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Abstract
The scarcity of ground-truth labels poses one major

challenge in developing optical flow estimation models that
are both generalizable and robust. While current methods
rely on data augmentation, they have yet to fully exploit
the rich information available in labeled video sequences.
We propose OCAI, a method that supports robust frame in-
terpolation by generating intermediate video frames along-
side optical flows in between. Utilizing a forward warp-
ing approach, OCAI employs occlusion awareness to re-
solve ambiguities in pixel values and fills in missing val-
ues by leveraging the forward-backward consistency of op-
tical flows. Additionally, we introduce a teacher-student
style semi-supervised learning method on top of the inter-
polated frames. Using a pair of unlabeled frames and the
teacher model’s predicted optical flow, we generate inter-
polated frames and flows to train a student model. The
teacher’s weights are maintained using Exponential Mov-
ing Averaging of the student. Our evaluations demonstrate
perceptually superior interpolation quality and enhanced
optical flow accuracy on established benchmarks such as
Sintel and KITTI.

1. Introduction
Optical flow estimation and Video Frame Interpolation
(VFI) share a complementary relationship. Accurate optical
flow contributes significantly to various downstream tasks
such as video compression [26, 44], video denoising and
blur removal [3, 46, 49], action recognition [5, 22], and VFI
stands as one of these applications. Pixel-level correspon-
dence by optical flow enables estimating pixel-level move-
ment and generating intermediate frames (or inter-frames).
While utilizing flow-based methods is a common practice in
VFI [12, 20, 23, 27], leveraging inter-frames to train optical
flow models is relatively less explored.

While the scarcity of ground-truth data has long been
a critical challenge in learning-based optical flow estima-
tion [8, 11, 13, 34, 38, 41], there has been little attention
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Figure 1. Top: Many existing data augmentation approaches fo-
cus on modifying the existing frames [18, 24, 41]. Middle: While
RealFlow [10] employs optical flow model to generate new frames
and iteratively update the model with generated frames, it requires
compute expensive steps of depth estimation and EM optimiza-
tion. Bottom: Our proposed OCAI allows flexible, robust video
interpolation at any intermediate time step, and leverages inter-
polated frames and flows to efficiently train the model in a semi-
supervised setting, significantly improving optical flow estimation.

into leveraging Video Frame Interpolation (VFI) to aug-
ment the training of optical flow networks. State-of-the-art
VFI models predominantly employ deep networks trained
to interpolate the exact middle frame between two consec-
utive time steps within a video sequence, which restricts
their capability to generate frames at other intermediate
time instances thus hampering their ability to produce opti-
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cal flows between existing and intermediate frames reliably.
Besides, these models lack generalizability across new do-
mains without necessitating finetuning or retraining. These
limitations hinder the potential use of existing VFI models
for augmenting the training data for optical flow models.

To address data scarcity in optical flow training: data
augmentation [18, 39], data generation [8, 10, 39], and
semi-supervised learning [10, 14, 17, 18] have been ex-
plored. Most of the current data augmentation methods
prioritize modifying the existing frames, e.g., [18], as il-
lustrated in Fig. 1 (top). Notably, RealFlow[10] stands out
by synthesizing a new second frame via forward warping.
Given a pair of frames and the model’s prediction, the orig-
inal first and second frames form a new training pair, used
to update model weights. Model prediction, frame syn-
thesis, and model update are iterated in an Expectation-
Maximization (EM) framework, as depicted in Fig. 1 (mid-
dle). While it is possible to use forward warping to interpo-
late frames, RealFlow focuses only on making the model’s
prediction consistent with frame synthesis. Moreover, the
EM steps significantly increase the training workload.

In this paper, we introduce OCAI, a novel approach
for training optical flow networks within a semi-supervised
framework using readily available unlabeled pairs. Our
method leverages video frames and flow interpolation to
achieve this goal. OCAI implements an occlusion-aware
forward warping technique, facilitating the interpolation of
both inter-frames and intermediate flows, and can effec-
tively tackle pixel value ambiguities during the warping
process without needing any depth information and can
do confidence-aware estimation of missing values utilizing
forward-backward consistency. Our algorithm can perform
interpolation at any intermediate time step, thus offering a
broad diversity of data and motion ranges essential for train-
ing optical flow models. Our innovative teacher-student
style semi-supervised learning scheme utilizes these result-
ing inter-frames to train optical flow networks effectively.

