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Abstract

Motion blur is a frequently observed image artifact, es-
pecially under insufficient illumination where exposure time
has to be prolonged so as to collect more photons for a bright
enough image. Rather than simply removing such blurring ef-
fects, recent researches have aimed at decomposing a blurry
image into multiple sharp images with spatial and temporal
coherence. Since motion blur decomposition itself is highly
ambiguous, priors from neighbouring frames or human an-
notation are usually needed for motion disambiguation. In
this paper, inspired by the complementary exposure charac-
teristics of a global shutter (GS) camera and a rolling shutter
(RS) camera, we propose to utilize the ordered scanline-wise
delay in a rolling shutter image to robustify motion decom-
position of a single blurry image. To evaluate this novel dual
imaging setting, we construct a triaxial system to collect
realistic data, as well as a deep network architecture that
explicitly addresses temporal and contextual information
through reciprocal branches for cross-shutter motion blur
decomposition. Experiment results have verified the effec-
tiveness of our proposed algorithm, as well as the validity of
our dual imaging setting.

1. Introduction
Photo capture usually needs sufficient exposure time to col-

lect photons. If ego-motion of cameras or dynamic objects

are presented during this period, the image will suffer from

motion blur. This kind of degradation makes visual con-

tent less interpretable. Hence, extensive research has been

devoted to reverse this process and produce sharper details.

Generally, the deblurring course is formulated as image-

to-image transition by extracting a single latent frame from

a blurry input [7, 16, 19, 20, 27, 28]. Recently, researchers

step froward to a more ambitious task, retrieving a sharp

image sequence instead of just one frame, dubbed as blur

decomposition [21]. Unfortunately, averaging effects of mo-

tion blur have severely destroyed the temporal ordering of

latent frames, which cannot be restored solely by reconstruc-
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tion loss [11]. To make matters worse, motion ambiguity

resides in each dynamic object, thus leading to numerous

plausible solutions, yet many of which are physically infea-

sible. Figure 1 (a) and (b) illustrate this ambiguity by using

two dynamic objects. For a given blur observation, there

exist four motion sequences that could be interpreted as its

decomposition. Models only trained on this data usually

have issues of instability and low performance [35].

Handling the loss of temporal order is a problem far

from being well-studied in the blur decomposition. Current

solutions mainly fall into two categories: (a) introducing

ordering-invariant loss [11] and (b) approximating latent

temporal order within exposure by motion of consecutive

blur frames [33, 35]. The former one is easily caught in

sub-optimal solutions owing to the weak supervision prop-

agated from the loss. Similarly, the latter solution suffers

from severe degeneration when presented with long exposure

time or fast motion. Moreover, motion estimation among

blurry frames is inherently nontrivial and time-consuming.

Recently, it has been recognized that rolling shutter (RS)

images encode the canceled motion due to its row-by-row

exposure mode [4, 6], according to which RS effects can be

mitigated. But restoring a sequence from single RS input

still remains unfinished because of lacking complete global

content. In contrast, Blur images contain adequate contex-

tual information but without temporal ordering. On the other

hand, dual camera system has been widely exploited in RS

correction (RS-RS, RS-Event) [1, 34, 36], deblurring (GS-

Event) [26, 30], even vibration sensing (GS-RS) [24].

Therefore, considering the complementarity of Blur and

RS images, we propose dual Blur-RS setting to solve the mo-

tion ambiguity of blur decomposition. As shown in Figure 1

(c), the RS view not only provides local details but also im-

plicitly captures temporal order of latent frames. Meanwhile,

GS view could be exploited to mitigate the initial-state am-

biguity from RS counterpart (as discussed in Section 4.4).

Inspired by the hardware design of [23, 32], we devised our

triaxial imaging system to capture strictly aligned high-speed

sharp videos and low-speed Blur-RS pair videos.

Facilitated by the collected dataset, we further proposed

a novel two-staged model, containing motion interpretation

and blur decomposition modules, to reconstruct a sharp

video sequence from cross shutter views: blur and RS ob-
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servations. The motion interpretation module firstly disen-

tangles the bilateral motion fields as complementary dual

stream: Blur and RS branches, to actively address the contex-

tual characterization and temporal abstraction, respectively.

