34, 58, 73]. However, to improve applicability on
diverse downstream computer vision tasks, forecasts are to
be made on multi-person poses [1, 2, 63] for longer predic-
tion horizons [6, 62]. Forecasting future inherently involves
a stochastic nature, and handling such multi-modality has
been attempted by forecasting multiple future poses of a
single agent [4]. However, comparatively marginal ef-
forts have been employed in the more complex long-term
multi-agent scenes [75]. Such absence is mostly due to the
lack of a proper dataset. The commonly used evaluation
datasets are CMU-Mocap [13], 3DPW [67], UMPM [64],
MuPoTS-3D [39], all of which contain 2 agents at most in
a given scene and have short prediction horizons within 3
seconds. Most recent research arbitrarily combines individ-
ual scenes to create datasets with more than three individu-
als [47, 69, 75]. However, such a synthetic approach does
not account for authentic agent interactions.

2.2. Trajectory prediction

Trajectory prediction involves predicting the future path of
an object given its past trajectory [3, 10, 25, 38, 40, 41,
51, 76, 77, 89, 90]. Unlike human pose forecasting which
aims to predict every joint position, trajectory prediction re-
gards each agent as a point mass, typically the center of
mass or center point of a detected bounding box. Research
in trajectory forecasting is interested in not only vehicles
but also many types of agents including humans, cyclists,
and so on [29, 43, 72, 84]. One substantial direction in
research within this field is the Goal-conditioned predic-
tion approach [18, 33, 82]. Goal-conditioned prediction ap-
proach first predicts the final destination within the predic-
tion horizon with multiple goal proposals [28, 70]. Then, a
thorough future path is conditioned on each mode of the
multi-modal proposals. Compared to directly predicting
full trajectories, the goal-conditioned approach follows a
coarse-to-fine prediction and is effective in learning highly
stochastic multi-modality of complex scenes [19, 42, 88].

2.3. Human pose estimation from image

Human pose estimation is the task of inferring the pose of a
person from an image or a video [22, 24, 26, 30, 57, 60, 78,
80, 81]. Initial deep learning-based methods first utilized
convolutional neural networks to estimate 2D and 3D poses
from single or multiple images [12, 14, 61, 79, 83]. Re-
cent approaches engage in more challenging tasks such as
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Figure 2. Illustration of our T2P framework. We decompose global motion into global trajectory and local pose. Multi-modal global
trajectory proposals are predicted from past global trajectory and local pose embeddings. Then, future local poses are conditioned and
forecasted on each trajectory proposal to compose the final human pose prediction. Predicted local poses are added to their mode-specific
global trajectories in a joint-wise manner, obtaining the global human poses as the final output.

estimating 3D poses from monocular videos [7, 46, 48, 50,
55, 56] using self-supervised learning and generative meth-
ods [15, 17]. Most recent methods estimate multi-person
poses in a crowded environment with considerable occlu-
sions [44, 87]. We account for the aforementioned need of
a complex dataset by extracting 3D pose from images us-
ing these methods. Specifically, we use a monocular 3D
pose estimation method BEV [59] to construct a 3D human
motion forecasting dataset with long-term multi-agent char-
acteristics from real-world image sequences. BEV robustly
estimates human pose in a scale-ambiguous and crowded
environment, reliably extracting 3D poses from the omnidi-
rectional image sequences of JRDB dataset [66].

3. Method

3.1. Problem definition

Multi-agent human pose forecasting aims to learn a map-
ping function between the observed 3D pose of NA agents

composed of J joints, X :
{

xn,jt

}NA,J

−Tp:0
, and future pose

Y : F×
{

xn,j
t

}NA,J

0:Tf

in global coordinates where F denotes

the number of modes. Here, Tp and Tf are history length
and prediction horizon while xn,jt = (xn,j

t , yn,jt , zn,jt ) is 3D
global coordinate of joint j of agent n at time t. While the
global position of joint is represented in x, we additionally
define local position p. The local position is defined in lo-
cal coordinate of each agent, calculated by subtracting the
global position of the hip joint of each agent. Therefore, lo-
cal position of joint is defined as pn,j = xn,j − xn,hip. We

define the trajectory of global hip joint position as global
trajectory, Tr :

{
xn,hip

}NA . We also define local pose as

local position of all joints, Po :
{

pn,j
}NA,J

. We denote
past and future timesteps of global trajectory and local mo-
tion as TrP , T rF ∈ Tr and PoP , PoF ∈ Po, where P and
F respectively denotes past and future.