In summary, our main contributions are as follows:
• We propose a novel approach, OCAI, that tackles the

data scarcity challenge in training optical flow mod-
els, by exploiting useful, hidden information in existing
videos. Specifically, we interpolating frames and flows
to generate supplementary data, and use them in a semi-
supervised learning framework.

• To do this, we propose a new, effective video interpo-
lation method that derives occlusion information to ad-
dress ambiguous pixels and fill in holes by exploiting op-
tical flow consistency. Our algorithm flexibly generates
high-quality intermediate frames and reliable intermedi-
ate flows along with corresponding confidence maps at
any intermediate time step.

• We devise a new teacher-student semi-supervised learn-
ing strategy leveraging VFI to train an optical flow

network, incorporating exponential moving averaging
(EMA) to enhance training stability.

• We demonstrate that OCAI achieves higher quality in
video interpolation than existing SOTA methods on stan-
dard datasets including Sintel and KITTI. By incorporat-
ing interpolated video information, our semi-supervised
learning scheme significantly improves the optical flow
estimation performance, e.g., 0.5+ Fl-all reduction on
KITTI test set when comparing to latest SOTA.

2. Related Work and Preliminaries
Consider two consecutive video frames, I0 and I1. We de-
note the optical flow from I0 to I1 as V0→1 and the inter-
frame as It, where t ∈ (0, 1). We use ωb and ωf to
denote backward and forward warping operations, respec-
tively. For instance, backward warped image Îb0 can be ob-
tained by ωb(I1, V0→1) and forward warped image Îf1 can
be computed by ωf (I0, V0→1).

2.1. Video Frame Interpolation
Video Frame Interpolation (VFI) algorithms can be divided
into three categories: flow-based [1, 2, 20, 23], kernel-
based [6, 32] and hallucination-based [7, 35] approaches.
Among these, flow-based methods have shown SOTA per-
formance [20, 23]. These methods predict optical flows, and
apply forward or backward warping using existing frames
and the flows. The warped images are fused with residual
information computed by the deep learning network.
Backward-warping-based VFI: The VFI network com-
putes two optical flows, Vt→0 and Vt→1, a weighting mask
(M), and the residual (R) using the two frames, I0 and I1,
where t is an intermediate time step. It applies backward
warping to I0 and I1, combines them using the mask, and
finally, adds the residual information, as follows:

Ît=M · ωb(I0, Vt→0) + (1−M) · ωb(I1, Vt→1) +R, (1)

where Ît is the interpolated frame. This approach requires
predicting Vt→0 and Vt→1 without It, which is challenging
when there are large displacements.
Forward-warping-based VFI: Softmax Splatting [31] is
introduced for forward warping. It predicts two optical
flows, V0→1 and V1→0, between I0 and I1, and assumes that
V0→t = t · V0→1 and V1→t = (1 − t) · V1→0. It generates
It with the following steps:

Let u = p− (q + V0→t),

b(u) = max(0, 1− |ux|) · max(0, 1− |uy|).
(2)

Then, Ît(p) =
Σqexp(Z0(q)) · I0(q) · b(u)

Σqexp(Z0(q)) · b(u)
, (3)

where p is target grid index, q is source grid index, V0→t is
the optical flow between I0 and It, ux and uy are x and y
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Figure 2. Our proposed video interpolation algorithm using occlusion and consistency-aware forward warping.

components of u, b(u) indicates the mapping between pix-
els in I0 and It, i.e., b(u)=1 if p and q map to each other.

Softmax Splatting uses a learnable weighting Z and Re-
alistic Image Pair Rendering (RIPR) in RealFlow [10] uses
the inverse depth map of I0 from a monocular depth esti-
mation model. In forward warping, there can be pixel am-
biguities, i.e., two source pixels can be mapped to the same
target pixel location. In RIPR of RealFlow, as the weight-
ing is based on depth, source pixels closer to the camera are
chosen to resolve ambiguities. However, this requires ad-
ditional computation, e.g., RIPR uses a depth network with
>300M parameters, and is susceptible to depth estimation
errors. In addition, RIPR introduced the Bi-directional Hole
Filling which fills in the holes in wf (I0, V0→t) image using
wf (I1, V1→t) values. In OCAI, we introduce an occlusion-
aware forward-warping algorithm that can generate accu-
rate inter-frame without depth estimation.