Shutter alignment and aggregation enables mutual boosting

of two branches by propagating aligned and aggregated fea-

ture to each other. Besides, the temporal positional encoding

further enhances model’s ability to disambiguate motion di-

rection of latent frames. Subsequently, estimated motion

fields along with blur-RS inputs will be warped and refined

through blur decomposition module to generate a sharp video

clip. At last, we also deeply explored the advantages of our

proposed Blur-RS combination over existing settings for blur

and RS decomposition by providing experimental results. In

summary, our main contributions are:

• We present a new setting of dual Blur-RS combination to

address the motion ambiguity of blur decomposition, and

demonstrate its superiority to pure RS or blur setting.

• Rather than a biaxial system for image-to-image deblur-

ring, we develop a triaxial imaging system that simul-

taneously captures Blur-RS pairs along with high-speed

ground truth, and collect a real dataset named RealBR.

• We introduce a novel neural network architecture that ac-

tively address the contextual characterization and temporal

abstraction by dual stream motion interpretation module.

Extensive experiments have validated the effectiveness of

our setting and model.

2. Related Work

2.1. Blur Decomposition

Compared with traditional deblurring task, reconstructing

an image sequence from single blurred input is much more

challenging because the average effects have destroyed the

temporal ordering of latent frames. Jin et al. [11] raise this

problem and address the temporal ordering ambiguity for

the first time. From two aspects, they design a network with

large receptive field to tackle the inherent ill-posedness of

deblurring and ordering-invariant loss for motion ambigu-

ity. [21] specially proposes a surrogate task to learn motion

representation from sharp videos in an unsupervised man-

ner, and then employs it as a guidance of training motion

encoder for blurred images. [2] takes advantages of spatial

transformer network modules to restore a video sequence

and its underlying motion in an end-to-end manner. In order

to avoid the directional ambiguity, BiT [33] takes three con-

secutive blurry frames as input to extract the motion prior.

They propose a blur intra-interpolation transformer based

on novel multi-scale Swin transformer blocks along with

dual-end temporal supervision and symmetric ensembling

strategies. Zhong et al. [35] also emphasize on the motion

ambiguity of blur decomposition by introducing motion guid-

ance representation. They provide three interfaces to acquire
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Figure 1. Motion ambiguity of blur observation. In this toy

example, we show two objects: a soccer and a player, both moving

horizontally. (a) shows four possible motion states (both moving

right, moving left, one moving left and the other is towards right.)

during the exposure time. (b) presents blurred observations. They

are all identical due to averaging effects, which brings about motion

ambiguity to blur decomposition. (c) In our dual Blur-RS setting,

RS view implicitly encoded temporal ordering of latent frames.

the motion guidance: learning by network, approximating

from blur video and user input. The learning one is also

supervised by optical flow of blur frames. So essentially,

solutions proposed in [21, 33, 35] all try to represent the

latent motion by using consecutive blurry inputs.

Different from blur decomposition, another line of related

work inherits video frame interpolation setting by substi-

tuting inputs as blurry frames to reconstruct clear images

within deadtime. Most of them take as input an image se-

quence and interpolate a sharp one at the middle of two

blurry frames [12, 25, 31]. The recent study has started to

interpolate frame at arbitrary time [10, 18]. In this paper, we

mainly focus on the motion ambiguity of blur decomposition.

So, we do not expand the discussion of these works in detail.

2.2. Dual Camera System

Recently, significant progress has been made by constructing

dual camera view to handle different vision tasks. According

to combination manner, we briefly divide them as: RS-RS [1,

34], RS-Event [36], GS-Event [26, 30] and RS-GS [24].

Due to the ill-posedness of single RS correction, Albl et
al. [1] resort to a camera configuration: two RS cameras

with reversed scanning direction. They further proved that

the setup possesses geometric constraints needed to correct

rolling shutter distortion using only a sparse set of point

correspondences between the two images. Lately, Zhong et
al. [34] extend this setup to learning based method. Instead

of correcting RS geometrically, they develop an end-to-end

model, to generate dual optical flow sequence through it-
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erative learning. In contrast, considering the high-speed

characteristic of the event camera, Zhou et al. [36] introduce

a novel computational imaging setup consisting of an RS

sensor and an event sensor to correct RS effects.

