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Camera and Human Pose Estimation

3D Cinematic Transfer

Virtual Environment

Figure 1. Given a film shot, a series of visual continuous frames, containing complex camera movement and character motion, we present an
approach that estimates the camera trajectory and character motion in world coordinates. The extracted camera and characters’ behavior can
be applied to new 2D/3D content through our cinematic transfer pipeline. 2D cinematic transfer aims to substitute the characters in the
original shot with new 3D characters while preserving the identical character motion and camera movements. 3D cinematic transfer can
apply the movements of characters and cameras to new characters and scenes, providing more flexibility to modify various properties, such

as lighting, character motion, and camera trajectory.
Abstract

In the evolving landscape of digital media and video pro-
duction, the precise manipulation and reproduction of visual
elements like camera movements and character actions are
highly desired. Existing SLAM methods face limitations in
dynamic scenes and human pose estimation often focuses on
2D projections, neglecting 3D statuses. To address these is-
sues, we first introduce a reverse filming behavior estimation
technique. It optimizes camera trajectories by leveraging
NeRF as a differentiable renderer and refining SMPL tracks.
We then introduce a cinematic transfer pipeline that is able
to transfer various shot types to a new 2D video or a 3D vir-
tual environment. The incorporation of 3D engine workflow
enables superior rendering and control abilities, which also
achieves a higher rating in the user study.

1. Introduction

With the ongoing increase in media consumption, creators
are consistently exploring innovative techniques to enhance

the viewing experience, reduce production costs, and create
compelling narratives. Thus, the ability to manipulate and
reproduce specific visual elements, such as camera move-
ments and character behaviors, has long been a sought-after
capability in the realm of digital media and video production,
as it helps maintain continuity and transfer a particular style
or a unique mood from one scene to another.

It is challenging to replicate specific camera and character
behaviors across different video clips. Manually achieving
it can be both time-consuming and prone to inconsistencies.
Alternatively, one can adopt SLAM [4, 23, 24] and SMPL
estimation [13] to respectively recover camera poses and
human poses, yet they struggle to handle complex scenarios
with both camera and character behaviors. Although SLAM
and SMPL estimation can be used together [7, 18, 31] to infer
both camera and character behaviors, it still has problems of
mismatch with the original shot due to the noise caused by
dynamic content. Recently, some researchers [28, 32] took
advantage of NeRF [15] to inverse-optimize camera poses
with fewer effects from dynamic content. Nevertheless, they
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required manual preparation of a similar scene as NeRF
training data, which significantly diminishes their flexibility
and scalability.

To address the above challenges, we propose a filming
behavior transfer pipeline, that estimates SMPL tracks and
camera trajectory of a film shot. The SMPL track is a se-
quence of human pose. We detect the character motion in
reference shot and approximate it by predicting SMPL tracks.
While SMPL tracks can be estimated as in previous meth-
ods [31], we train a dynamic NeRF [19] to represent the 3D
SMPL tracks. We then take NeRF as a differentiable renderer
to provide image-level matching supervision for camera tra-
jectory optimization. The optimized camera trajectory can
further refine the SMPL tracks, leading to a more accurate
estimation of character and camera behaviors. As the above
SMPL tracks do not have textures, to meet the artist’s work-
flow needs, we further develop a 3D engine-based workflow
to adapt the SMPL track and camera to new virtual charac-
ters, enabling a higher level of control and precision in the
creative process, such as changing the lighting or adjusting
the speed of the camera movement. With this, we can trans-
fer a variety of shot types, including different shot scales,
angles, complex camera movements, and various character
numbers, which helps artists create new content with similar
cinematic behavior.

Extensive experiments show the capacity of our method
to extract reasonable character motions and camera trajec-
tory from a given well-known movie shot and generate new
content with a similar cinematic style through a 3D engine
workflow.