2.2. Semi-Supervised Optical Flow Model Training
RAFT-OCTC [17] introduces transformation consis-
tency [21, 40] to regressing optical flows. FlowSupervi-
sor [14] proposes a new teacher network that can be trained
stably. It uses the same encoder weights for both teacher
and student, and computes the loss over all the pixels
without using confidence masking. DistractFlow [18]
introduces semantic augmentation which is inspired by In-
terpolation Regularization [16, 42, 48] and FixMatch [36].
In particular, DistractFlow proposes to use a confidence
map derived from forward-backward consistency [29],
which improves the stability of semi-supervised training.
The confidence map is computed as follows:

C0,1=exp

(
− |V̂0→1(x)+V̂1→0(x+V̂0→1(x))|2

γ1(|V̂0→1|2+|V̂1→0(x+V̂0→1)|2)+γ2

)
,

(4)
where γ1 = 0.01 and γ2 = 0.5 from [29].

RealFlow [10] uses Expectation-Maximization (EM) to
train an optical flow model in a semi-supervised setting.
It first trains the model using supervision from existing
ground-truth data. Then, it synthesizes new data based on
the predicted optical flows and forward warping. After that,
it trains the network with the new data. RealFlow repeats

the these steps several times in the training process, which
is computationally expensive.

Many semi-supervised learning algorithms [25, 40] for
other tasks, such as classification and object detection, em-
ploy Exponential Moving Average (EMA) to robustly and
stably update the teacher network, using a temporal en-
semble of the student network. In this paper, we lever-
age video interpolation and several semi-supervised train-
ing techniques to enhance model performance.

3. Proposed Approach
OCAI improves the accuracy of optical flow models by gen-
erating diverse, high-quality intermediate frames and flows,
and trains the network with new pairs in a semi-supervised
learning framework. In Section 3.1, we present our oc-
clusion and consistency aware forward warping algorithm
for video interpolation. Next, in Section 3.2, we propose a
semi-supervised learning strategy to leverage video interpo-
lation to better train optical flow networks.

3.1. Occlusion and Consistency Aware Interpola-
tion Using Forward Warping (OCAI)

Our goal is to generate an accurate estimation of the in-
termediate frame It by using I0, I1, V0→1, and V1→0. In
order to do this, we first need to estimate Vt→0 and Vt→1,
based on which we can perform backward warping from
I0 and I1 and fuse the warped images, ωb(I0, V̂t→0) and
ωb(I1, V̂t→1), to generate the estimated inter-frame, Ît. In
addition to generating It, we compute two intermediate op-
tical flows, Vt→0 and Vt→1. This has several advantages.
First, Vt→0 and Vt→1 can be used in optical flow training.
Specifically, these optical flows enable computing a confi-
dence map via forward-backward consistency, which is im-
portant to self-/semi-supervised training. Second, using the
confidence map allows us to more accurately fuse warped
versions of I0 and I1 to produce Ît. Previous approach [10]
generates Ît from I0 and fills hole using content generated
from I1; however, there are discrepancies since pixels have
moved between I0 and I1. Finally, our method can gener-
ate better background. For instance, RealFlow has missing
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Figure 3. Visual illustration of deriving occlusion-aware weighting
mask M0. The top part shows backward warping with a moving
object and static background. Ghosting effect happens since the
background is occluded in I1. The bottom part illustrates how
we derive the foreground mask on I0, by performing backward
warping and removing the ghosting effect. The foreground mask
is used in the forward warping when synthesizing V̂t→1.

values near image boundaries whereas we do not have this
issue (see last two rows in Fig. 5).

Next, we present our OCAI in detail.
Generating Inter-Frame via Forward Warping

First, we decompose V0→1 into V0→t and Vt→1:

V0→1(x) = V0→t(x) + Vt→1(x+ V0→t(x)). (5)

Assuming linear projected motion, V0→t can be properly
approximated by t · V0→1 and we have

V0→1(x) = t · V0→1(x) + Vt→1(x+ t · V0→1(x)),
(6)

Vt→1(x+ t · V0→1(x)) = (1− t) · V0→1(x). (7)

We see that by performing forward warping on (1 −
t) · V0→1(x) with optical flow t · V0→1(x), we can obtain
Vt→1(x), that is

Vt→1(x) = ωf ((1− t) · V0→1(x), t · V0→1(x)). (8)

Similarly, we can compute Vt→0(x) based on decompos-
ing V1→0 and forward warping.