Similarly, by exploring the high-temporal resolution prop-

erty of events, [26, 30] use a cross-modal set up: GS-Event

to solve the deblurring problem. Sun et al. [26] unfold blur-

ring process into an end-to-end two stage restoration network

by effectively fusing event and image features. They design

an event-image cross-modal attention module, which allows

network to focus on relevant features from the event branch

and filter out noise. Xu et al. [30] aim at data inconsistency,

constructing a piece-wise linear motion model taking into ac-

count motion non-linearities, to achieve accurate deblurring

in a self-supervised manner.

Most interestingly, Sheinin et al. [24] simultaneously

capture the vibration with two cameras equipped with rolling

and global shutter sensors, respectively. The RS camera

captures distorted speckle images that encode the high-speed

object vibrations, while GS camera captures undistorted

reference images of the speckle pattern, helping to decode

the source vibrations.

3. Methodology
3.1. Proposed Setup of Blur Decomposition

Usually, Blur accumulation can be formulated as an aver-

aging process presented in a linear space by using inverse

camera response function (CRF) on RGB images [16, 17].

While blur decomposition aims at extracting uniformly dis-

tributed sharp frames from single blurred image.

As we discussed in Section 1, this process is highly ill-

posed because of motion ambiguity residing in accumulation

of photons. Considering RS exposure inherently encodes

temporal ordering of latent frames and provide local details

as supplementary to global content of blur, we additionally

capture an RS view R of each blurred frame B so as to better

address the indeterminacy.

3.2. Optical System and Dataset

Optical System In order to capture aligned training inputs

(RS, GS) and ground truth sequences that can be recorded by

a high-speed camera (HS), we constructed a triaxial optical

system as depicted in Figure 2. Similar to [37], the system

comprises 2 beam-splitters that partition incident light into

3 identical beams, and 3 cameras for RS (FLIR BFS-U3-

63S4C with 2x2 binning), GS (FLIR GS3-U3-23S6C), HS

(a high-speed GS camera, BITRAN CS-700C, with forced

cooling) separately. The usage of a neutral density (ND)

filter with roughly 20% transmittance is for the purpose of

counterbalancing excessive brightness in blurry GS images

brought about by their relatively long exposure duration.

While beam-splitters feeding light signals of the same scene

to 3 cameras, and the other ND-filter equalizing illumination

magnitude of blur and RS views, we further incorporated

geometrical transforms for pixel-level alignment and syn-

chronization signal control for simultaneity. For more details,

please refer to our supplementary materials.

RealBR Dataset Applying the optical system to capture

real world image sequences, we established a RealBR (GS

Blur & RS) dataset by recording distinct street scenes con-

taining ample amount of objects, like vehicles and pedes-

trians, and various camera motions. As can be seen from

Figure 2(c), capturing of single pair of Blur-RS frames has

a period of 50ms, with GS and RS cameras finishing their

exposure in 18ms leaving the rest 32ms in one period as

deadtime, while HS camera exposing within 2ms at 500fps

taking 25 frames in total within one period, 9 of which

temporally located inside GS/RS exposure duration and the

rest 16 inside deadtime. All captured images are in both

RGB and RAW format, and will be made publicly available,

facilitating related potential exploration in the area.

3.3. The Proposed Architecture

The overview of our proposed architecture is shown as Fig-

ure 3 (a). We mainly focus on reconstructing a clear video

sequence from a blurred image with the assistance of its RS

view to address the motion ambiguity issues. The inference

process of our F is formulated as: S = F (B,R), where

S = {St, t ∈ 0, · · · , N − 1} denotes extracted latent sharp

video sequence with a length of N . R is the RS view of

blurred input B.

Overall, the whole model could be divided into two stages:

motion interpretation and blur decomposition. Motion inter-

pretation (MI) is highly attentive to explore the benefits of

our Blur-RS combination in an iterative manner with three

motion interpretation blocks (MIB). With the guidance of

temporal positional encoding, it explicitly emphasizes the

contextual characterization and temporal abstraction from

disentangled blur and RS streams, respectively. Estimating

bidirectional motion fields can be described as bellow:

(FS→B ,FS→R,M) = MI (B,R) (1)

where FS→B = {FSt→B , t ∈ 1, · · · , N} are the interme-

diate flows from targeted latent frames to the blurry input.

