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Figure 1. Using only a single video portraying any type of motion, our Video Motion Customization framework allows for generating a
wide variety of videos characterized by the same motion but in entirely distinct contexts and better spatial/temporal resolution. 8-frame
input videos are translated to 29-frame videos in different contexts while closely following the target motion. The visualized frames for the
first video are at indexes 1, 9, and 17. A comprehensive view of these motions in the form of videos can be explored at our project page.

Abstract

Text-to-video diffusion models have advanced video gener-
ation significantly. However, customizing these models to
generate videos with tailored motions presents a substan-
tial challenge. In specific, they encounter hurdles in (a) ac-
curately reproducing motion from a target video, and (b)
creating diverse visual variations. For example, straight-
forward extensions of static image customization methods

to video often lead to intricate entanglements of appear-
ance and motion data. To tackle this, here we present the
Video Motion Customization (VMC) framework, a novel
one-shot tuning approach crafted to adapt temporal atten-
tion layers within video diffusion models. Our approach
introduces a novel motion distillation objective using resid-
ual vectors between consecutive noisy latent frames as
a motion reference. The diffusion process then preserve
low-frequency motion trajectories while mitigating high-
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frequency motion-unrelated noise in image space. We val-
idate our method against state-of-the-art video generative
models across diverse real-world motions and contexts.
Our code and data can be found at https://video-motion-
customization. github.io/.

1. Introduction

The evolution of diffusion models [12, 26, 29] has signif-
icantly advanced Text-to-Image (T2I) generation, notably
when paired with extensive text-image datasets [3, 23].
While cascaded diffusion pipelines [2, 9, 13, 25, 31, 34, 36]
have extended this success to Text-to-Video (T2V) gener-
ation, current models lack the ability to replicate specific
motions or generate diverse variations of the same motion
with distinct visual attributes and backgrounds. Address-
ing this, we tackle the challenge of Motion Customiza-
tion [35]—adapting pre-trained Video Diffusion Models
(VDM) to produce motion-specific videos in different con-
texts, while maintaining the same motion patterns of target
subjects.

Given a few subject images for reference, appearance
customization [8, 17, 21, 22, 24, 32] in generative models
aims to fine-tune models to generate subject images in di-
verse contexts. However, these approaches, despite varying
optimization objectives, commonly strive for faithful im-
age (frame) reconstruction by minimizing the ¢,-distance
between predicted and ground-truth noise. This may lead to
the entangled learning of appearance and motion.

To tackle this, we present VMC, a new framework aimed
at adapting pre-trained VDM’s temporal attention layers
via our proposed Motion Distillation objective. This ap-
proach utilizes residual vectors between consecutive (la-
tent) frames to obtain the motion vectors that trace mo-
tion trajectories in the target video. Consequently, we fine-
tune VDM’s temporal attention layers to align the ground-
truth image-space residuals with their denoised estimates,
which equivalently aligns predicted and ground-truth source
noise differences and motion vectors within VDM. This
enables lightweight and fast one-shot training. To further
facilitate the appearance-invariant motion distillation, we
transform faithful text prompts into appearance-invariant
prompts, e.g. "A bird is flying above a lake
in the forest" — "A bird is flying" in Fig.
1. This encourages the modules to focus on the motion in-
formation and ignore others, such as appearance, structure,
background, etc. During inference, our procedure initiates
by sampling key-frames using the adapted key-frame gener-
ation U-Net, followed by temporal interpolation and spatial
super-resolution. To summarize, VMC makes the following
key contributions:

* We introduce a novel fine-tuning strategy which focuses
solely on temporal attention layers in the key-frame gen-

eration module. This enables lightweight training (15GB
VRAM) and fast training (< 5 minutes).

* To our knowledge, we mark a pioneering case of fine-
tuning only the temporal attention layers in video dif-
fusion models, without optimizing spatial self or cross-
attention layers, while achieving successful motion cus-
tomization.

