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Abstract

Most existing image compression approaches perform
transform coding in the pixel space to reduce its spatial re-
dundancy. However, they encounter difficulties in achiev-
ing both high-realism and high-fidelity at low bitrate, as the
pixel-space distortion may not align with human perception.
To address this issue, we introduce a Generative Latent
Coding (GLC) architecture, which performs transform cod-
ing in the latent space of a generative vector-quantized
variational auto-encoder (VQ-VAE), instead of in the pixel
space. The generative latent space is characterized by
greater sparsity, richer semantic and better alignment with
human perception, rendering it advantageous for achieving
high-realism and high-fidelity compression. Additionally,
we introduce a categorical hyper module to reduce the bit
cost of hyper-information, and a code-prediction-based su-
pervision to enhance the semantic consistency. Experiments
demonstrate that our GLC maintains high visual quality
with less than 0.04 bpp on natural images and less than
0.01 bpp on facial images. On the CLIC2020 test set, we
achieve the same FID as MS-ILLM with 45% fewer bits.
Furthermore, the powerful generative latent space enables
various applications built on our GLC pipeline, such as im-
age restoration and style transfer.

1. Introduction

Amid the ongoing surge of digital visual data, the impor-
tance of achieving high-efficiency image compression be-
comes increasingly paramount. From the traditional com-
pression standards [54, 55] to the emerging learned im-
age compression models [4, 5, 11, 20, 41, 45], most com-
pression algorithms follow the pixel-space transform cod-
ing [4, 19] paradigm. Specifically, they convert pixels
into compact representations through a transform module,
which eliminates the redundancy to reduce the bit cost in
the subsequent entropy coding process.

However, we observe a common inherent limitation in
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Figure 1. Generative latent space of VQ-VAE exhibits better align-
ment with human perception than pixel space for ultra-low bi-
trate compression. Under comparable distortion levels (measured
by signal-to-noise ratio, SNR), latent-space compression produces
reconstructions with superior perceptual quality (measured by
DISTS [15]) than pixel-space generative codec MS-ILLM [46],
as the compressed latents remain in the same latent code space.

these methods: the pixel-space distortion is not always con-
sistent with the human perception, especially at low bitrate.
In practice, human observers prioritize the semantic consis-
tency and the texture realism of an image, but this informa-
tion is difficult to be adequately exploited solely by a pixel-
space transform module. As shown in the left of Figure 1,
pixel-space generative image codec MS-ILLM [46] strug-
gles to guarantee visual quality at low bitrate, even after it
incorporates perceptual supervision [29] and adversarial su-
pervision [18] within the pixel space.

Based on such observation, a natural problem arises:
how can we compress images in a way that aligns with hu-
man perception? To address this challenge, we introduce a
Generative Latent Coding (GLC) paradigm. In GLC, we
first encode images into a generative latent space that aligns
with human perception, and subsequently perform trans-
form coding in this latent space, instead of in pixel space.
To concretize this concept, we adopt a generative vector-
quantized variational auto-encoder (VQ-VAE) [17, 53] to
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Figure 2. A qualitative comparison between HiFiC [44], MS-ILLM [46], Text+Sketch [35] and the proposed GLC. GLC produces im-
ages with high visual quality, even in regions with complex texture. In contrast, HiFiC and MS-ILLM exhibit noticeable artifacts, and
Text+Sketch generates results that deviate significantly from the input. Best viewed when zoomed in.

produce the latent space, which offers three significant ad-
vantages: 1) The discrete codes of VQ-VAE encapsulate
semantic visual components [53], allowing GLC to focus
on compressing the semantic content to guarantee fidelity.
2) Generative VQ-VAE exhibits remarkable generative ca-
pabilities [17] for high-realism texture reconstruction. 3)
The discrete variational bottleneck naturally brings a low-
entropy and distortion-robust latent space for compression.
Thanks to such characteristics, GLC is more aligned with
human perception to achieve enhanced visual quality, as
demonstrated in the right of Figure 1.