Similarly, FS→R denotes counterparts from latent frames to

the RS view and M is a predicted mask to aggregate warped

frames using bilateral motion fields. The blur decomposition

part is implemented through GenNet in an encoder-decoder

architecture to warp and refine the reconstructed latent video

sequence, which is formulated as:

S = GenNet (B,R,FS→B ,FS→R,M) (2)

Hereinafter, we highlight core components of the model:

motion interpretation block with mutually boosted branches;
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Figure 2. Our triaxial imaging system. (a) A photo of the actual system for data gathering; (b) Optical diagram of our system; (c)

Illustration of exposure duration for all cameras on temporal axis. In picture (c), its vertical axes can be interpreted as spatial rows of

captured images from each camera.

temporal positional encoding; and shutter alignment and

aggregation. As for the structure of GenNet in blur decom-

position, it is presented in supplemental materials.

Dual Streams with Mutual Incentive As we observed,

methods exploiting neighboring frames [33, 35] or dual view

from different cameras [34] tend to simply concatenate them

to capture motion fields. But considering the fact regarding

our cross shutter views that blur and RS inputs play con-

trasting roles in the blur decomposition task, we separately

address them into two parallel branches. As shown in Fig-

ure 3 (b), the ith motion interpretation block (MIBi) is imple-

mented as two streams with mutual incentive through a shut-

ter alignment and aggregation module. The RS branch offers

local details and disambiguates motion directions. Mean-

while, blur counterpart with full global context will elevate

the accuracy of motion magnitude and mitigate initial-state

ambiguity residing in RS views.

To promote the interaction of two branches, the aligned

and aggregated feature are extracted. Instead of directly

concatenating encoded features from each other, we firstly

predict bidirectional displacement maps between two input

views: F i
B→R and F i

R→B . Then corresponding aligned

features φi
alin_R and φi

alin_B for two streams are warped as:

φi
alin_R = W (

φi
B , F

i
R→B

)

φi
alin_B = W (

φi
R, F

i
B→R

) (3)

where W denotes backward-warping process. φi
B and φi

R

are represented feature of blur and RS views. This aligning

process enables us to adaptively selects helpful features and

rejects incorrect ones from the other view. In addition, the

aggregated feature φi
agg has also been taken into account as

an auxiliary.

Therefore, taking the blur branch as an example, which

can be formulated as:

φi
B = ΦB

(
B,Fi−1

S→B

)

Fi
S→B = ΨB

([
φi
B , φ

i
alin_B , φ

i
agg

]) (4)

where ΦB , ΨB are encoder and decoder. [·] denotes concate-

nation. The processing is similar under RS branch except

for temporal positional encoding. Overall, the ith MIB can

be described as:

Fi, F i,M i = MIBi

(
B,R,E,Fi−1, F i−1,M i−1

)
(5)

where F = [FS→B ,FS→R], F = [FB→R, FR→B ] and M
is the predicted mask to aggregate warped frames in blur

decomposition.

Temporal Positional Encoding To further enhance

model’s ability to disambiguate motion direction of latent

frames, we propose a temporal positional encoding for the

RS branch. [5, 13] copy image rows from corresponding

latent frames to synthesize RS effects. So, naturally, the tem-

poral positional encoding for RS input R and latent frame

St are:

[ER]k = k, k = 0, 1, · · · , N − 1

ESt =
H − 1

N − 1
t · 1 (6)

where [·]k is the operation that extracts kth row and 1 denotes

a 2-D tensor with all elements being 1. H and N are the

image height and length of recovered video clip. Instead

of directly using the absolute positional encoding of latent

frames, we further compute the relative one to ER:

E = {(ER − ESt), t = 0, 1, · · · , N − 1} (7)

Finally, the positional encoding map will be concatenated to

R and taken as input to RS branch of MIB.

Shutter Alignment and Aggregation SAA module pro-

motes the information propagation across two streams from

two perspectives: aggregated and aligned features. The

aggregated feature φagg is extracted by feeding the concate-

nation of bidirectional displacement maps to encoder blocks

(EB), which address the correlation between two input views,
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(a) Overall architecture of our proposed model 
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Figure 3. Our proposed model. (a) shows the overall architecture containing two stages: motion interpretation and blur decomposition.