* We introduce a novel motion distillation objective that
leverages the residual vectors between consecutive (la-
tent) frames as motion vectors.

* We present the concept of appearance-invariant prompts,
which further facilitates the process of motion learning
when combined with our motion distillation loss.

2. Preliminaries

Diffusion Models. Diffusion models aim to generate
samples from the Gaussian noise through iterative denois-
ing processes. Given a clean sample ®g ~ pgata(x), the
forward process is defined as a Markov chain with forward
conditional densities

p(xe |xe—1) = N (¢ | Braee—1, (1 — Be)I)
pe(xs | o) = N (20 | Vazo, (1 —a@)l),

where ; € R? is a noisy latent variable at a timestep ¢ that
has the same dimension as x(, and 3; denotes an increasing
sequence of noise schedule where oy := 1 — 3; and a; =
II!_ ;. Then, the goal of diffusion model training is to
obtain a residual denoiser €y:

)

mein Ef@t”pf,(wt | 20),z0~Pdata(x0),e~N(0,I) [ lea (s, t) — € ]

(@)
It can be shown that this epsilon matching in (2) is equiva-
lent to the Denoising Score Matching (DSM [14, 28]) with
different parameterization:

mginEmt,mme[ |86 (1) = Va, logpi(xi | o) || ], 3)

where sgx (;,1) ~ —ZYEEC

— \/11—Tt69* (xy, t).
The reverse sampling from q(@;—1|x¢, €9« (x4, 1)) is then
achieved by

1 1-— ~
Ti—1 = ,\/Oéit (wt - \/%60* (wt7t)) + ﬂte> (4)

where € ~ N(0,I) and B = 11_51:3’;1&. To accelerate

sampling, DDIM [27] further proposes another sampling
method as follows:

- _ 52 5
Ti—1 =/ O7t—1580(t)+\/1 — a1 — n*B €ox (x4, 1) +nPre,
)
where 7 € [0,1] is a stochasticity parameter, and & (%) is
the denoised estimate which can be equivalently derived us-
ing Tweedie’s formula [6]:

1
\/O_Tt(:vt — 1— 64,569* (wt,t)) (6)

Silo(t) =
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Figure 2. Overview. The proposed Video Motion Customization (VMC) framework distills the motion trajectories from the residual
between noisy latent frames, namely motion vector dvy'. Specifically, we fine-tune only the temporal attention layers of the key-frame gen-
eration model by aligning the ground-truth and predicted motion vectors. After training, the customized key-frame generator is leveraged
for target motion-driven video generation with new appearances context, e.g. "A chicken is walking in a city".

For a text-guided Diffusion Model, the training objective is
often given by:

HgnEwt,wo,e,c[Heé’(mtat7c) _6”]7 @)

where c represents the textual embedding. Throughout this
paper, we will often omit ¢ from €y(xy, ¢, c) if it does not
lead to notational ambiguity.

Video Diffusion Models. Video diffusion models [11, 13,
34] further attempt to model the video data distribution.
Specifically, Let (v™),e(1,... v} represents the N-frame in-
put video sequence. Then, for a given n-th frame v™ € R¢,
let vV e RN represents a whole video vector. Let
v} = /v ++/1 — &€} represents the n-th noisy frame
latent sampled from p; (v} |v™), where € ~ N (0,1). We
similarly define (v}),e1,.. ~, viY, and €}*V. The goal of
video diffusion model training is then to obtain a residual
denoiser €y with textual condition ¢ and video input that
satisfies:

HlGiHEv%:N’vlzN’E%:N’C[ ||69(’U%:N, t,c) — 6%:NH ], )
where €g(vi N t,c), el € RN*4 In this work, we denote
the predicted noise of n-th frame as €% (v, ¢, c) € RZ

In practice, contemporary video diffusion models of-
ten employ cascaded inference pipelines for high-resolution
outputs. For instance, [34] initially generates a low-
resolution video with strong text-video correlation, further
enhancing its resolution via temporal interpolation and spa-
tial super-resolution modules.