When implementing GLC, two crucial questions persist:
How to effectively compress the generative latents? And
how to supervise the generative latent coding? A straight-
forward approach to compress VQ-VAE latents is indices-
map coding [27, 28, 43], but it is limited by the ineffective
redundancy reduction between indices and the lack of rate-
variable coding support. In this paper, we propose a novel
generative-latent-space transform coding approach, where
an effective rate-variable structure is adopted to reduce la-
tent redundancy for higher compression ratio. In addition,
a categorical hyper module is introduced to model the dis-
tribution of z with a discrete codebook, which significantly
reduces the bitrate of z when compared to the factorized
hyper module [5]. As for the supervision of GLC, inspired
by recent code prediction transformers [27, 28, 60], a code-
prediction-based supervision is proposed. It serves as an
auxiliary supervision employed solely in the training pro-
cess to greatly enhance the semantic consistency.

Benefited from these advanced designs, our GLC
achieves excellent performance on both natural and facial
images. In the CLIC 2020 test set [51], GLC attains a bi-
trate less than 0.04 bpp while delivering high visual quality.
It obtains 45% bit savings compared to MS-ILLM at the
same FID. In the CelebAHQ [30] dataset, GLC achieves an
even lower bitrate of less than 0.01 bpp. As shown in Figure
2, compared with recent advanced generative image com-
pression approaches MS-ILLM [46] and Text+Sketch [35],
GLC produces more visually appealing compression results
with a lower bit cost.

Furthermore, leveraging the representative generative la-
tent space, GLC supports various vision applications such
as image restoration and style transfer. By replacing the
compression encoder with a restoration encoder, the pro-
posed restoration application surpasses the performance of
cascading a restoration model and a neural codec. We hope
such versatility of generative latent space will help connect
image compression with other vision tasks in the future.

In summary, our main contributions are :
• We present a generative latent coding (GLC) scheme,

which performs transform coding in the generative latent
space of a VQ-VAE to achieve high-fidelity and high-
realism compression at ultra-low bitrate.

• We introduce a categorical hyper module to significantly
reduce the bit cost of hyper information. Additionally, a
code-prediction-based supervision is adopted to enhance
the perceptual quality.

• GLC obtains 45% bit reduction on CLIC2020 with the
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Figure 3. Illustration of the proposed Generative Latent Coding (GLC) framework. (Left) GLC firstly encodes the image into a generative
latent representation (Section 3.2), then compresses the latent with transform coding (Section 3.3), and finally reconstructs image from the
compressed latent. (Right) We progressively train GLC in three stages (Section 4): In stage I, we train a generative VQ-VAE to obtain a
human-perception-aligned latent space. In stage II, the transform coding module learns to compress the latent with a code-prediction-based
latent supervision (Figure 6). Finally, in stage III, the entire network is fine-tuned jointly with a code-prediction-based pixel supervision to
further enhance the compression performance.

same FID as the previous SOTA. Furthermore, GLC en-
ables various application within its latent space.

2. Related Works
2.1. Learned Image Compression

Lossy image compression is grounded on Shannon’s rate-
distortion theory [12]. Ballé et al. [4] first proposed to uti-
lize neural networks for pixel-space transform coding [19],
employing analysis and synthesis transform modules to
convert images into compact representations for entropy
coding. Subsequently, some researches make strides in im-
proving the probability model [4, 5, 11, 34, 38, 45] for
more accurate estimation, while others explore the network
structure [11, 41], optimization algorithm [58, 59] and rate-
variable coding [13, 20] for improved compression perfor-
mance and practicality.

A recently raised critical challenge in image compres-
sion is how to improve the perceptual quality of the recon-
struction. Agustsson et al. [2] first introduced the concept of
generative compression, which compresses essential image
features and generate distorted details using GAN. Some
subsequent works [9, 25] extract image sketches and latent
codes to ensure geometry-consistency. Text+Sketch [35]
utilizes a conditional-diffusion model to generate image
based on image captions and sketches, achieving superior
perceptual quality. While these schemes produce visual ap-
pealing results, they often deviate significantly from the in-
put and cannot guarantee the semantic consistency.