Blur decomposition is implemented through a GenNet. Motion interpretation takes as input a blur image B and an RS image R along with

its temporal positional encoding E. It consists of three blocks and one of them is unfolded in (b). (c) presents specific details of shutter

alignment and aggregation (SAA). Feature extracted by encoder block (EB) will be converted using spatial transformer network (STN), and

then enhanced through a Conv. block to accurately predict displacement field between shutters.

while aligned features φalinB
and φalinR

focus on absorbing

uniquely beneficial parts from each other to stress the contex-

tual characterization and temporal abstraction, respectively.

The SAA module mainly consists of two encoders imple-

mented by convolutional layers with multi-output strategy

like MIMO-UNet [3] . Two spatial transformer networks

(STN) predict a global transformation conditioned on the

output of each encoder to spatially transform features, mak-

ing the model more robust to visual distortions. We then feed

transformed features into their corresponding Conv. blocks

to generate bidirectional motion fields. A connection is built

through downsampling coarse outputs to next block and the

aggregated feature φagg is extracted from output of the sec-

ond encoder. Inference process with ith SAA is as follows:

F i,M i = SAAi

(
B,R, F i−1,M i−1

)
(8)

4. Experiments
4.1. Comparison with SOTA methods

We compare our model with existing state-of-the-arts to

handle motion ambiguity of blur decomposition including

LEVS [11], AfB [35] and BiT [33]. Notably, the AfB is

implemented by using different motion guidance: learned by

a predictor (AfBp) or extracted from neighboring blur frames

(AfBv). In addition, considering that the cutting-edge meth-

ods RIFE [8] for video frame interpolation and IFED [34]

for RS temporal super-resolution can be easily adapted to

our blur-RS setting, we therefore combine the two models

with our setting (denoted as RIFEBR and IFEDBR) and con-

duct the experiments. As a contrast, results of these two

models using consecutive blur frames (denoted as RIFEB

and IFEDB) are also provided. Although, we focus on blur

decomposition, we also compared against a blur frame in-

terpolation method, DeMFI [18] that could be converted to

our setting for fair comparison. UTI-VFI [31], TNTI [12]

and BIN [25], which cannot distinguish exposure or dead-

time when interpolating, are unable to be integrated into our

comparison experiments without losing fairness. To better

demonstrate the performance of all models, we retrained

them on our collected data RealBR.

Table 1 shows quantitative comparisons of all methods

on reconstructing video sequence with lengths of 3, 5 and 9.

Overall, retrieving a video from single blurred image is quite

challenging. The carefully designed supervision of LEVS

is barely useful to solve the ambiguity posed by averaging

effects. On the other hand, resorting to predicting motion be-

tween neighboring inputs, models can indeed speculate the

temporal order of latent frames to a certain extent. DeMFI

obtains the highest performance among those methods but

still lower than our model. Benefited from the dual view, the

performance gains of RIFEBR and IFEDBR, compared with

RIFEB and IFEDB , are quite remarkable (at least 5.6 dB

on PSNR). The improvement sufficiently demonstrate the

effectiveness of blur-RS combination. Reconstructed frames
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Table 1. Quantitative comparisons of reconstructed latent frame sequence with lengths of 3, 5 and 9 on RealBR. Subscript of AfB denotes

different motion guidance used, while subscripts of RIFE and IFED suggest input settings. ‘B-R’ is our proposed dual blur-RS view and

‘n·B’ is the setting using n neighboring blur frames to tackle motion ambiguity. The performance is measured with mean PSNR, SSIM and

LPIPS. We also compute the running time, number of parameters and FLOPs.

Method Input
×3 ×5 ×9 Time

(s)

Params

(M)

FLOPs

(G)
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

LEVS [11] 1·B 21.77 0.7042 0.2886 21.62 0.7153 0.2683 21.83 0.7277 0.2535 1.47 15.9 304

AfBp [35]

2·B
21.50 0.7596 0.4102 21.65 0.7648 0.4055 21.82 0.7686 0.4017 0.15 190 839

AfBv [35] 22.83 0.7877 0.3904 22.96 0.7903 0.3883 23.10 0.7924 0.3860 0.22 129 793