In exploring video generative tasks through diffusion
models, two primary approaches have emerged: leverag-
ing foundational Video Diffusion Models (VDMs) [7, 16,
30, 35] or pre-trained Text-to-Image (T2I) models [4, 10,

15, 32]. To extend image diffusion models to videos, sev-
eral architectural modifications are made. Typically, U-Net
generative modules integrate temporal attention blocks after
spatial attentions [ 1]. Moreover, 2D convolution layers are
inflated to 3D convolution layers by altering kernels [11].

3. Video Motion Customization

Given an input video, our main goal is to (a) distill
the motion patterns M, of target subjects, and (b) cus-
tomize the input video in different contexts while main-
taining the same motion patterns M, e.g. Sharks w/
motion M, — Airplanes w/ motion M,, with
minimal computational costs.

To this end, we propose a novel video motion customiza-
tion framework, namely VMC, which leverages cascaded
video diffusion models with robust temporal priors. One
notable aspect of the proposed framework is that we per-
form fine-tuning only on the key-frame generation module,
also referred to as the T2V base model, within the cas-
caded VDMs, which guarantees computational and mem-
ory efficiency. Specifically, within the key-frame genera-
tion model, our fine-tuning process only targets the tempo-
ral attention layers. This facilitates adaptation while pre-
serving the model’s inherent capacity for generic synthesis.
Notably, we freeze the subsequent frame interpolation and
spatial super-resolution modules as-is (Fig. 2).

3.1. Temporal Attention Adaptation

In order to distill the motion M, we first propose a new
objective function for temporal attention adaptation using
residual cosine similarity. Our intuition is that residual vec-
tors between consecutive frames may include information
about the motion trajectories.

Let (v")peq1,...,n} represents the N-frame input video
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Figure 3. Training. The proposed framework aims to learn motion
by Jde; -alignment using (16) or (17). Note that we only fine-tune
the temporal attention layers in the key-frame generation U-Net.
The blue circle represents the diffusion forward process.

sequence. As defined in Section 2, for a given noisy video
latent vector vV with €V, let v} represents the n-th
noisy frame latent sampled from p;(v}|v™) with €. We
will interchangeably use v™ and v for notational simplic-
ity. Likewise, v} "¢ is defined as v?, with ¢ > 0 repre-
senting the fixed frame stride. Then, we define the frame
residual vector at time ¢ > 0 as

AR A )

where we similarly define the epsilon residual vector d€}'.
In the rest of the paper, we interchangeably use frame resid-
ual vector and motion vector.

We expect that these motion vectors may encode infor-
mation about motion patterns, where such information may
vary depending on the time ¢ and its corresponding noise
level. The difference vector dv} can be delineated as:

Svi = Va(vite —vp) + V1 — (e}t — €))
= 4/ dt5vg + ’\/1 - @t(SE?,

where d€} is normally distributed with zero mean and 27
variance. In essence, v} can be acquired through the fol-
lowing diffusion kernel:

p(dv} | dvf) = N (v} | Vagdvg,2(1 —ay)I).  (11)

(10)

In light of this, our goal is to transfer motion information
to the temporal attention layers by leveraging the motion
vectors. For this, we first simulate the motion vectors using
video diffusion models. Specifically, as similarly done in
(6), the denoised video vector estimates ziol:N(t) can be
derived by applying Tweedie’s formula:

1, N _ N
\/&7('0%' — V1 — azeg(vy ,t)), (12)
where o3 (t) is an empirical Bayes optimal posterior
expectation E[v}™N | v}N]. Then, the denoised motion
vector estimate dv; can be defined in terms of Jv} and
Sej (vi N t) by using (12):

oy (t) =

SO (1) = Jul — 1= @téeg,t), (13)

vl

where dej (v, 1) = ey (v} N t) — e (v, t) is ab-
breviated as dej , for notational simplicity. Similarly, one
can obtain ground-truth motion vector dvg by using (10):

1 =
o = = ((w Y at(sey). (14)

Then, our objective is to finetune 6 by aligning the mo-
tion vector dv{} and its denoised estimate 60 (¢):

M E, et et e [gangn (5v8, 5@3@))], (15)

with a loss function £yg, : R x RY — R. By using /-
distance for Zyjgn, this is equivalent to matching dep , and
o€y

1—ay

Catign (00, 395 (t)) = [6er — dey.||*.  (16)

(0%
Notably, aligning the ground-truth and predicted motion
vectors translates into aligning epsilon residuals.