3.2. Overall framework

We disentangle the overall human motion into global trajec-
tories and local poses, as depicted in top left of Fig. 2. Fol-
lowing a coarse-to-fine strategy, multiple global trajectories
are first forecasted to model the coarse modes of global in-
tentions. Based on these forecasts, local pose predictions
are conditioned on each mode to jointly constitute a thor-
ough motion. In doing so, our model is widely divided into
two portions: Trajectory predictor consists of trajectory en-
coder and decoder and pose predictor consists of pose en-
coder and decoder. Both predictors engage in the reciprocal
exchange of both trajectory and pose information, facilitat-
ing the inference of cues between global and local motion.
The detailed methods of each stage are described below:

3.3. Model structure

3.3.1 Pose encoder

Unlike the holistic approach of previous works that en-
code and decode all agents’ joint motions in global coor-
dinates, our pose encoder encodes the pose dynamics in lo-
cal coordinates. In addition, our pose encoder only con-
siders intra-agent joint interaction. As a result, the en-
coded pose embedding represents agent-specific local mo-
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tion, containing insights on global intent. We follow our
baseline [47] and construct the encoder with Multi-Person
Body-Part (MPBP) module and transformer networks. As
depicted in Fig. 2, body part sequences are constructed in
frequency domain, followed by intra-agent attention-based
encoding of the body parts to acquire pose embedding ZPo.

3.3.2 Trajectory module

Trajectory module aims to extract embeddings from the
agents’ past global trajectory. Using an encoder structure
from [88], multi-agent interaction-based trajectory embed-
ding ZTr is extracted which contains rudimentary insight
on global intent. Interaction between agent trajectories is
represented based on the reference agent i’s global trajec-
tory segment vector vi

t = xi,hip
t − xi,hip

t−1 . For rotational in-
variance, neighbor actor j’s vector is normalized by the ref-
erence vector’s orientation at latest timestep t=0. Separate
MLP layers then compute the reference agent and neighbor-
ing agent embeddings ztTri

, ztTrj
as follows:

ztTri = ϕref (R
T
i vit)

ztTrj = ϕnbr([R
T
i (v

j
t ), R

T
i (v

i
t)])

(1)

where ϕref and ϕnbr are different MLP blocks, Ri ∈ R3×3

is the rotation matrix of agent j against agent i, [·, ·] is
concatenation. The resulting agent-specific reference and
neighbor embeddings constitute trajectory embedding ztTr.

3.3.3 Traj-pose module

Human maneuver contains various dynamic activities char-
acterized by the agent’s multi-modal intents. Auxiliary hu-
man motion such as arm gesture, rotational orientation of
upper body and head implies the agent’s intent in global mo-
tion. In that sense, harvesting meaningful insights from past
local joint motion helps proficient modeling of coarse multi-
modality as future trajectory proposals. Therefore, we pro-
pose Traj-Pose Module that fuses agent-wise embeddings
of both trajectory and pose to fully utilize these information
in modeling global intentions.

First, MLP is used to match the temporal domain of pose
embedding ZPo to that of ZTr, after which both are con-
catenated as agent-wise traj-pose embedding Z.

Z = [ZTr, ϕMLP (ZPo)] (2)

The resulting Z is comprised of agent and timestep-
respective trajectory and pose embeddings: zti , z

t
j ∈ zt ∈ Z

Then, Z̃ is acquired from the graph attention with an agent-
wise update where each agent embedding zti and its neigh-
bor embedding ztj are used as query and key/value. Similar

to trajectory interaction encoder of HiVT [88], the graph
attention operation is operated as follows:

αt
i = softmax(

qt⊤i√
dk

· [{ktj}j∈Ni ]),

mt
i =

∑
j∈Ni

αt
iv

t
j ,

gti = sigmoid(W gate[zti ,m
t
i]),

z̃ti = gti ⊙W selfzti + (1− gti)⊙mt
i

(3)

where Ni is a set of agent i’s neighbors, W gate and W self

are learnable matrices, and ⊙ is element-wise product.

3.3.4 Trajectory decoder

Trajectory is forecasted from the output of trajectory en-
coder which encodes both past global trajectory and local
pose information. Since its graph operation is operated by
each timestep, a temporal encoder is used as a temporal en-
coder to integrate Z̃ in the temporal dimension. A multi-
head self-attention temporal encoder is used as the tem-
poral encoder. Aggregator then takes into account varia-
tions in local coordinate frames to accurately represent ge-
ometric relationships within the global coordinate system
via a graph operation. MLP is subsequently applied to
span embedding F times for multi-modal prediction, which
is residually added to the ×F repeated embedding before
the aggregator. Finally, another MLP is used to extract
multi-modal future global trajectory proposals of hip joint
TrF ∈ RF×Tf×3. The multi-modal embedding is also
passed onto the Pose Decoder to forecast local poses.