2. Related Work

Human and Camera Motion Estimation. Extracting hu-
man and camera motion from video has attracted increasing
attention from researchers in recent years. Most recent meth-
ods [3, 6] were just focused on how to estimate the human
pose in 3D because of the fixed camera. For dynamic cam-
era trajectory, some approaches [9, 34, 35] have tried to
circumvent the issue of camera motion by recovering the
human trajectories in global coordinates from the per-frame
local human poses. Other researchers [5, 7, 12, 18, 31] have
introduced SLAM system into human pose estimation to re-
construct the 4D human pose. Pavlakos et al. [ 18] proposed
a method to reconstructed 3D humans and environments in
TV shows. They used COLMAP and NeRF to reconstruct
the cameras and dense scene and use this information to
recover accurate 3D pose and location of people over shot
boundaries and on monocular frames. Ye ef al. [31] pro-
posed a method to reconstruct global human trajectories
from videos in the wild. They showed that relative camera
estimates along with data-driven human motion priors can
resolve the scene scale ambiguity and recover global human
trajectories. Kocabas et al. [7] proposed to tightly integrate

SLAM and human motion priors in an optimization that is in-
spired by bundle adjustment. Unlike the above methods that
used SLAM as initialization, our method optimizes camera
trajectories by leveraging NeRF as a differentiable renderer.

NeRF-based Camera Pose Estimation. NeRF [16] is a pop-
ular representation of 3D scenes, which uses a multilayer
perceptron (MLP) that evaluates a 5D implicit function esti-
mating the density and radiance emanating from any position
in any direction. Yen et al. [32] first proposed to estimate
mesh-free camera pose by “inverting” a NeRF. A lot of re-
cent work [1, 2, 8, 10, 14, 25] focused on how to get camera
parameters without using SFM, and instead train both cam-
era parameters and NeRF during training using only pictures.
Most of them cared more about the quality of the NeRF
than the quality of the camera. And iNeRF [32] is limited to
its slow inference speed and it’s very sensitive to the initial
parameters of the camera. To address these problems, Lin et
al. [11] improved it via 1) using Instant NGP to replace the
native NeRF [17]; 2) introducing parallel Monte Carlo sam-
pling to overcome local minima and improved efficiency in a
more extensive search space of camera parameters. Wang et
al. [33] proposed a feature-driven cinematic motion transfer
technique. It replicated the camera sequences from movies
to a trained NeRF to let the generated video clip maximize
the similarity with the reference clip through a designed cin-
ematic loss. Most recent works required manual preparation
of a similar scene as NeRF training data. Our approach pre-
dict the SMPL tracks from original shot and use a dynamic
NeRF to represent it. Hence, our approach eliminates the
need for manual scene construction.

3. Method

In this paper, we propose a method to transfer character and
camera behavior from a given single shot to new 2D/3D
content. For each shot, we extract its SMPL tracks represent-
ing the sequence of characters’ motion in world coordinates,
and then optimize the camera trajectory based on the SMPL
tracks, as detailed in Sec. 3.1 and Sec. 3.2. Finally, we used
the SMPL tracks and the camera trajectory to create new
content through a full 3D engine workflow in Sec. 3.3.

3.1. Human Pose and Camera Estimation

Due to the coupling of character and camera movement in a
video, it is hard to obtain accurate human motions in world
coordinates. We need to estimate a camera trajectory in the
world coordinates to decouple the human and camera mo-
tions to eliminate the ambiguity of scene scale in camera
space. Typically, we utilize SLAM (simultaneous localiza-
tion and mapping) to extract the camera trajectory. Given
a single shot V' with T frames, V' = {I;,...,Ir} with
N characters, we first predict a starting camera trajectory
C = {¢}T_, in world coordinates with SLAM method. And
then we predict N SMPL tracks S. = {S.,,})_, in camera
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Figure 2. The overview of our differentiable pipeline of characters’ motion and camera trajectory estimation. Given a shot video, we first
extract SMPL tracks in camera coordinates and a camera trajectory in world coordinates. Then, we reconstruct the motions of all characters
in world coordinates by a 4D human reconstruction method. Finally, we optimize camera trajectories by leveraging NeRF as a differentiable

renderer and refine SMPL tracks.

coordinates. N means the number of people in video. With
S. and C, we can compute the SMPL tracks S,, in world
coordinates with a 4D human reconstruction method f,

Sw = fu(Se, C). (1)

Although the starting camera trajectory C predicted from V
can resolve the scene scale ambiguity and help us to recover
the human motions in world coordinates, C suffers from
the errors caused by the dynamic content in V. We propose
to optimize a new camera trajectory C* = {c;}1_; based
on S, via a differential render NeRF to add image-level
supervision.