To achieve generative compression with high-fidelity,
Mentzer et al. [44] further studied the network structure
and generative adversarial loss to enable high-fidelity com-
pression. Subsequent researches further enhance the trans-

form coding [16, 22], generative post-processing [24] or
focus on controlling the trade-off between fidelity and re-
alism [3, 26]. Recently, MS-ILLM [46] introduces a no-
binary discriminator which is conditioned on quantized lo-
cal image representations to greatly enhance the statistical
fidelity.

2.2. Latent Space Modeling

Latent space image modeling means modeling the distri-
bution of image within the latent space of a neural network.
This technique has been primarily developed for image gen-
eration. Chen et al. [10] and Oord et al. [53] introduced
PixelCNN [52] in the latent space of VAE and VQ-VAE
for image generation. Esser et al. [17] took it a step further
by incorporating transformers into VQ-VAE latent space for
high-quality generation. More recently, Rombach et al. [48]
employed diffusion models to model the latent space of VQ-
VAE, achieving remarkable results in high-resolution image
generation. These studies underscore the potential of image
processing within the generative latent space, particularly in
the latent space of VQ-VAE.

Recently, the concept of latent space modeling has
been extended to other tasks. CodeFormer [60] intro-
duces a code prediction transformer that takes distorted la-
tents as input and predicts the high-quality VQ-VAE in-
dex for facial restoration. Building upon this, Jiang et
al. [27, 28] proposed transmitting the predicted indices to
achieve restoration-based facial conferencing. In this paper,
we explore the characteristics of latent space modeling in
the realm of generative image compression. We specially
design a transform coding paradigm in the latent space,
which demonstrates superior effectiveness.

26090



𝑞

𝑙

𝑞

መ𝑙

Q

AE

ො𝑦
AD Sp

at
ia

l C
o

n
te

xt
En

tr
o

p
y 

M
o

d
el

VQ-D

VQ-E
Hyper

Codebook 𝐶ℎ

𝑧

Ƹ𝑧
𝑔𝑠

𝑦
𝑔𝑎

ℎ𝑠

ℎ𝑎

ො𝑦

(a)

𝑙 ሚ𝑙VQ

(b)

𝑦 

𝑧 Ƹ𝑧 

𝑦| ො𝑦 

Factorized prior

𝑝 ො𝑦 ~𝑁(𝜇, 𝜎)

S ℎ𝑠ℎ𝑎

U|Q

U|Q

(c)

𝑦 

𝑧 Ƹ𝑧 

𝑦| ො𝑦 

Categorical prior

𝑝 ො𝑦 ~𝑁(𝜇, 𝜎)

S

VQ

U|Q

ℎ𝑎 ℎ𝑠

(d)

Figure 4. Illustration of the transform coding in latent space. (a) The model structure of the transform coding module. We further compare
it with other coding schemes in operational diagrams : (b) indices-map coding [27, 28, 43], (c) transform coding with factorized hyper
module [5, 21, 38] and (d) proposed transform coding with categorical hyper module. Here AE and AD denote arithmetic encoding and
decoding, VQ-E and VQ-D stand for VQ-indices-map encoding and decoding, Q refers to scalar quantization, U signifies the addition of
uniform noise as a differential simulation of Q, and S denotes the spatial context entropy module.

3. Method
3.1. Overview

In this section, we introduce the details of the proposed
Generative Latent Coding (GLC) architecture. To achieve
high-perceptual-quality compression, GLC encodes image
into a perception-aligned latent space through a generative
latent auto-encoder, and perform transform coding on the
latent representations for lower bitrate. As depicted in the
left of Figure 3, the input image x is firstly encoded into
the latent l using the latent encoder E. Then l undergoes
an analysis transform ga to produce the code y, which is
further scalar-quantized to ŷ for entropy coding. Following
that, a synthesis transform gs is employed to transform ŷ
back to l̂, and finally, the reconstruction x̂ is generated by
the latent decoder D. This entire process is formulated as:

l = E(x), y = ga(l)

ŷ = Q(y)

l̂ = gs(ŷ), x̂ = D(l̂)

(1)

3.2. Generative Latent Auto-Encoder

To achieve high-quality generative latent coding, how to ob-
tain a human-perception-aligned latent space is a crucial
challenge. In GLC, we address it by employing the gener-
ative VQ-VAE [17] as the latent auto-encoder (E and D).
By mapping images into visual semantic elements within a
codebook C and incorporating a generative image decoding
process, both semantic consistency and texture realism can
be well guaranteed. Additionally, it contributes to the com-
pression process through a sparse yet robust latent space,
which is achieved by training with the discrete codebook C
as a variational bottleneck.