By using Vt→0 and Vt→1, we can generate two ver-
sions of the intermediate frame It: wb(I0, Vt→0) and
wb(I0, Vt→1), by backward warping. We can then use con-
fidence maps, Ct,0 and Ct,1, to fuse them to estimate the
inter-frame as follows:

Ît =
Ct, 0

Ct, 0 + Ct, 1
wb(I0, Vt→0) +

Ct, 1

Ct, 0 + Ct, 1
wb(I1, Vt→1),

(9)

where the confidence maps are calculated based on Eq. 4.
For instance, Ct, 0 is computed using Vt→0 and V0→t.

In order to correctly perform forward warping, we need
to resolve two issues: pixel value ambiguity and missing
pixel values. Ambiguity is due to two pixels in the source
frame moving to the same location in the target frame, in
which case we need to understand which is closer to the
camera and thus, should be chosen. Missing values is be-
cause a pixel location in the target frame can correspond to
an object that is occluded in the source frame (and the oc-
cluding object moves away in target frame), where there are
no pixels representing this occluded object. This can also be
caused by an object moving closer to the camera and there
are not enough pixels in the source frame to represent the
object in the target frame.

We propose occlusion-aware weighting to resolve pixel
value ambiguity and choose the pixel that corresponds to
what is closer to the camera. We further introduce a hole-
filling method based on the forward-backward consistency
of optical flow. Fig. 2 provides an overview of our proposed
forward warping approach.

Occlusion-Aware Weighting to Resolve Ambiguity
We resolve pixel value ambiguity via occlusion under-

standing. Specifically, we assume that when a pixel is not
occluded but creates occlusion for other pixels, it corre-
sponds to an object closer to the camera.

More specifically, we derive an occlusion-aware weight-
ing mask to be used in warping. First, we obtain oc-
clusion map O0,1 via forward-backward consistency [29],
which indicates occlusion region on I0; see how to compute
forward-backward consistency in Eq. 1 of [29]. Next, we
apply backward warping to O0,1 using V0→1 and by further
applying the non-occlusion mask 1−O0,1, we can infer the
pixels in I0 that produce occlusion, i.e., foreground pixels,
and accordingly generate the mask to select these pixels.
More specifically, the occlusion-aware weighting mask is
computed as follows:

M0 = α · (1−O0,1) · ωb(O0,1, V0→1), (10)

where α is a coefficient controlling the weighting.
Fig. 3 provides a visual example. Assume that the disk

moves to the right from I0 to I1 and the background is static.
As indicated by O0,1, the disk is not occluded and creates an
occlusion blocking the background, i.e., it is the foreground.
Due to this occlusion, when performing backward warping
on I1 or O0,1 using V0→1, we not only move the disk back
to its original location at t = 0, but also create a duplicate
at its current location since V0→1 is zero for the background
(known as the ghosting effect [51]). By applying the non-
occlusion mask, we can remove the ghosting effect and re-
cover the disk’s original location; in other words, we obtain
the weighting mask for selecting foreground pixels.

19355



Figure 4. Self-supervision using interpolated video frames and flows in a teacher-student learning setting. Note that the student model is
trained with both the self-supervision shown in the figure and the supervision from available ground-truth data.

We replace the depth-based masking in Eq. 3 with our
occlusion-aware weighting mask M0 and apply forward
warping in Eq. 8, which gives

V̂t→1(p) =
Σqexp(M0(q)) · (1− t) · V0→1 · b(u)

Σqexp(M0(q)) · b(u)
, (11)

where q, p, and b(u) are from Eq. 2. Vt→0 can be computed
in a similar way.
Hole Filling Using Optical Flow Consistency

Assuming linear motion, the directions in the optical
flows Vt→0 and Vt→1 should be exactly opposite, and the
magnitude ratio of the two flows should be t : (1 − t).
Based on this assumption, we fill in the missing values in
the synthesized optical flow maps as follows:

Vt→0(p) = − t

1− t
Vt→1(p), if Σqb(u) = 0, (12)

where Σqb(u) = 0 indicates that no source pixels are as-
signed to the target location, thus creating a hole.

Now that we can resolve the ambiguities and missing
values in forward warping, we can use our computed V̂t→0

and V̂t→1, along with the confidence maps, to perform back-
ward warping and fusion to produce the inter-frame, based
on Eq. 9.

3.2. Teacher-Student Semi-Supervised Learning
The generated intermediate video frames and optical flows
create an opportunity to significantly augment the training
of optical flow models. We propose a new semi-supervised
training strategy to leverage the new image pairs and flows.