While this objective demonstrates effective empirical
performance, our additional observations indicate that using
Leos(d€', 0y ) may further improve the distillation, where

leos(,y) = 1 — % for ,y € R? (more analysis in
section 4.3). Accordingly, our optimization framework is

finally defined as follows:
mgin Ey p,etm etmte[Leos(0€7, I 4)]- 17)

In other words, the proposed optimization framework aims
to maximize the residual cosine similarity between de}’ and
dep - Hence, this optimization approach can be seamlessly
applied to video diffusion models trained using epsilon-
matching. Practically, we exclusively fine-tune the temporal
attention layers Oty < 6, originally designed for dynamic
temporal data assimilation [32]. The frame stride remains
fixed at ¢ = 1 across all experiments.

3.2. Appearance-invariant Prompts

In motion distillation, it is crucial to filter out disruptive
variations that are unrelated to motion. These variations
may include changes in appearance and background, dis-
tortions, consecutive frame inconsistencies, etc. To achieve
this, we further utilize appearance-invariant prompts. Di-
verging from traditional generative customization frame-
works [21, 22, 32, 35] that rely on text prompts that “faith-
fully” describe the input image or video during model fine-
tuning, our framework purposedly employs “unfaithful”
text prompts during the training phase. Specifically, our
approach involves the removal of background information.
For instance, the text prompt ‘a cat is roaring on the grass
under the tree’ is simplified to ‘a cat is roaring’ as presented
in Fig. 4. This reduces background complexity as in Fig. 4a
comapred to Fig. 4b, facilitating the application of new ap-
pearance in motion distillation.
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Figure 4. Appearance-invariant Prompt. Comparison of input
reconstruction with and without appearance-invariant prompt: (a)
and (b) depict sampled low-resolution (64x40) keyframes. For
(a), the training prompt used was “A cat is roaring,” while for
(b), the training prompt was “A cat is roaring on the grass under
the tree.” Our appearance-invariant prompt enables the removal of
background information that can disturb motion distillation.

3.3. Inference Pipeline

Once trained, in the inference phase, our process be-
gins by computing inverted latents from the input video
through DDIM inversion. Subsequently, the inverted latents
are fed into the temporally fine-tuned keyframe generation
model, yielding short and low-resolution keyframes. These
keyframes then undergo temporal extension using the un-
altered frame interpolation model. Lastly, the interpolated
frames are subjected to spatial enlargement through the spa-
tial super-resolution model. Refer to Fig. 2 for overview.

4. Experiments
4.1. Implementation Details

In our experiments, we choose Show-1 [34] as our VDM
backbone and its publicly available pre-trained weights. All
experiments were conducted using a single NVIDIA RTX
6000 GPU. VMC with Show-1 demonstrates efficient re-
source usage, requiring only 15GB of vVRAM during mixed-
precision training [18], which is completed within 5 min-
utes. During inference, generating a single video compris-
ing 29 frames at a resolution of 576 x 320 consumes 18GB
of VRAM and takes approximately 12 minutes.

4.2. Baseline Comparisons

Dataset Selection. In our experiments, we draw upon a
dataset that comprises 24 videos. These videos encompass
a broad spectrum of motion types occurring in various con-
texts, encompassing vehicles, humans, birds, plants, diffu-
sion processes, mammals, sea creatures, and more. This di-
versity provides a comprehensive range of motion scenarios
for our assessment. Out of these 24 videos, 13 are sourced
from the DAVIS dataset [19], 10 from the WebVid dataset
[1], and 1 video is obtained from LAMP [33].