NeRF represents a 3D scene in a differentiable way that
can render an image with a given camera pose. This also
means that, for a trained NeRF, we can figure out an opti-
mal camera pose that renders frames that match our refer-
ence shot V. Towards this goal, we train a dynamic NeRF
fp(©,1) to capture the character motion tracks .S,,. Hence,
the camera trajectory optimization can be treated as an in-
verted optimization, which takes a trained NeRF as a differ-
entiable render and uses the NeRF backpass gradients to find
the optimal camera parameters.

¢ = argminL(c; | I, ©), (2)
¢t €SE(3)

where O is the parameters of NeRF, I; is the reference shot
frame image in time ¢. Due to the lack of background and
details of the approximation scene of SMPL, our method
can not compute the loss directly from the RGB images like
iNeRF [32], and optical flow or human pose like JAWS [28].
To tackle the above issues, we introduce two losses: a com-
position loss £, and a joint loss £;. i) The composition loss
L. is calculated by an instant mask image for the original
image and the NeRF rendered image. For the mask images,
We color the pixels of each human mask to match the vertex
color of the corresponding SMPL model and color the rest of
pixels white. Due to the lack of detail in SMPL, the clothes
of the people will affect the results, especially some special

clothing styles such as ornate gowns. To solve this problem,
we introduce the second loss. ii) The joint loss £; is calcu-
lated by the joint distances between the original image and
the rendered image. For the original image, we predict the
joints 2D coordinates of each character as the ground truth
by ViTPose [30]. For the rendered image, we reproject the
SMPL joints in 3D to 2D by optimized camera pose. The
final loss is a weighted sum of L. and £;.

After the optimization, we obtain a more accurate camera
trajectory C*. Compared to the starting camera trajectory
C predicted solely by SMPL, it can better align the recon-
structed image framing with the original shot by using NeRF
as the differentiable renderer with two image-level losses.
Since a more reasonable camera trajectory leads to better
SMPL tracks in world coordinates, we can update Eq. (1)
and compute more accurate SMPL tracks,

Sw = fn(Se, C7). 3)
3.2. Camera Trajectory Optimization

A key step in the above optimization is to optimize the cam-
era trajectory. Nevertheless, using NeRF to directly regress
the values in the transformation matrix ¢* does not guarantee
that the optimized result remains in the SFE/(3) manifold.
Preliminary on optimiazation parameters. In most NeRF-
based pose estimation works [32], the camera pose is defined
as a transform matrix ¢* € SE(3) in world coordinates, and
is estimated by a trained NeRF model. To ensure the esti-
mated pose still lies in the S F(3) manifold during gradient-
based optimization, the camera pose c* is represented by
an initial pose estimate ¢"' € SE(3) and a transformation
matrix A with exponential coordinates:

C* — ACini[7
where A = e[51 — el1? Jr0,w,0)
0 1 )
Jicwwy = (10 4 (1 — cos ) [w] + (6 — sinOw]?))v.

4)
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Here S = [w, v]T represents the screw axis, 6 is a magnitude,
[w] represents the skew-symmetric 3 x 3 matrix of w. The
matrix optimization problem is then equivalent to figuring
out the optimal parameters (6, w, v). With this parameteri-
zation according to Eq. (4), the optimal goal is to achieve
optimal relative transformation from an initial estimated pose
Cinit:

6, w,v = argmin L(Ac™ | I,©). )

SOERE

For each given observed image, the camera parameters
(0, w, v) are initialized near 0, and each is drawn from ran-
dom from a zero-mean normal distribution A'(0, 0 = 107%).