3.3.5 Pose decoder

Future human pose depends on past human poses and global
intention. The pose decoder is designed to consider these
factors while generating local poses via mode-specific tra-
jectory conditioning. A transformer (TRM) decoder is used
to decode local motions, where pose embedding ZPo is used
as key/value and concatenation of trajectory and pose query.

Q = ϕMLP ([QPo, QTr]),K = ZPo, V = ZPo (4)

Using both pose and trajectory queries, past pose embed-
ding ZPo is conditioned on both MPBP sequence at t=0
and the multi-modal trajectory proposals which contain
global intent. Subsequently, inverse discrete cosine trans-
form (idct) is applied to convert the future pose proposals
from frequency domain to local coordinate domain, PoF .
The final multi-modal future pose in global coordinates is
acquired as Eq. 5 where ⊕ is a joint-wise addition opera-
tion.

Y = TrF ⊕ PoF , Y ∈ RF×NA×Tf×3 (5)
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Table 1. Comparison of statistics between existing human pose
forecasting datasets and newly proposed JRDB-GMP dataset.

Dataset
CMU-Mocap

(UMPM)
MuPoTs

-3D 3DPW JRDB-GMP
1s/2s 2s/5s

Duration (s) 4000 267 1700 1863
Location # - 20 - 27
Sample # 13000 192 432 1153 4593
avg. agent 3 3 2 6.8 6.8

med. agent # 3 3 2 5 5
max agent # 3 3 2 24 22

avg. vel. (m/s) 0.3 0.26 0.57 0.46 0.38
avg. disp.(m) 0.63 0.55 1.13 0.64 0.79
max. disp.(m) 4.62 2.45 10.71 8.44 11.0

Figure 3. Example scenes from the JRDB-GMP dataset, illustrat-
ing its long-term, multi-agent nature.

3.4. Training objective

Both objectives of global trajectory and local pose forecast-
ing are trained jointly. For both global trajectory and lo-
cal pose prediction, L2 loss is propagated to the mode with
minimal L2 distance with the ground truth.

LTr =

NA∑
n=1

Tf∑
t=1

∥ỹtTr,n − ŷtTr,n∥

LPo =

NA∑
n=1

Tf∑
t=1

J−1∑
j=1

∥(ỹt,jPo,n − ŷt,jPo,n)∥

L = LTr + LPo

(6)

3.5. JRDB-GMP dataset

Due to the absence of existing long-term (3s+) multi-agent
(6+) dataset, we compose a unique 3D human pose forecast-
ing dataset in a real-world environment from JRDB [66].
The original JRDB dataset is constructed by a moving robot
that records human activity around a school campus using
5 omnidirectional cameras and LiDAR. Image sequences
along with 2D pose annotation and 3D bounding box anno-
tations are provided in the original dataset. However, since
3D human pose annotations are unavailable, we separately
parse accurate 3D human pose from provided inputs and

Figure 4. Various motions from the JRDB-MultiGlobPose dataset,
providing rich motion queues for inter-agent interaction inference.

annotations. First, a SOTA monocular 3D pose extraction
method [59] is used to extract raw 3D joint positions from
image sequences. Then, 2D pose and 3D bounding box an-
notations are used to refine the raw joint positions and min-
imize noise. We use 2D pose annotations to initially filter
out the 3D poses with noise. With camera parameters and
refined 3D pose, we project it on 2D image plane, then L2
distance between projected 2D pose and GT 2D pose anno-
tation is calculated. If the mean L2 distance per each agent
at a time stamp is over a threshold, that instance is filtered
out. 2D pose annotations are also projected in 3D space to
refine the remaining 3D poses, ensuring the accuracy of the
3D pose information of our JRDB-GMP dataset. Further
details are elaborated in the supplementary materials.