More specifically, we adopt a teacher-student training
approach. The teacher network consumes an original pair
of video frames and predicts the forward and backward op-
tical flows. By using our proposed video interpolation algo-
rithm, we can generate an inter-frame It as well as the cor-
responding inter-flows V0→t and Vt→0, for any intermediate
time step. We randomly sample t ∈ [0, 1] to expand motion

diversity in training data. We use (I0, It) to form a new
training pair. The generated intermediate optical flows not
only supply the supervision signal for the new pair, but also
allows us to compute a confidence mask to make training
more stable, i.e., we only train the network with the reliable
optical flows. We train the student model with these new
pairs derived from interpolation as well as with the available
pseudo ground-truth data. Inspired by Mean Teacher [40],
we employ the Exponential Moving Average (EMA) update
method to update the teacher model with a temporal ensem-
ble of the student model.

In addition, as inspired by Smurf [37], RealFlow [10],
and DistractFlow [18], we further impose semantic distrac-
tion to I0 to generate an augmented version Dλ(I0, Ĩd) (see
DistractFlow for details of the frame distraction operation),
and crop It and Dλ(I0, Ĩd)). Our self-supervision loss is
given as follows for each new pair:
Lself = [Ct, 0 ≥ τ ]∥fstudent(It, Dλ(I0, Ĩd))− V̂t→0∥1,

(13)
where fstudent(It, Dλ(I0, Ĩd)) denotes the optical flow pre-
diction on frame pair It and Dλ(I0, Ĩd)) by the student net-
work, Ct,0 is the confidence map derived from V̂t→0 and
V̂0→t based on Eq. 4, and τ is a threshold.

Combining this with the supervision from available
ground-truth data, the total training loss for the student net-
work is given by

Ltotal = Lsup + w · Lself, (14)
where w is a weighting coefficient.

4. Experiment
We evaluate our proposed OCAI method for video inter-
polation and for semi-supervised optical flow training on
benchmark datasets, and compare OCAI with baselines and
latest state-of-the-art (SOTA) methods.

1Note that PSNR and SSIM do not always correlate well with perceived
visual quality, as shown in previous studies [33, 50]. For instance, in Fig. 5,
VFIFormer has higher SSIM scores but worse visual quality.
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Table 1. Video Frame Interpolation (VFI) results on Sintel (Clean), KITTI datasets. There are five state of the art backward warping based
VFI algorithms (First to fifth rows), two forward warping based VFI algorithms (sixth to seventh) and ours (bottom). Algorithms of first to
sixth rows trained their model on Vimeo dataset using pre-trained optical flow model, and two algorithms of seventh and eighth use RAFT
trained on FlyingChairs and FlyingThings3D. A/V denotes AlexNet/VGG used in LPIPS. Bold/Underline: Best and second best results.

Method Sintel (12FPS → 24 FPS) Sintel (6FPS → 12 FPS) KITTI (5FPS → 10 FPS) Param
PSNR / SSIM ↑ LPIPS (A) / (V) ↓ PSNR / SSIM ↑ LPIPS (A) / (V) ↓ PSNR / SSIM ↑ LPIPS (A) / (V) ↓ (M)

IFRNet-B [20] (CVPR 2022) 30.06 / 0.901 0.093 / 0.128 25.87 / 0.837 0.154 / 0.195 21.64 / 0.760 0.140 / 0.217 5.0
VFIFormer [27] (CVPR 2022) 30.37 / 0.909 0.088 / 0.115 26.22 / 0.849 0.154 / 0.184 22.53 / 0.787 0.149 / 0.227 24.1
RIFE [12] (ECCV 2022) 30.04 / 0.899 0.103 / 0.135 25.79 / 0.835 0.169 / 0.206 21.50 / 0.752 0.158 / 0.235 9.8
EMA-VFI [47] (CVPR 2023) 30.51 / 0.906 0.101 / 0.128 26.29 / 0.844 0.165 / 0.196 22.00 / 0.767 0.177 / 0.253 66.0
AMT-L [23] (CVPR 2023) 30.30 / 0.905 0.087 / 0.119 26.19 / 0.843 0.149 / 0.186 21.97 / 0.773 0.151 / 0.224 12.9
SoftSplat [31] (CVPR 2020) 30.42 / 0.907 0.090 / 0.118 26.23 / 0.846 0.153 / 0.186 21.95 / 0.776 0.169 / 0.244 12.2
RIPR [10] (ECCV 2022) 28.26 / 0.894 0.084 / 0.120 24.91 / 0.826 0.135 / 0.181 21.18 / 0.733 0.112 / 0.195 349.5
OCAI (ours) 29.47 / 0.904 0.078 / 0.117 25.88 / 0.838 0.129 / 0.178 22.08 / 0.758 0.112 / 0.190 5.3