Sequence camera parameters optimization. Existing
NeRF-based camera pose estimation works [28, 32] focus on
single-camera pose estimation and rarely tackle a sequence.
Their primary objective is to ensure that the rendered image
resulting from camera optimization closely resembles the
target image. Consequently, they often prioritize this visual
similarity over the accuracy of the trajectory in 3D world
coordinates. They optimized each time camera parameter c;
independently during this process.

We aim to optimize the camera pose to produce a cor-
rect 2D image and predict the correct inverted 3D camera
trajectory. Regrettably, constructing a 3D scene and obtain-
ing a NeRF representation identical to that of a movie shot
with complex dynamic content significant challenges. We
accurately detect the pose of the character in the reference
shot and subsequently estimate it by predicting SMPL tracks.
However, the introduction of noise through SMPL predic-
tions amplifies errors in camera pose estimation, leading to
an unreasonable camera trajectory in 3D world coordinates.
These motivate us to learn a continuous representation of the
camera trajectory to prevent mutations.

As mentioned in Eq. (4), the camera trajectory parameters
¢; € C* for each time step ¢ can be decomposed by an initial

pose ¢ and a transformation matrix A

cf = Ae™. (6)

To learn a continuous representation of the camera trajec-
tory, we use two strategies. First, the initial pose c"' is de-
rived from the camera parameters of the preceding moment:
cnit = ¢* . Second, we defined a continuous function f 4
with respect to time ¢ to calculate transformation matrix
Ay: Ay = fa(t). The matrix A, is defined by parameters
(0, w;, vy) according to Eq. (4). The parameter 0 remains
constant throughout the entire camera trajectory Therefore,
as long as the parameters w; and v; are continuous, the con-
tinuity of the camera trajectory can be guaranteed. We use
two MLP fyy and fy, to predicted the w; and v; in each time

step ¢:
wy = wy + fW(t)7

7
v = v1 + fu(t). @

As mentioned in Sec. 3.1, the S,, is projected to the world
coordinates by SLAM camera é, and then we used the S,
to optimize the camera trajectory C*. The camera trajectory
C* is aligned to the SLAM camera C. To calculate the
parameters 6, w; and v; in the first time step. So we can
use the ¢; as the ¢ to optimise the first camera pose ¢}
according to Eq. (4) that can reduce the computational cost.
We use Eq. (5) to optimize the 0, wy and v;.
Finally, we transform Eq. (6) into the following:

CZ = f.A(@’uM ®v797t)crfla t S [252‘:)’ (8)

where ©,, and ©,, is the parameters of MLP fyy and fy .

3.3. Transfer via a 3D Engine-based Workflow

With the accurate character and camera behavior estimation,
we can transfer them to 2D and 3D content which are shown
in Fig. 3 (d) and (e).

2D cinematic transfer aims to replace characters in an
existing film shot with new 3D characters, while keeping
the same character motions and camera behavior. For 2D
cinematic transfer, we first render a pure video without back-
ground V; with our camera trajectory and the character after
retargeting. Then, we remove the foreground characters from
the original shot. In this paper, we use an advanced object
removal method ProPainter [36], to erase the characters and
generate a pure background video V3. We combine these two
videos V; and V} to obtain the final results.

3D cinematic transfer takes character and camera move-
ments and applies them in new characters and scenes, which
further allows for adjustments in different aspects like light-
ing, character motion, camera motion, offering more control
and options for personalizing the final result. 3D cinematic
transfer is much simpler, which only needs to apply the mo-
tion and camera to the virtual scene and render the result.
However, compared to the 2D workflow, 3D cinematic trans-
fer has more flexibility. Since the entire scene is in the 3D
space, we are free to modify it according to our needs, for
example, change the time from night to day (Fig. 3 middle
(e)), place a robot in the corner (Fig. 3 below (e)).

4. Experiments

4.1. Implementation Details.

Our implementation is based on ‘torch-ngp’ and Pytorch. We
use PHALP [20] for human pose tracking, SLAHMR [31] for
4D human reconstruction, D-NeRF [19] for neural rendering
and VitPose [30] for 2D joints prediction. More details are
shown in the supplementary.