Figure 3 visualizes some scenes of the constructed
dataset. Accurate extraction of 3D poses has been made
even with considerable occlusion via the use of 2D poses.
The dataset includes agents with both long and short tra-
verse distances and rich inter-agent interactions in both tra-
jectory and local pose aspects. Figure 4 illustrates diverse
local poses included in the dataset, which serve as motion
cues of inter-agent interaction. Both figures confirm our
method’s accuracy in extracting 3D multi-human pose, even
in crowded environments. Table 1 scrutinizes the statistics
compared to previously used datasets. Compared to earlier
datasets, the average number of agents is more than twice
as high. In addition, comparing JRDB-GMP 1s/2s to CMU-
Mocap and MuPoTs datasets, JRDB contains more diverse
and longer motion as shown by a similar magnitude of av-
erage displacement but longer maximum displacement.
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Table 2. Quantitative comparison of our method to previous methods on CMU-mocap (UMPM), 3DPW, and JRDB-GlobMultiPose datasets
with number of prediction modes (F ) as 6. Lower is better for all metrics. The best results are marked in bold.

Dataset CMU-mocap
(UMPM) 3DPW JRDB-

GlobMultiPose
In/out length (s) 1/2 0.8/1.6 1/2 2/5

Evaluation time (s) 1 2 0.8 1.6 1 2 2.5 5

JPE

MRT [69] 164.7 280.1 159.1 251.2 259.3 349.3 438.4 474.0
JRT [74] 168.5 316.9 181.9 287.3 237.9 373.1 351.9 538.8
TBIFormer [47] 170.0 290.9 153.9 265.8 257.1 339.3 443.2 481.3
Ours 152.4 262.7 142.6 236.2 224.0 301.4 341.6 390.4

APE

MRT [69] 127.0 164.4 117.9 153.2 72.3 87.3 88.5 101.9
JRT [74] 121.2 181.6 133.4 178.0 112.6 154.3 96.7 120.2
TBIFormer [47] 125.1 160.8 115.4 152.7 70.6 83.3 88.2 102.9
Ours 114.4 151.7 114.6 150.0 70.8 83.3 82.2 94.7

FDE

MRT [69] 99.6 204.7 102.7 185.3 235.2 325.2 418.2 454.8
JRT [74] 117.7 250.8 133.7 235.4 211.4 337.4 318.5 497.2
TBIFormer [47] 112.1 228.5 106.7 215.9 232.4 314.6 423.9 458.8
Ours 88.7 188.9 74.1 158.2 194.7 271.5 313.9 361.0

4. Experiment

4.1. Dataset

We test our model on three datasets: CMU-Mocap
(UMPM) [13, 64], 3DPW [67], and our JRDB-GMP. Al-
though our model is designed to forecast human poses in a
long-term multi-agent environment, we also report experi-
mental results on previous benchmark datasets with simpler
scenes. Mocap-UMPM is a mixed dataset of Mocap and
UMPM containing synthesized human interaction between
three agents [47]. 3DPW is a dataset with 2 agents travers-
ing a real-world environment. We report the test results on
each after separate training on respective datasets.

4.2. Metrics

We use the following widely-used metrics. For a detailed
definition, please refer to the supplementary material.
APE: Aligned mean per joint Position Error is used as a
metric to evaluate the forecasted local motion. L2 distance
of each joint in the hip joint coordinate is averaged over all
joints for a given timestep.
FDE: Final Distance Error evaluates the forecasted global
trajectory by calculating the L2 distance of a given timestep.
JPE: Joint Precision Error evaluates both global and local
predictions by mean L2 distance of all joints for a timestep.

4.3. Implementation details

We train our model on a single A6000 GPU. 2 layers of
pose encoder transformer are stacked, followed by 2 layers
of transformer in pose decoder. Embedding dimensions of
96 and 128 are used for trajectory and pose embeddings,
respectively. The transformed key, value dimension of 64
is used for all transformer architectures. A learning rate of
0.003 is used with an AdamW optimizer with weight decay.
Further details can be found in the supplementary materials.

Table 3. Short-term prediction results on CMU-Mocap (UMPM)
dataset, where 1s of poses are forecasted given 2s of poses.

Metric JPE APE FDE
Time (s) 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

MRT 64.5 152 217 49.8 110 140 39.4 97.9 153
JRT 31.5 104 173 28.7 85.9 125 17.7 63.9 120
TBIFormer 37.4 104 158 32.8 85.8 119 23.3 63.7 104
Ours 37.8 102 158 33.8 84.4 116 14.9 49.1 92.6

4.4. Baselines

We compare our method against the latest SOTA methods
for multi-agent pose forecasting [47, 69, 74]. To com-
pare the multi-modal predictions of these three methods,
we extend their prediction modes by spanning embedding
K times in the same manner as ours. All baselines are
trained and evaluated on CMU-mocap (UMPM) and 3DPW
datasets. CMU-Mocap (UMPM) dataset predicts 2 seconds
from 1 second of poses, and 3DPW predicts 1.6 seconds
from 0.8 seconds of poses, both from 6 modes. For 3DPW
dataset, we slightly lengthen the forecast horizon to eval-
uate long term predictions. For JRDB-GMP dataset, both
short (1s/2s) and long term (2s/5s) predictions are evaluated
for all models. Lastly, We use HiVT [88] as the baseline
For global trajectory prediction of our model.