RIFEB [8] 24.60 0.8172 0.2254 24.73 0.8199 0.2268 24.83 0.8219 0.2268 1.33 54.8 71.1

IFEDB [34] 24.45 0.8105 0.1817 24.62 0.8141 0.1811 24.74 0.8164 0.1798 1.33 10.8 29.5

BiT [33] 3·B 21.90 0.7664 0.2583 21.88 0.7694 0.2574 22.02 0.7729 0.2546 0.11 11.3 57.4

DeMFI [18] 4·B 25.55 0.8485 0.2247 25.26 0.8466 0.2275 26.20 0.8577 0.2165 4.86 7.41 420

RIFEBR [8]

B-R
30.26 0.8983 0.1071 30.53 0.9030 0.1046 30.67 0.9053 0.1042 1.33 54.8 71.1

IFEDBR [34] 30.46 0.9030 0.0467 30.70 0.9064 0.0445 30.84 0.9084 0.0434 1.33 10.8 29.5

Ours 30.87 0.9073 0.0696 31.05 0.9103 0.0684 31.15 0.9120 0.0678 1.30 105 183

Blur LEVS AfBp AfBv IFEDBRIFEB

BiT DeMFI RIFEBR IFEDBR Ours GT
Figure 4. Qualitative comparison. Our model outperforms the approaches approximating latent motion fields relying on adjacent blurry

inputs. Especially, RIFEBR and IFEDBR implemented by dual Blur-RS view reconstruct much sharper details than RIFEB and IFEDB .

at middle time are presented in Figure 4 for visual compar-

ison. Although existing methods offer reduced distortions,

they do not fully restore local details and structures, whereas

our results are significantly clearer. Table 1 also presents

the computed complexity of all algorithms. Specifically, the

FLOPs and running time were evaluated by recovering 9 la-

tent frames with a size of 256× 256 on an NVIDIA Geforce

RTX 3090. The results indicate that our model’s complexity

is in moderate level.

To better substantiate the ability of our model in motion

direction disambiguation and local details recovery, we apply

all models to generating 9 consecutive latent frames, whose

visual results are given in supplemental materials. We also

provide the video demo for a comprehensive comparisons.

4.2. Model Ablation

To assess the efficacy of the components in our proposed

model, we conducted an ablation study as depicted in Ta-

ble 2. The experiments demonstrate performance of three

model variants: v1 (without temporal positional encoding),

Table 2. Model ablation on RealBR dataset. ‘T’ denotes temporal

encoding and ‘Single’ indicates using single branch.

Variants PSNR (↑) SSIM (↑) LPIPS (↓)

W/o T (v1) 31.06 0.9104 0.0690
W/o SAA (v2) 27.96 0.8645 0.1442
Single (v3) 30.33 0.9013 0.0929
Ours (full) 31.15 0.9120 0.0678

v2 (without shutter alignment and aggregation), and v3 (us-

ing single motion interpretation branch that takes concate-

nation of blur and RS views as input). Our findings reveal

that dual stream with mutual incentive through SAA module

is effective to handle blur decomposition and the temporal

positional encoding further improves the performance.

4.3. Challenging Scenarios

Misaligned Views RS view is taken as a motion guidance

and complement of local details to reconstruct multiple latent

frames. As discussed in [34], the ambiguity mainly lies in the

forward and backward directions of the motions. Hence the
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Table 3. Quantitative comparisons on misaligned RS-Blur view.

‘Shift-n’ denotes misalignment with maximal offsets n and ‘Noise-

m’ is an experiment conducted on synthesized low-light RS view

under peak value m.

Method
×3 ×5 ×9

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Shift-4 30.95 0.9077 0.0705 31.18 0.9113 0.0696 31.32 0.9135 0.0690

Shift-6 30.82 0.9062 0.0747 31.05 0.9098 0.0727 31.17 0.9117 0.0724

Shift-8 30.56 0.9011 0.0907 30.73 0.9038 0.0915 30.87 0.9065 0.0887

Noise-300 30.56 0.8979 0.0849 30.77 0.9028 0.0841 30.88 0.9053 0.0844

Noise-500 30.92 0.9012 0.0849 30.98 0.9048 0.0848 30.99 0.9064 0.0848

Noise-800 30.95 0.9072 0.0823 31.04 0.9083 0.0805 31.04 0.9084 0.0805

Ours 30.87 0.9073 0.0696 31.05 0.9103 0.0684 31.15 0.9120 0.0678

motion guidance has no need to be very precise and tolerates

some spatial misalignment to blur view. To validate this, we

randomly shift RS view in image space along horizontal and

vertical axes. The maximal translational offsets are set as

4, 6, 8 pixels, respectively. Then we retrained our model on

this misaligned pairs and provide comparisons in Table 3

and Figure 5. There is no obvious drop, which verifies the

robustness of our dual-view setting to misalignment.