4.2. Qualitative Results

Our approach can reproduce character movements and cam-
era trajectories from a given shot, replace characters in the
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(a) Original Shot (b) SMPL Visualization

(c) Retargeting Visualization

(e) 3D Transfer Results

(d) 2D Transfer Results

Figure 3. Examples of cinematic behavior transfer. (a) The original shot: we present three common shot types Arc, Track, and Push In.
(b) SMPL visualization of our method. We recreate the cinematic behavior by extracting the SMPL tracks and the camera trajectory from
the original shot. (c) New Characters retargeting visualization of our method. We apply the motion of SMPL to new character and render
images with optimized camera trajectory through our engine workflow. (d) The 2D cinematic transfer results. We erase the characters in the
foreground and combine the background video with (c) to generate a new 2D video like (a). (e) The 3D cinematic transfer results. We apply
the motion and camera to a new virtual scene, like a cartoon grassland, palace, and SF tunnel.

frame, or change the scene through an engine-based work-
flow. Fig. 3 showcases some examples of cinematic transfer
from an original film shot to a synthetic environment. Com-
pared with other methods, our method can handle various
scenes with single/double/multiple characters. It can also
recover various types [21, 22] of shot trajectories, such as
Arc, Track, and Push-In.

Specifically, in Fig. 3: (a) The original shot: we present
three common shot types Arc, Track, and Push-In. Arc shot
orbits the camera around a subject in an arc pattern. Track

shot moves the camera through the scene for an extended
amount of time. Push-In shot moves the camera closer to a
subject. (b) SMPL visualization of our estimation. We ex-
tract and optimize the SMPL tracks and the camera trajectory
from the original shot, which can reproduce the characters’
motion and the camera movement. (¢) New 3D characters’ re-
targeting visualization. We retarget the original shot’s SMPL
motion to new 3D characters and render images with opti-
mized camera trajectory through our engine workflow. This
allows us to further put them into a scene. (d) The 2d cine-
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(i-a) Original Shot

(ii-¢) 3D Cinematic Transfer (char. & camera)
Figure 4. Flexibility enabled by 3D engine workflows. For 2D
cinematic transfer, we can replace any character like (i-b) or (i-c),
in shot (i-a). For 3D cinematic transfer, we demonstrate the ability
to apply either the camera alone (ii-b) or both character and camera
information to new content(ii-c).

matic transfer results. We replace any character in the origi-
nal shot. For instance, we can replace “Mia” and “Sebastian”,
the characters in Lalaland, with our own 3D characters or
keep “Mia” and replace “Sebastian” with a new 3D character
as shown in Fig. 4 (i-b). It is implemented by first using an
advanced object removal method [36] to erase the charac-
ter in the foreground and combining the background video
with (c) to generate the final video. (e) The 3d cinematic
transfer results. We apply the characters’ motion and camera
movement to new 3D characters and a new virtual scene.
This provides the user with more freedom of operation, e.g.,
adjusting the lighting, or modifying the camera.

Flexibility of our cinematic transfer. Fig. 4 shows various
transfer results with our 3D engine-based workflow. After
investigating artist’s workflows, we figured out that to truly
meet their needs, the workflow should enable freely using
different information extracted from the video, such as the
motions of the characters or the movement of the camera.
Our approach can well provide this flexibility to explore
various creative possibilities: replacing one character and
keeping the others within a movie shot (Fig. 4 (i-c)); employ-
ing solely the camera trajectory from a movie shot to a new
scene with different character motions (Fig. 4 (ii-b)). How-
ever, the recent SOTA cinematic transfer method JAWS [28]
does not fully support this flexibility. Their workflow can
only apply camera trajectory to scenes that closely resemble

(a) Original Shot (b) JAWS (¢) Ours
Figure 5. Comparison of the cinematic transfer results with SOTA.
Our method demonstrates a better ability to align with the composi-
tion of the original shot compared to JAWS [28]. The two shots are
from Inception, 2010 (top) and the Matrix, 1999 (below)

the reference video in terms of the number of characters and
their relative positions.