5. Results
5.1. Quantitative results

Table 2 compares the quantitative performances on three
datasets. Our method exhibits considerable performance
gain against all previous SOTA methods, not only on the
proposed long-term multi-agent dataset but also on the ex-
isting two datasets. Such generalized competence demon-
strates the applicability of our trajectory-conditioned pose
forecasting method to various real-world scenarios. In de-
tail, our approach achieves over 10% gain of FDE on all
datasets. This improvement on forecasting global locomo-
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Figure 5. Visualization of a long-term forecasting scene from JRDB-GMP (2/5) dataset. Past poses for input are shown on the leftmost
column, GT future poses on the next, and forecasts by ours, MRT, TBIFormer, and JRT, respectively.

Figure 6. Visualization of a CMU-Mocap (UMPM) scene. Past
poses are shown on the upper row, GT future poses on the next,
and forecasts by TBIFormer and ours on the latter two rows. To
visualize motion, we stack several frames around the target time
stamp. Black/red/blue arrows refer to the direction of the global
trajectory, and yellow arrows refer to the direction of foot motion.

tion could be accredited to the decoupled forecasting of
global trajectory and local pose. Previous methods holis-
tically predict both global and local movements, limiting
both performances due to superfluous interactions to con-
sider between all joints. Conversely, our approach can ex-
tract accurate global intent by decoupling past motion into
global and local representations. Moreover, our effective
interaction modeling of global and local pose also helps to
predict a more accurate global trajectory under multi-agent
environment as shown in the latter ablation study.

For APE metric, our method also surpasses previous
SOTA models on all datasets, highlighting the accurate ex-
traction of local pose intent. Such improvement shows that
our approach generates plausible local motion due to its pro-
ficient sampling from coarse global intents. Our method
simplifies the task by learning multi-modality in a coarse-
to-fine approach. Its subsequent local motion forecasting
is inferred from coarsely modeled multi-modality, a greatly
simplified task compared to extracting intent from entan-
gled multi-modality as well as multi-agent interaction.

These improvements on both global and local scales

jointly contribute toward lowering the JPE metric, demon-
strating proficiency of our method in forecasting overall hu-
man motion. Based on such competence, our method which
aimed towards improving on forecasting long-term multi-
agent environments also exhibits similar or better perfor-
mances on short timeframes as shown in Tab. 3. In addi-
tion, our approach also excels even on sole local motion
with minimal global displacement, as elaborated in section
7.2 of supplementary materials.

5.2. Qualitative results

Our method forecasts a more plausible global pose in longer
timescales (∼5s) as shown in the interacting scene of five
agents in Fig. 5. Looking at the input and GT sequences,
the leftmost person avoids the traversing couple from right
to left. The two people in front are stationary while talking
to each other. MRT and TBIFormer forecasts implausible
overlapped poses at the final prediction horizon (t=5s). JRT
fails to learn the global locomotion of agents due to the high
complexity of its attention mechanism and is stuck in the
local minimum of predicting the inactivity of all agents. On
the other hand, our model forecasts plausible poses where
the closely interacting two agents walk side-by-side.

Figure 6 illustrates exemplary sequences where more
natural local motion has been forecasted by our method.
Comparing forecasts on a scene of walking agents, our
method generates a much more plausible sequence where
the stepping foot remains stationary. On the other hand,
the previous SOTA method, TBIFormer, struggles to learn
the natural walking mechanism of human legs and a paral-
lel translation of both feet is exhibited. Such discrepancy
shows that trajectory-conditioning for inferring local mo-
tion from global intent generates more proficient details in
human motion than SOTA methods. More visualizations
could be found in the supplementary materials.

5.3. Ablation studies

Different number of modes. The main quantitative results
report prediction results with F as 6 to compare the ability
to address the multi-modal nature of human motion during
pose forecasting. Table. 4 additionally compares forecast
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Table 4. Comparsion of performance with different number of
modes in CMU-Mocap (UMPM) dataset.