3.3. Transform Coding in Latent Space

To compress the latent representations l, a direct approach
is VQ-indices-map coding [27, 28, 43] (Figure 4b). How-

Original Image

𝑦 = 0 bits 𝑧 = 1000 bits 𝑦 = 0 bits 𝑧 = 160 bits

Factorized 𝑧 Categorical 𝑧

𝑦 = 1800 bits 𝑧 = 1000 bits 𝑦 = 1640 bits 𝑧 = 160 bits

Figure 5. Example of comparison between factorized and categor-
ical hyper modules. The proposed categorical z encodes essential
semantic and structural information with much less bits.

ever, these methods often lack a careful consideration of the
correlation among the latents, resulting in a insufficient re-
dundancy reduction and consequently a high bit cost. In
GLC, we introduce a transform coding module to compress
the latent, replacing the vector-quantization step for more
effective reduction of latent redundancy. As shown in Fig-
ure 4a, the latents are transformed into code y using trans-
formations ga, gs and then quantized to ŷ. Entropy coding
is applied to ŷ based on a probability p(ŷ), which is esti-
mated by a categorical hyper module (Section 3.3.1) and a
quadtree-partition-based spatial context module [38].

3.3.1 Categorical Hyper Module

Factorized hyper module [5] (Figure 4c) is commonly em-
ployed in recent image compression schemes. However, at
ultra-low bitrate, we notice that the factorized z tends to en-
code low-level information such as color and texture, incur-
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ring a high bit cost, as illustrated in Figure 5. To address it,
we propose a categorical hyper module (Figure 4d), which
utilizes a hyper codebook to store the basic semantic ele-
ments rather than the low-level information. This module
comprises a hyper analysis transform ha, a hyper synthesis
transform hs and a hyper codebook Ch. The transforma-
tions are formulated as:

z = ha(y), ẑ = V Q(z, Ch), priorz = hs(ẑ) (2)

where z and ẑ denote hyper-codes. V Q(·, Ch) represents
vector-quantization by nearest lookup in Ch. As shown in
the right of Figure 5, the categorical z is more inclined to
capture high-level semantic information, which can be en-
coded with significantly fewer bits.

3.3.2 Rate-Variable Transformation

A notable advantage of transform coding over VQ-indices-
map coding is its capability for rate-variable compression,
which is a core functionality for a practical image codec.
Indices-map coding is limited since the codebook can only
model one specified distribution, but different rates natu-
rally need different distributions. In contrast, transform
coding converts latent into a unified Gaussian distribution,
and variable-rate can be achieved by variable parameters
(e.g., means and scales) of Gaussian. In GLC, we follow
DCVC series [36–39, 47, 49] to incorporate a scaler q in
the transform coding to achieve rate-variable compression.

4. Progressive Training
As depicted in the right of Figure 3, we adopt a three-stage
progressive training manner to fully leverage the potential
of GLC. We initially learn a human-perception-aligned la-
tent space to guarantee the perceptual quality, subsequently
learn to perform transform coding on this latent space to
achieve low bitrate, and finally fine-tune the entire network
for superior compression performance. At each stage, dis-
tinct loss functions are adopted to guide different modules.

4.1. Stage I : Auto-Encoder Learning

To obtain a human-perception-aligned latent space for com-
pression, we begin with training a generative VQ-VAE as
the initialization of E and D. To ensure the sparsity of
the latent space, an auxiliary codebook C is employed to
perform nearest vector-quantization, transforming l to l̃.
The supervision comprises reconstruction loss, perceptual
loss [29], adversarial loss [18] and codebook loss [53] :

LStage I = ||x− x̂||+ Lper(x, x̂)

+ λadv · Ladv(x, x̂) + Lcodebook

(3)

Here, Lper corresponds to the LPIPS loss calculated using
VGG [50] extracted features. Ladv is the adaptive Patch-
GAN adversarial loss [17] with a weight of λadv = 0.8.