Shift-0 Shift-4 Shift-0 Shift-8Shift-0 Shift-6

Figure 5. PSNR distribution of our method with one aligned

(‘Shift-0’) and three misaligned views(‘Shift-4’, ‘Shift-6’ and

‘Shift-8’) under a selected sequence. The horizontal axis is initial

PSNR computed by blur view and the first latent frame (i.e. GT)

while the vertical axis denotes PSNR computed between corrected

blur view and the GT.

RS

GTRS (noisy) Ours

GTBlur

Blur

Figure 6. Visual results of our proposed method under low-lit

scenes with peak value 500. Due to short exposure time of each

rows in RS view, it suffers from obvious noise. But our setting is

still capable of dealing with this challenge. Best viewed in zoom.

Low-lit Scenes Following the conventional setting, we se-

lect proper exposure time of rows for avoiding saturation

in GS view and reducing blur in RS view. But it is likely

that RS observation will suffer from noise when presenting

low-lit scenes. Hence, we further explore effects of noisy RS

observations to our method. Following [14, 15], we apply

a random gamma adjustment and Poisson noise to clear RS

view to synthesize low-light captures. Different peak values

(a) Possible state of movement (b) RS view (c) Dual view

RS

RS

RS

Blur

Blur

Blur

#1

#2

#3

r

rrr

Figure 7. Initial-state ambiguity of RS observation. In this toy

example, we show one object moving horizontally. (a) shows three

possible motion states (static, moving right and moving left) during

the exposure time. (b) presents corresponding RS observations.

They are all identical due to different initial-state (upright, tilted to

the right, and tilted to the left), which brings about ambiguity to

RS temporal super-resolution. (c) In our dual Blur-RS setting, blur

view sufficiently indicated initial-state of latent frames.

are chosen to simulate noise of different intensities. The

quantitative results are presented in Table 3 showing that

low-lit scene causes about 0.27 dB drop on PSNR, which

still outperforms the second-best approach in Table 1. The

visual results are also presented in Figure 6.

Table 4. Quantitative comparisons on RS image temporal super-

resolution. Subscripts of RIFE and IFED suggests input settings.

‘n·R’ is the setting using n neighboring RS frames to tackle initial-

state ambiguity.

Method Input
×5 ×9

PSNR SSIM LPIPS PSNR SSIM LPIPS

RSSR [4]

2·R
21.92 0.7633 0.1526 22.82 0.7833 0.1362

CVR [6] 21.70 0.7620 0.1717 22.26 0.7761 0.1564

RIFER [8] 24.14 0.8124 0.1875 24.36 0.8181 0.1813

IFEDR [34] 24.33 0.8033 0.1032 24.54 0.8085 0.0989

RIFEBR [8]

B-R
30.53 0.9030 0.1046 30.67 0.9053 0.1042

IFEDBR [34] 30.70 0.9064 0.0445 30.84 0.9084 0.0434

Ours 31.05 0.9103 0.0684 31.15 0.9120 0.0678

4.4. Justification for Dual Blur-RS Setting

Our proposed dual blur-RS setting requires extra view com-

pared with existing methods using neighboring frames,

which may increase the cost of device. But considering

the performance gains, it is worthwhile. The reason is that,

on one hand, blur decomposition entails motion ambigu-

ity as shown in Figure 1. The quantitative and qualitative

comparisons with SOTA methods corroborate that RS view

can guide blur input to infer a temporally plausible video

sequence with more local details.