Baselines. Our method is compared against four contem-
porary baselines that integrate depth map signals into the
diffusion denoising process to assimilate motion informa-
tion. Notably, our approach operates without the necessity
of depth maps during both training and inference, in con-
trast to these baseline methods.

Specifically, VideoComposer (VC) [30] is an open-
source latent-based video diffusion model tailored for com-
positional video generation tasks. Gen-1 [7] introduces a
video diffusion architecture incorporating additional struc-
ture and content guidance for video-to-video translation. In
contrast to our targeted fine-tuning of temporal attention,
Tune-A-Video (TAV) [32] fine-tunes self, cross, and tem-
poral attention layers within a pre-trained, but inflated T2I
model on input videos. Control-A-Video (CAV) [5] in-
troduces a controllable T2V diffusion model utilizing con-
trol signals and a first-frame conditioning strategy. Notably,
while closely aligned with our framework, Motion Director
[35] lacks available code at the time of our research.

Qualitative Results. We offer visual comparisons of our
method against four baselines in Fig. 5. The compared
baselines face challenges in adapting the motion of the input
video to new contexts. They exhibit difficulties in applying
the overall motion, neglecting the specific background indi-
cated in the target text (e.g., “underwater” or “on the sand”).
Additionally, they face difficulties in deviating from the
original shape of the subject in the input video, leading to
issues like a shark-shaped airplane, an owl-shaped seagull,
or preservation of the shape of the ground where a seagull
is taking off. In contrast, the proposed framework succeeds
in motion-driven customization, even for difficult composi-
tional customization, e.g. Two sharks are moving.
— Two airplanes are moving in the sky.

Quantitative Results. We further quantitatively demon-
strate the effectiveness of our method against the baselines
through automatic metrics and user study.

Automatic Metrics. We use CLIP [20] for automatic met-
rics. For textual alignment, we compute the average co-
sine similarity between the target prompt and the generated
frames. In terms of frame consistency, we obtain CLIP im-
age features within the output video and then calculate the
average cosine similarity among all pairs of video frames.
For methods that generate temporally interpolated frames,
we utilized the keyframe indexes to calculate the metric for
a fair evaluation. To illustrate, in the case of VMC, which
takes an 8-frame input and produces a 29-frame output, we
considered the frames at the following indexes: 1, 5, 9, 13,
17, 21, 25, 29. As shown in Table 1, VMC outperforms
baselines in both text alignment and temporal consistency.
User Study. We conducted a survey involving a total of 27
participants to assess four key aspects: the preservation of
motion between the input video and the generated output
video, appearance diversity in the output video compared to
the input video, the text alignment with the target prompt,
and the overall consistency of the generated frames. The
survey utilized a rating scale ranging from 1 to 5. For
assessing motion preservation, we employed the question:
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A car is moving. Two sharks are moving.
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Figure 5. Qualitative comparison against state-of-the-art baselines. In contrast to other baselines, the proposed framework succeeds in
motion-driven customization, even for difficult compositional customization.
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Figure 7. Comparative analysis of the proposed frameworks with (a) £.,s and (b) ¢2 loss functions.

“To what extent is the motion of the input video retained in
the output video?” To evaluate appearance diversity, partic-
ipants were asked: “To what extent does the appearance of
the output video avoid being restricted on the input video’s
appearance?” Tab. 1 shows that our method surpasses the
baselines in all four aspects.

Text Temporal Motion Appearance Text Temporal
Alignment  Consistency | Preservation — Diversity ~ Alignment Consistency
vC 0.798 0.958 3.45 343 2.96 3.03
Gen-1 0.780 0.957 3.46 3.17 2.87 2.73
TAV 0.758 0.947 3.50 2.88 2.67 2.80
CAV 0.764 0.952 2.75 245 2.07 2.00
Ours 0.801 0.959 442 4.54 4.56 4.57

Table 1. Quantitative evaluation using CLIP (left) and user study
(right). VMC significantly outperforms the other baselines.