F 1 6
Metric @ 2s APE JPE APE JPE
MRT 163.9 366.4 164.4 280.1
JRT 176.7 367.4 181.6 316.9
TBIFormer 160.1 374.3 160.8 290.9
Ours 154.4 366.4 151.7 262.7

Table 5. Ablation studies on core components of model structures.
Experiments are done with JRDB-GMP dataset to evaluate multi-
agent long-term performance.

Exp.
#

Trajectory encoder Pose decoder Metrics
Local pose
embedding

Agent
interaction

Trajectory
-conditioning

JPE
@5s

APE
@5s

FDE
@5s

- 471.4 101.7 457.9
1 ✓ 400.5 95.1 370.9
2 ✓ 403.3 94.7 374.2
3 ✓ 401.2 93.0 372.8
4 ✓ ✓ 395.6 93.8 366.8
5 ✓ ✓ 392.7 95.2 363.4
6 ✓ ✓ ✓ 391.2 91.4 363.3

results with F as 1. Our method again achieves notice-
able improvement in APE over the baseline on single-modal
forecasts. With F = 1, although our method barely en-
joys improvement in forecasting global motion due to the
absence of multi-modality, its superiority in APE shows
the validity of our coarse-to-fine forecasting strategy that
also effectively captures agent interaction. Our method
improves with multi-modal predictions, demonstrating the
proficiency of a coarse-to-fine approach in interpreting the
stochastic nature of human motion and its intent. Note that
our method improves in APE along with an increase in F
unlike previous methods, indicating a unique aptitude in ad-
dressing the multi-modal nature of not only global locomo-
tion but also local pose intent via trajectory-conditioning.
Importance of each architecture component. Table. 5 re-
ports the influence of core components of our model. For
the trajectory encoder, we evaluate the importance of us-
ing local pose embedding and modeling agent interaction.
Comparing experiments 1, 5 and 3, 4, both show improve-
ments in JPE and FDE metrics with the use of local pose
embedding. Our method has taken advantage of detailed
local pose cues to infer an agent’s global intention. For in-
teraction modeling, its use is beneficial for both global and
local forecasts as compared by experiments 4 and 6. These
joint improvements demonstrate the importance of consid-
ering local and global motion interactions for their respec-
tive forecasts. As for the pose decoder, comparisons of ex-
periments 2,4 and 5,6 both show improvements in APE met-
ric. Such consistent improvement verifies the effectiveness
of the trajectory-conditioned local motion forecast approach
in generating plausible local motion from global intention.
Importance of interaction modeling. Accurate model-

Table 6. Ablation studies on agent interaction cutoff distance on
JRDB-GMP.

JPE @ 5s
TBIFormer Ours

w/o interaction 483.8 406.0
w/ interaction < 2m - 403.5
w/ interaction < 4m - 400.5
w/ interaction all 481.3 390.4

ing of inter-agent interaction becomes more pivotal to fore-
cast in more complex environments. Indeed, its complex-
ity grows in a long-term multi-agent scene. When holis-
tically considering joint-wise interaction for all timesteps,
the computation complexity is acquired as O(T 2 ·N2 ·J2),
where T is the number of timesteps, N the number of
agents, and J the number of joints. On the contrary, with
interaction modeling in global trajectory scale, our method
reduces the computation cost by TJ2 into O(T ·N2). This
enables efficient and proficient modeling of intra (pose)
and inter (trajectory)-agent interactions as shown by Tab. 6.
While body part-wise interaction modeling only improved
by 0.52% for TBIFormer, ours improves up to 3.84% with
interaction modeling. This demonstrates the proficiency of
our efficient interaction modeling-based method in infer-
ring global and local intents from complex interactions. In
addition, the gradual improvement of JPE according to a
wider interaction range confirms the importance of interac-
tion modeling of more agents, which cannot be learned from
the arbitrarily mixed previous datasets.

6. Conclusion
In this work, we propose a novel interaction-aware
trajectory-conditioned approach to handle long-term multi-
agent motion forecasting, along with a new dataset suited
for such scope. Our proposed model utilizes a coarse-to-
fine approach and decouples overall motion prediction into
global and local components. Multi-modality of human
motion is proficiently modeled via inferring fine local
intents from coarse global intents, along with efficient
agent-wise interaction modeling. As for the dataset, our
JRDB-GMP dataset contains unprecedented long-term
(5s+) multi-agent (6+) interactions in a real-world setting.
Our method achieves state-of-the-art performance on all
previous datasets and JRDB-GMP dataset, offering gener-
alized practical implications in real-world applications.
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