Figure 5. Video Frame Interpolation (VFI) results on KITTI. First
row is the ground truth. Second to fifth rows are outputs of SOTA
VFI models [20, 23, 27, 47]. Sixth row is the output of using
RealFlow [10] for VFI. Bottom row shows our OCAI results. For
each interpolated frame, we show the PSNR, SSIM, and LPIPS
(using AlexNet and VGG) scores. Best scores are shown in red.1

4.1. Experimental Setup

Video Frame Interpolation (VFI): We compare with lat-
est SOTA VFI algorithms [12, 20, 23, 27, 47]. We use their
official codes and weights trained on Vimeo90k [45]. In ad-
dition, we compare with RIPR of RealFlow [10] as our for-
ward warping baseline. We use their official code to gen-
erate inter-frames and RAFT [41] trained on FlyingChair
(C) [8] and FlyingThings3D (T) [28] as the optical flow

model. In OCAI, we use the same optical flow network,
i.e., RAFT trained on C+T, for fair comparison. For eval-
uation, we use Sintel (S) [4] and KITTI (K) [9, 30], which
are standard optical flow datasets.2 More specifically, each
test sample consists of three consecutive frames, with the
first and third used as existing frames, and the second as the
interpolation target. We use common image similarity met-
rics to evaluate VFI quality, including PSNR, SSIM [43],
and LPIPS (using AlexNet and VGG) [50]. More details
can be found in the supplementary file.
Semi-Supervised Optical Flow (SSOF): We use RAFT
as the network architecture, following previous semi-
supervised optical flow model training settings [10, 14, 18].
When evaluating on Sintel (train) and SlowFlow [15], we
first pretrain the network on C+T and then, use FlyingTh-
ings3D (T) as the labeled dataset and Sintel (S) as unlabeled
dataset. For KITTI (train) evaluation, we use FlyingTh-
ings3D as the labeled dataset and KITTI (multiview) test
as the unlabeled dataset, with initialization from C+T pre-
trained weight. For Sintel and KITTI (test) evaluations, we
use the same labeled datasets (i.e., C+T+S+K+HD1K [19])
following the original RAFT supervised training setting,
and use Sintel training ((It, It+2) pairs), Monkaa [28], and
KITTI (multiview) training dataset as unlabeled data. Note
that Sintel and KITTI test sets are not used as unlabeled data
for training in these test evaluations.

4.2. Video Frame Interpolation
Table 1 and Fig. 5 show the performance of SOTA VFI
methods, RIPR of RealFlow, and our method on Sintel
(clean) and KITTI. We achieve the best LPIPS scores and
PSNR/SSIM scores on-par with existing SOTA solutions;
note that PSNR and SSIM do not always correctly reflect
visual quality [33]. Since SOTA methods use backward
warping and predict intermediate two optical flows (Vt→0

and Vt→1) without the inter-frame It, they do not work well
when there are large displacements, which results in blurri-
ness (see cars in Fig 5). In contrast, forward warping meth-
ods (RIPR of RealFlow and ours) can predict accurate V0→1

2The frames per second (FPS) numbers of Sintel and KITTI are 24 and
12, respectively.
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Table 2. Optical flow results on SlowFlow, Sintel (train), and KITTI (train) datasets. We train the model on FlyingChairs (C) and
FlyingThings3D (T) as labeled data, and Sintel and KITTI multiview (S/K) as unlabeled data. BD in SlowFlow represents Blur Duration.
Bold/Underline: Best and second best results.