4.3. Ablation Studies

Comparisons on attention layers. We conducted a com-
parative study evaluating the performance of fine-tuning:
(a) temporal attention layers and (b) self- and cross-
attention layers. Illustrated in Fig. 6, both frameworks
exhibit proficient motion learning capabilities. Notably,
the utilization of customized temporal attention layers (a)
yields smoother frame transitions, indicating the effective-
ness of the optimization framework (17) in encouraging mo-
tion distillation, with a slight preference observed for cus-
tomized temporal attention layers.

This observation stems from the premise that integrat-
ing the proposed motion distillation objective (17) may
autonomously and accurately embed motion information
within temporal attention layers [11, 13]. This suggests a
potential application of the motion distillation objective for
training large-scale video diffusion models, warranting fur-
ther exploration in future research endeavors.

Choice of loss functions. In addition, we conducted a
comparative analysis on distinct training loss functions in
(17): the ¢5-distance and /.., as delineated in (17). As
depicted in Fig. 7, the Je-matching process in (15) and
(17) demonstrates compatibility with generic loss functions.
While both (>(d€f’, deg ;) and £cos(d€f, d€g ;) are promis-
ing objectives, the marginal superiority of £.os(d€}', deg ;)
led to its adoption for visualizations in this study.

Importance of adaptation. To assess the importance of
temporal attention adaptation, we conducted a visualization
of customized generations without temporal attention adap-
tation, as detailed in Section 3.1. Specifically, from our
original architecture in Fig. 2, we omitted attention adap-
tation and performed inference by maintaining the U-Net
modules in a frozen state. The outcomes depicted in Fig. 9
indicate that while DDIM inversion guides the generations
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Figure 8. Left: Style transfer on two videos. Right: Motion customization results on the
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Figure 9. Ablation study on temporal attention adaptation. With-
out temporal attention adaptation, motion distillation fails.

to mimic the motion of the input video, it alone does not en-
sure successful motion distillation. The observed changes
in appearance and motion exhibit an entangled relationship.
Consequently, this underlines the necessity of an explicit
motion distillation objective to achieve consistent motion
transfer, independent of any alterations in appearance.

4.4. Additional results

Video Style Transfer. We illustrate video style transfer ap-
plications in Fig. 8-Left. We incorporate style prompts at the
end of the text after applying appearance-invariant prompt-
ing (see Section 3.2). Target styles are fluidly injected while
preserving the distilled motion of an input video.

Learning Backward Motion. To further verify our video
motion customization capabilities, we present a challeng-
ing scenario: extracting backward motion from a reversed

Input Video of a Car Moving

+ In the style of classic anime from 1990

Reversed Video with Backward Motion M-

Eagle + M- + On edge

video of “A seagull is

— A

walking backward.”

video sequence where frames are arranged in reverse or-
der. This scenario, an exceedingly rare event in real-world
videos, is highly improbable within standard training video
datasets [1]. Illustrated in Fig. 8, our VMC framework
showcases proficiency in learning “a bird walking back-
ward” motion and generating diverse videos with distinct
subjects and backgrounds. This capability not only enables
leveraging the distilled motion but also offers prospects for
further contextual editing.

5. Conclusion

This paper introduces Video Motion Customization
(VMC), addressing challenges in adapting Text-to-Video
(T2V) models to generate motion-driven diverse visual cus-
tomizations. Existing models struggle with accurately repli-
cating motion from a target video and creating varied visual
outputs, leading to entanglements of appearance and mo-
tion data. To overcome this, our VMC framework presents a
novel one-shot tuning approach, focusing on adapting tem-
poral attention layers within video diffusion models. This
framework stands out for its efficiency in time and memory,
ease of implementation, and minimal hyperparameters.
Ethics Statement. Our work employs a generative model
that necessitates caution due to its potential for misuse in
creating deceptive content with negative societal impacts.
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