Code-Pred-based Pixel Loss (Stage III)

V
Q

-V
A

E
En

co
d

er
V

Q
-V

A
E

En
co

d
er

𝑙𝑝

መ𝑙𝑝

Code-Pred-based 
Supervision

ො𝑥

𝑥

Code-Pred-based Latent Loss (Stage II)

𝑙

መ𝑙

Code-Pred-based 
Supervision

Codebook
Aux. Code 
Predictor

⋯

Cross Entropy

Code-Pred-based Supervision

MSE

⋯

Figure 6. Illustration of code-prediction-based supervision.

The codebook loss is formulated as

Lcodebook = ||sg(l)− l̃||+ β · ||sg(l̃)− l|| (4)

where sg(·) denotes the stop-gradient operator and β =
0.25 controls the update rates of the E and C.

4.2. Stage II : Transform Coding Learning

Given the trained latent space, we further learn to perform
transform coding to achieve low-bitrate latent compression,
while fixing the auto-encoder E and D. We introduce an
auxiliary code predictor CP to enhance the semantic con-
sistency by necessitating the latent to possess the capability
to predict the correct VQ-indices. As shown in Figure 6,
we encode l into VQ-indices by Ml = V Q(l, C) and sub-
sequently predict these indices by M̂l̂ = CP (l̂). So the
code-prediction-based loss can be formulated by

Dcode(l, l̂) = α · CE(Ml, M̂l̂) + ||l − l̂||22 (5)

where CE denotes the cross entropy loss and we set α =
0.5 by default. Then the transform coding module can be
supervised by the rate-distortion trade-off

LStage II = Ex∼pX
[R(ŷ) + λ · Dcode(l, l̂)] (6)

where R is the estimated rate and λ is used the control the
trade-off. Note that a codebook loss (as formulated in Equa-
tion 4) is required to train the hyper codebook Ch in the cat-
egorical hyper module. We omit it from the loss functions
of both stage II and stage III for the sake of conciseness.

4.3. Stage III : Joint Training

Finally, we fine-tune the entire network with the pixel space
supervision to achieve better compression performance. As
shown in Figure 6, we extend the code-prediction-based la-
tent supervision into the pixel space. Specifically, we uti-
lize the encoder EV Q trained from stage I to encode x and
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x̂ into latent space by l̂p = EV Q(x̂) and lp = EV Q(x),
so the code-prediction-based pixel loss can be calculated by
Dcode(l

p, l̂p) in the same formulation with Equation 5. Here
we use EV Q since it can map the input data to a compatible
latent space with the codebook C for code prediction. The
overall pixel supervision is defined as :

DStage III = ||x− x̂||+ Lper(x, x̂)

+ λadv · Ladv(x, x̂) + λcode · Dcode(l
p, l̂p)

(7)

where we set λcode = 0.05 by default. The rate-distortion
trade-off supervision is :

LStage III = Ex∼pX
[R(ŷ) + λ · DStage III] (8)

4.4. Discussion of Code-Prediction-Based Loss

Code prediction transformers [27, 28, 60] have demon-
strated their effectiveness in high-quality image reconstruc-
tion. They typically input the predicted latent directly into
the decoder for reconstruction. Different from these meth-
ods, in GLC, we suggest to consider code prediction solely
as an auxiliary supervision during training, but not used in
the inference process of the compression pipeline.

This design is based on an observation: if a code pre-
diction module is introduced before the decoder, the fine-
tuning process in stage III cannot enhance compression per-
formance further. It appears that the codebook becomes a
performance bottleneck, restricting the decoder to receiving
only the vector-quantized latent as input, which has already
been well-trained in stage I. In GLC, by utilizing code pre-
diction solely as auxiliary supervision during training, we
eliminate this bottleneck, allowing the decoder to receive
more flexible input for additional fine-tuning. We find that
this code-prediction-based supervision effectively enhances
the semantic consistency of the reconstructions, as shown
in Figure 7. By necessitating the latent to possess the ca-
pability to predict the code index, the latent contains more
semantic information, such as gestures and attributes.