Method Labeled Unlabeled SlowFlow (100px) Sintel (train) KITTI (train)
data data (3BD/epe) (5BD/epe) (Clean-epe) (Final-epe) (Fl-epe) (Fl-all)

RAFT-Supervised C + T 7.98 6.72 1.43 2.71 5.04 17.4
RAFT-A [39] (CVPR 2021) AutoFlow [39] - - 1.95 2.57 4.23 -
RAFT-OCTC [17] (CVPR 2022)

C + T

T (subsampled) - - 1.31 2.67 4.72 16.3
Fixed Teacher [14] (ECCV 2022)

S/K

- - 1.32 2.58 4.91 15.9
FlowSupervisor [14] (ECCV 2022) - - 1.30 2.46 3.35 11.1
RealFlow [10] (ECCV 2022) - - 1.34 2.38 2.16 8.5
DistractFlow [18] (CVPR 2023) 3.60 5.15 1.25 2.35 3.01 11.7
OCAI (ours) 2.97 5.04 1.20 2.32 2.07 7.6

Table 3. Optical flow results on Sintel and KITTI test. * indicates
“warm-start” results that use previous flow prediction.

Method Sintel (test) KITTI (test)
(Final-epe) (Fl-all)

RAFT-Supervised 3.18/2.86* 5.10
RAFT-A [39] (CVPR 2021) 3.14 4.78
RAFT-OCTC [17] (CVPR 2022) 3.09 4.72
FlowSupervisor [14] (ECCV 2022) 2.79* 4.85
RealFlow [10] (ECCV 2022) - 4.63
DistractFlow [18] (CVPR 2023) 2.71* 4.71
OCAI (ours) 2.63* 4.13

and V1→0, and handles fast moving objects better. Further-
more, our OCAI method produces better VFI quality than
RealFlow, with sharper image details and fewer holes. More
interpolation results using different t values (e.g., 0.2, 0.4,
0.6, 0.8) can be found in the supplementary material.

OCAI only requires the RAFT optical flow model with
5.3M parameters and shows better VFI performance as
compared to existing SOTA methods using similar or more
network parameters. Backward-warping-based approaches
require additional training on Vimeo data with a pre-trained
optical flow model, while RIPR of RealFlow and our OCAI
only needs the pre-trained optical flow model without any
additional training. Moreover, we achieve better VFI scores
than RIPR on both Sintel and KITTI. These results demon-
strate that OCAI generates accurate inter-frames without
needing depth estimation in forward warping.

4.3. Optical Flow
Table 2 shows the optical flow estimation evaluation results
on SlowFlow, Sintel, and KITTI. We see that our proposed
OCAI achieves the best performance on all datasets. No-
tably, it has significantly more accurate optical flow estima-
tion as compared to latest SOTA such as RealFlow and Dis-
tractFlow. Specifically, on KITTI, OCAI brings nearly 1-
point reduction in Fl-epe when comparing to DistractFlow
and 1-point smaller Fl-all than RealFlow.

Table 3 shows the evaluation result on KITTI test dataset.
We achieve SOTA performance in semi-supervised optical
flow on KITTI, bringing a significant improvement as com-
pared to existing SOTA semi-supervised optical flow algo-
rithms.

Table 4. Ablation Study of video frame interpolation on KITTI. M
refers to using our occlusion-aware weighting mask (Eq. 10) in Z
(Eq. 3). BHF is Bi-directional Hole Filling proposed in RealFlow,
CBF refers to Confidence-Based Fusion (Eq. 9).

Method Z (Eq. 3) Warping Hole Filling Fusion KITTI
SSIM ↑ LPIPS (V) ↓

RIPR [10] Depth Image Image BHF 0.733 0.195

OCAI

M Image Image BHF 0.734 0.198
M Flow - BHF 0.721 0.213
M Flow Flow BHF 0.739 0.195
M Flow Flow CBF 0.758 0.190

Figure 6. Video Frame Interpolation (VFI) results on Sintel. RIPR
(D) and RIPR (M) images are generated using RIPR with depth or
occlusion weighting mask (M ). OCAI is generated using M , with
flow hole-filling and confidence fusion.

5. Ablation Studies
5.1. Video Frame Interpolation
Depth weighting vs. occlusion-aware weighting. Table 4
shows the effectiveness of our occlusion- and consistency-
Aware forward warping for VFI. The first row shows for-
ward image warping using depth weighting. In the sec-
ond row, we replace depth weighting with our occlusion-
aware weighting mask, which shows comparable perfor-
mance without using depth. Fig. 6 provides sample qual-
itative results. RIPR (from RealFlow) using depth and us-
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Figure 7. Forward warped Optical Flow on Sintel (Same images
from 6). In top, there are two optical flows (Vt→1, Vt→0) from
SOTA VFI algorithm. Two optical flows from images are shown
in second row, and forward warped flows with holes are shown
in third row (V ∗

t→1, V ∗
t→0). There are hole filled optical flow in

the bottom. (Since visualization code applies normalization, color
intensity looks similar, but the magnitude was reduced and shift
and hole filling are visible.)

ing occlusion-aware weighting both have holes (See RIPR
(D) and RIPR (M)). Since RIPR performs hole-filling using
another warped image, a hole cannot be filled when both
images have holes in the same corresponding regions (e.g.,
wings and head in Fig. 6).