Comparison with SOTA in cinematic transfer. JAWS [28]
is an optimization-driven approach that addresses the cine-
matic transfer from a reference clip to a trained NeRF. It used
a on-screen loss and a iner-frame loss to cover the framing
and camera motion aspects. It is limited to handling highly
mismatched character poses due to inter-frame motion. So,
it has to hand-craft a scene that is essentially the same as the
original shot to train NeRF, which greatly limits its usage
scenarios. Additionally, simply adapting JAWS to our setting
does not work due to the lack of background and details of
the predicting SMPL tracks. To be specific, the RAFT [26]
they used for the optical flow estimation cannot work for
the rendered SMPL image and LitePose [29] they used to
infer the post joint will ignore the inter-frame motion. To
achieve a strong comparison with JAWS, we use the shots
used in their papers’ experiments, as shown in Fig. 5. Our
method restores not only the composition of the shot but also
the action of the characters. Although JAWS used a realistic
environment similar to the original shot, it does not accu-
rately reproduce the composition of the original shot. We
can clearly observe the flaws in the “Matrix” example, where
two characters occupy the left and right parts of the image
when the camera is pushed to the end. The composition of
the characters in JAWS’s results do not closely align with
the original footage. Another limitation of JAWS is that it
highly relies on dynamic NeRF results, which will easily
fail on the complex motion shots that dynamic NeRF cannot
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(a) Original Shot

(b) PACE
Figure 6. Comparison of the human pose estimation in world co-
ordinates with SOTA. As shown in the red box, our method has
better results in limb details due to the improved optimization of
the camera trajectory.

(c) SLAHMR (d) Ours

handle. As our method does not require background details
of the predicting SMPL tracks, our approach has lower qual-
ity requirements for NeRF’s quality, which leads to stronger
robustness and better performance.

Comparison with SOTA in world coordinates human
pose estimation. As we mentioned in Sec. 3.1, when we
finished the the camera C* optimization with fp, we can
bring it into f3; and get new SMPL tracks. Fig. 6 compares
the human pose estimation results with SOTA methods. Due
to the enhanced optimization of the camera trajectory, our
method achieves better results in capturing detailed limb
poses. Inspired by bundle adjustment, PACE [7] tightly inte-
grates SLAM and human motion priors in optimization. It
can handle the shot with that entire character’s body but is
limited to dealing with the shot where only the character’s
partial body appears. To achieve a strong comparison with
PACE, we use the shots used in their papers’ experiments.
In Fig. 6 (b), the feet of the figure on the left are not on the
ground. Since films contain lots of partial body shots like
close-up shot or medium shot, PACE is not very suitable
for cinematic transfer. SLAHMR [31] used relative camera
estimates along with data-driven human motion priors to
resolve the scene scale ambiguity and recover the human
trajectories in world coordinates. However, the human pose
is likely to fail due to the noise from DROID-SLAM on
dynamic content. In the leftmost character shown in the
red box of Fig. 6 (c), the arms should be close to the body,
while SLAHMR predicts open arms. We do not directly use
SLAM’s camera trajectory and utilize NeRF as a differential
render to re-optimize the camera pose. Due to the improved
optimization of the camera trajectory, our method achieves
better results in capturing finer details of limb poses.

4.3. Quantitative Results

Since A key feature in cinematic behavior transfer is to check
if the transferred results are similar to the original shot, we
test three metrics on the frame composition restoration and
conduct a user study to validate users’ satisfaction with 2D
and 3D transfer.

(®) y
# #

(©

(d £\ & i

(d) W “& .v!‘

Figure 7. We show the results of the alignment visualization: (a)
the original shot, (b) DROID-SLAM, (c) iNeRF, (d) our method.

Comparison with SOTA on frame composition restora-
tion. Tab. 1 shows the quantitative results between our
method with two SOTA camera pose estimation methods
DROID-SLAM [27] and iNeRF [32]. DROID-SLAM is a
deep learning-based SLAM system with fewer catastrophic
failures. iNeRF uses NeRF for mesh-free, RGB-only 6DoF
camera pose estimation, which uses RGB pixels as a super-
vision signal. Due to the lack of background and details of
SMPL, we use the composition loss £, instead of RGB loss
to implement iNeRF. We test more than 100 well-known film
shots that collected from the Internet with multiple styles to
show the effectiveness of our method.