5. Experiments
5.1. Implementation Details

Training details. We train GLC for both natural image
compression and facial image compression. For natural
images, we conduct stage I on ImageNet training set [14],
stage II and III on OpenImage test set [33], using randomly
cropped 256 × 256 patches. For facial images, GLC is
trained on FFHQ dataset [31] for all stages with a resolution
of 512 × 512. Both models are optimized by AdamW [42]
with a batch size of 8. For each batch, we train the model
with different λ to achieve rate-variable compression.
Evaluation dataset. We evaluate GLC on CLIC 2020 test
set [51] with original resolution for natural image compres-
sion, and evaluate on CelebAHQ [30] with a resolution of

Original Image w/o code-pred-
based loss

w/ code-pred-
based loss

Figure 7. An example of using code-prediction-based supervision
after stage II. Code prediction loss enhances the semantic consis-
tency of the compressed latent, such as the color of eye shadow
and the opening of the mouth.

512 × 512 for facial image. We also show the results on
Kodak [32], DIV2K [1] and MS-COCO 30K [40] in the
supplementary material.
Evaluation metrics. We measure bit-stream size by bits per
pixel (bpp), and measure visual quality by reference percep-
tual metrics LPIPS [29] and DISTS [15] and no-reference
perceptual metrics FID [23] and KID [6]. We also pro-
vide PSNR and MS-SSIM [56] results in the supplementary
material for completeness. Nevertheless, it is worth note
that these pixel-level distortion metrics PSNR, MS-SSIM
and LPIPS have strong limitations when evaluating image
compression at ultra-low bitrate, which is also mentioned in
other works [15, 35]. We provide a clearer demonstration
of it in the supplementary material.
Baseline methods. We compare with traditional codec
VVC [54], neural codec TCM [41], EVC [20], and gener-
ative codec FCC [26], Text+Sketch [35], HiFiC [44], MS-
ILLM [46]. As some methods do not release models for
ultra-low bitrate, we either retrain or fine-tune their models
to suit such low bitrate. Text+Sketch is not evaluated on
CLIC since it does not support compression in high resolu-
tion. In addition, we also compare with recent works HFD
[24] and PerCo [8] in the supplementary material. For fa-
cial compression, we fine-tune EVC, TCM, HiFiC and MS-
ILLM using FFHQ dataset for a fair comparison.

5.2. Main Results

Figure 8 shows the performance of the proposal and com-
pared methods at ultra-low bitrate. On CLIC 2020, GLC
demonstrates superiority in terms of DISTS, FID and KID
than other methods. Specifically, GLC saves about 45%
bits compared to previous SOTA method MS-ILLM while
maintaining an equivalent FID. When comparing the pixel-
level metric LPIPS, GLC also achieves comparable perfor-
mance with high-fidelity generative codecs such as HiFiC
and MS-ILLM. On CelebAHQ, GLC outperforms all other
methods across all metrics by a large margin.
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Figure 8. Comparison of methods on CLIC 2020 test set and CelebAHQ.

Original
[CelebAHQ]

TCM
0.0094 bpp

VVC
0.0115 bpp

HiFiC
0.0085 bpp

MS-ILLM
0.0088 bpp

GLC
0.0080 bpp

Original
[Kodak]

TCM
0.0787 bpp

Text+Sketch
0.0320 bpp

HiFiC
0.0426 bpp

MS-ILLM
0.0375 bpp

GLC
0.0300 bpp

Figure 9. Qualitative examples of different methods on Kodak and CelebAHQ. More comparisons are in supplementary materials.