On the other hand, we delve deeper into this blur-RS

setting under the context of RS temporal super resolution

to well justify its superiority. Although human’s visual per-

ception to RS effects is not that sensitive like blur, the high

ill-posedness makes the correction process barely tractable

even harder than debluring [9]. One possible reason is the

initial-sate ambiguity as illustrated in Figure 7. Given an

RS observation of upright cylinder, due to the unknown of
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EBFIInputs OursInputs

Event RS Short Long

iRSRS Blur1 Blur2

Event Blur RS Blur

Figure 8. Visual results of comparisons with competitive settings on synthetic data. It denotes the interpolated frame temporally located

at time instant t. Best viewed in zoom.

its initial state, there exists three possible motion patterns

within exposure. Similarly, [4, 6] exploit consecutive RS

inputs to mitigate the ambiguity, while [34] resorts to dual

RS view with reversed exposure direction. In Table 4, we

compare our solution with corresponding SOTA methods

from RS temporal super resolution. The RIFE and IFED

are also implemented by taking neighboring RS frames as

input, denoted as RIFER and IFEDR respectively. All exper-

iments validated that blur view provide cues of initial state

and global context to RS counterpart that effectively boost

reconstruction performance.

Notably, because of lacking different modal data in

RealBR, comparisons between more competitive settings:

IFED [34] with dual reversed RS views, EvUnroll [36]

and EBFI [29] assisted by event camera, PMB [22] using

short and long exposure, are conducted on synthetic data.

The details of data synthesis are included in supplementary.

From Table 5 and Figure 8, we further validate that our set-

ting and method have superiority against existing solutions.

5. Conclusion
In this paper, we have proposed a novel cross-shutter setting

for motion decomposition of a single blurry image, inspired

by the complementary exposure characteristics of GS and

RS cameras. Since this setting is new, we first developed

a triaxial image capture system to collect triplets of blurry

image, rolling shutter image and consecutive sharp frames

at higher frame rate. In the arithmetic aspect, we proposed a

novel network architecture that actively addresses the con-

textual characterization and temporal abstraction in a mutual

incentive manner. Experiments on our real dataset have veri-

Table 5. Quantitative comparisons with more competitive settings

under task of blur decomposition and RS temporal super resolution

based on synthetic data. Dual reserved RS setting is denoted as

‘R-iR’. ‘B-Event’ and ‘R-Event’ are blur decomposition and RS

temporal super resolution assisted by event camera, respectively.

‘B-SL’ means photosequencing from blur using short long exposure.

Method Input
×3 ×7

PSNR SSIM LPIPS PSNR SSIM LPIPS

LEVS [11] 1·B 17.27 0.6063 0.3410 16.64 0.58 0.3811

AfBp [35]

2·B
23.38 0.7411 0.2271 23.41 0.7517 0.2183

AfBv [35] 28.10 0.8760 0.1496 28.39 0.8815 0.1461

RIFEB [8] 31.26 0.9410 0.0896 31.49 0.9430 0.0892

IFEDB [34] 29.46 0.9193 0.0897 29.75 0.9225 0.0874

BiT [33] 3·B 32.31 0.9234 0.0708 32.56 0.9266 0.0691

DeMFI [18] 4·B 27.57 0.9002 0.1332 27.44 0.8984 0.1304

PMB [22] B-SL 35.48 0.9723 0.0349 35.11 0.9715 0.0324

EBFI [29] B-Event 33.21 0.9568 0.0703 33.51 0.9591 0.0685

RSSR [4]

2·R
22.73 0.8116 0.1039 22.65 0.8090 0.1154

CVR [6] 23.50 0.8342 0.0818 23.47 0.8332 0.0815

RIFER [8] 24.16 0.8318 0.1697 24.32 0.8365 0.1618

IFEDR [34] 28.30 0.9122 0.0475 28.63 0.9181 0.0446

IFED [34] R-iR 30.89 0.9417 0.0372 31.96 0.9530 0.0307

EvUnroll [36] R-Event 33.06 0.9558 0.0737 33.48 0.9587 0.0699

RIFEBR [8]

B-R
34.49 0.9701 0.0398 35.02 0.9733 0.0366

IFEDBR [34] 33.03 0.9627 0.0332 33.72 0.9675 0.0304

Ours 34.92 0.9732 0.0310 35.51 0.9764 0.0305

fied the effectiveness of proposed algorithm. With synthetic

data, we further demonstrated the superiority of our global-

shutter/rolling-shutter dual imaging setting. Our current

implementation requires a beamsplitter to align two different

shutters, which is demanding for compact mobile devices,

and our future work is to explore the feasibility of using

synchronized sensors placed in parallel.
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