Image warping vs. flow warping. In the third row of
Table 4, we show the effect of applying forward warping
to flow instead of image (see optical flows in the third row
of Fig. 7). After performing hole-filling based on optical
flow consistency, our intermediate flows are significantly
improved (see inpainted flows in the fourth row of Fig. 7).
By generating the confidence maps, we can then combine
two warped images to more accurately generate the inter-
frame (see OCAI output in Fig. 6).

5.2. Semi-Supervised Optical Flow
Using baseline VFI for semi-supervised learning. Table 5
shows an ablation study of the semi-supervised training.
RealFlow trains the model using EM algorithm, which re-
quires significantly more iterations. In our training, when
only using EMA, our model already has a lower Fl-all score
as compared to RealFlow with 1 EM iteration. By addi-

Table 5. Ablation study of our semi-supervised optical flow train-
ing. We denote EMA, confidence-base loss masking, and image
distraction as E, C, and D, respectively. We denote KITTI test
dataset as K-Test, and RealFlow as RF.

Method E C D Dataset Training KITTI 15
iterations (Fl-epe) (Fl-all)

RAFT [41] 5.04 17.4

RealFlow [10] RF-K-Test 200k (1 EM) 2.79 10.7
RF-K-Test 800k (4 EM) 2.16 8.5

DistractFlow ✓ S/K-Test 150k 3.01 11.7
K-Test 100k Diverged

OCAI ✓ K-Test 100k 2.85 10.1

(ours) ✓ ✓ K-Test 100k 2.81 9.7
✓ ✓ ✓ K-Test 100k 2.27 8.4
✓ ✓ ✓ OCAI-K-Test 100k 2.07 7.6

Table 6. Effectiveness of new semi-supervised trained model for
Video Frame interpolation.

VFI dataset Flow Train Dataset PSNR / SSIM ↑ LPIPS (A) / (V) ↓Label Unlabel
Sintel

C+T

- 29.47 / 0.904 0.078 / 0.117
(12 FPS → 24 FPS) OCAI-S-Test 29.51 / 0.905 0.756 / 0.115

Sintel - 25.88 / 0.838 0.129 / 0.178
(6 FPS → 12 FPS) OCAI-S-Test 25.87 / 0.840 0.127 / 0.176

KITTI - 22.08 / 0.758 0.112 / 0.190
(5 FPS → 10 FPS) OCAI-K-Test 22.29 / 0.759 0.108 / 0.186

tionally masking the loss with confidence map and impos-
ing image distractions, the model further improves. Note
that EMA is crucial for training stability; the training fails
to converge when teacher and student models are directly
weight-shared. Finally, when using intermediate frames and
flows generated by OCAI in training, our model achieves
significantly lower Fl-epe and Fl-all.
VFI using optical flow model trained from semi-
supervised scheme. After we train the optical flow in semi-
supervised manner, we evaluate the VFI performance of
semi-supervised training in Table 6. Our semi-supervised
training weight shows the improvements on all evaluation
metrics on all dataset except for Sintel PSNR in 6 FPS to
12 FPS setting. While our OCAI trains the optical flow in
a semi-supervised manner, improved optical flow can gen-
erate more accurate inter-frame. Our OCAI can boost the
performances of not only optical flow but also VFI.

6. Conclusion
In this paper, we proposed a novel scheme that significantly
augments the training of optical flow models. This effec-
tively alleviates the lack of ground-truth optical flow labels
in existing datasets. More specifically, we first proposed an
occlusion-aware video frame interpolation method, which
can robustly generate interframes despite large motions, as
well as the intermediate optical flows. This allows us to sig-
nificantly expand existing optical flow training data for free.
We further proposed a semi-supervised training approach
by leveraging the video frame interpolation. Through ex-
tensive experiments on standard optical flow benchmarks
like Sintel and KITTI, we demonstrate the efficacy of our
proposed approach and that it sets the new state of the art.
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