Figure 9 shows the qualitative comparison results. For
natural image compression, Text+Sketch generates low-
fidelity reconstructions, while TCM, HiFiC, and MS-ILLM
produce blurry results at ultra low bitrate. In contrast, GLC
achieves high-fidelity and high-realism results. In the case
of facial image compression, we find existing methods can-
not produce satisfactory reconstruction due to the severely
distorted information at even more extreme bitrate limita-
tion (e.g., 0.01 bpp or lower). TCM and HiFiC fall short in
generating highly realistic results. Even though MS-ILLM

provides clearer details, it struggles to preserve correct fa-
cial attribute. Compared to them, GLC excels in both real-
ism and fidelity at even lower bitrate.

5.3. Ablation Study

In this section, we conduct ablation studies to demonstrate
the effectiveness of each proposed component. To provide
a clearer comparison, we evaluate the BD-Rate [7] on the
FID-BPP curve on the CLIC 2020 test set.
Transform coding. A straightforward approach to com-
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Table 1. Ablation study on latent-space compression.

Latent coding scheme Probability model of z BD-Rate ↓
Indices-map coding - 66.2%

Transform coding Factorized prior 17.7%
Categorical prior 0%

Table 2. Ablation study on the code prediction module.

code prediction usage BD-Rate ↓
w/o code pred. 13.1%
code pred. in network 60.7%
code pred. as supervision 0%

press the VQ-VAE latents is indices-map coding [27, 28,
43]. However, it causes 66.2% performance loss compared
with transform coding, as shown in Table 1. It shows the
effectiveness of transform coding on reducing redundancy.
Categorical hyper module. In Section 3.3, we illustrate the
superiority of employing a categorical prior for z compared
to the commonly used factorized prior. Table 1 further pro-
vides a quantitative comparison, demonstrating a significant
improvement of 17.7% with such design.
Code-prediction-based supervision. In Section 4, we sug-
gest employing the code prediction module as an auxiliary
loss during training, instead of during the inference process
of the model pipeline as in [27, 28, 60]. As shown in Table
2, incorporating the code prediction module directly into
the network leads to a 60.7% performance drop. We further
remove the code-prediction-based supervision for compar-
ison, and results show that adopting the code-prediction-
based supervision brings a 13.1% improvement.

6. Applications

Leveraging the potent latent space, our GLC pipeline opens
avenues for exploring various vision applications. In this
paper, we implement image restoration and style transfer as
examples to show its potential. As depicted in Figure 10, for
image restoration, we train a restoration encoder to map dis-
torted images into clean latents, allowing users to directly
compress a noisy image and decompress a clean one with-
out additional cost. We compare our restoration application
with a straightforward scheme of cascading an additional
restoration network [57] with the GLC codec. The results
in Table 3 indicate superior performance for our restora-
tion application without the need for extra model param-
eters. Similarly, users can directly decode the latent into
another style through a stylization decoder to achieve style
transfer. We hope such versatility of the generative latent
space will foster connections between image compression
and other vision tasks in future research.
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Figure 10. Generative latent applications built on GLC. In the
practical image compression system, users can choose different
encoders and decoders, to compress an image (medium), compress
a distorted image and decompress a clear one (top), or decode the
image into another style (bottom).

Table 3. Comparison for different joint restoration and compres-
sion schemes on CLIC 2020 test set.

Scheme BPP ↓ FID ↓ DISTS ↓ Parameters

Restormer [57] + GLC Codec 0.0314 10.79 0.1174 25M + 109M
GLC Restoration Application 0.0299 8.62 0.1081 109M

7. Conclusion and Limitation

In this paper, we introduce a generative latent coding (GLC)
scheme to achieve high-fidelity and high-realism genera-
tive compression at ultra-low bitrate. Unlike most exist-
ing pixel-domain codecs, GLC performs transform coding
on the latent domain of a generative VQ-VAE. By incor-
porating a categorical hyper module and a code-prediction-
based supervision, GLC demonstrates state-of-the-art per-
formance on several benchmarks. We further develop sev-
eral vision applications on the GLC pipeline to demonstrate
its practical potential.

However, as a generative image codec trained on
specified datasets, the generalization capability of GLC
is not always satisfactory. For instance, GLC can-
not guarantee a clear and accurate reconstruction of
screen contents, as illustrated in the supplementary
material. Future work will focus on addressing this
limitation, to enhance the generalization ability of GLC by
improving the model structure and the training strategy.
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