To measure the effect of different methods on restoring
picture composition, we use three metrics to evaluate all the
methods: 1) Pixel Accuracy (PA): It is the percentage of
pixels in the segmentation image that are correctly classified.
2) Intersection over Union (IoU): The overlap between the
character segmentation map in the rendered shot and the
character segmentation map in the original shot. 3) Mean Per
Joint Position Error (MPJPE): The mean Euclidean distance
between the predicted key bone point and the true value.
As shown in Tab. 1, (i) Changing backgrounds and moving
figures can greatly affect SLAM’s accuracy. It can be seen
from the three metrics that the position of the characters
in the picture rendered by SLAM is greatly offset from the
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Shot Move. PUSH-IN PULL-OUT PAN
Methods PAT IoUl MPJPE| | PAT IoU} MPIPE| | PAT IoUl MPJPE]
DROID-SLAM [27] | 862 85.8 4049 | 860 853 3562 | 919 896 409
iNeRF [32] 89.0 882 2926 | 928 915 83.9 |839 810 1096
Ours 899 885 596 | 948 940 238 |934 914 214
Shot Move. TRACK FOLLOW ARC
Methods PAT IoUf MPIPE] | PAT IoUT MPIPE] | PAT IoUf MPJIPE |
DROID-SLAM [27] | 89.3 883 1092 | 733 705 10469 | 927 92.6 1452
iNeRF [32] 90.1 892 585 | 853 851 2675 | 908 905 1163
Ours 945 938 218 | 913 905 1309 | 948 945 479

Table 1. Comparison with the state-of-the-art camera pose estimation methods on different shot movement types. Our approach outperforms

the other baselines across all metrics.

Methods SLAM+SMPL Ours
2D restoration camera mpv. 4.7+1.3 6.0+0.5
char. motion 5.5+1.1 5.840.8
3D restoration camera mov. 4.4+1.0 5.3+0.6
char. motion 4.9+0.9 5.0+1.0

Table 2. Pair-wise comparison of our method and baseline on con-
tent restoration in seven-point Likert scale (lowest-highest:1-7).

original shot, which means that the SLAM method cannot
get the correct camera trajectory. (ii) Since iNeRF only uses
RGB pixels as loss, it can not restore the composition of the
picture very well. (iii) Our method achieves the best results
in all metrics, which shows that our method can accurately
restore the composition of the original shot, and the extracted
camera trajectory is basically correct.

Fig. 7 visualizes the rendered image of different meth-
ods. It can be clearly seen that both SLAM and iNeRF ren-
dered images in which character’s positions are obviously
offset from the original images. The images rendered by
our method are very consistent, indicating that the camera
trajectory we obtained is correct.

User study. To further demonstrate the validity of our
method in practice, we conduct a user study on 30 shots from
different films among 10 volunteers. Our study focuses on
the accurate recovery of the original video on the screen, and
the results of the restored characters and camera movements
in world coordinates. Volunteers are required to compare the
original shot with the 2D and 3D results and to determine
how well the two matched up with the seven-point Likert
scale (lowest-highest:1-7). To have a strong baseline, we
combined DROID-SLAM [27] and SMPL [31] estimation
to jointly infer camera and character behaviors. Volunteers
were asked to view the original shot and the results of both
methods at the same time, and to rate both results. For 2D
results, we use the rendered result from camera view like
Fig. 5 (c¢). For 3D, we chose a side view that can see the
movement of the character and the camera completely like
Fig. 6 (d). In order to make it easier for volunteers to make
judgments, we will provide more than two side views.

Tab. 2 shows that: (i) By employing the NeRF technique
to re-optimize the camera trajectory, our method received

positive feedback from users who perceiving the extracted
camera trajectory as more reasonable compared to SLAM
method. (ii) Due to the more reasonable camera trajectory
to refine SMPL tracks, users have observed enhanced poses
in our optimized SMPL, which in turn has created a greater
sense of consistency with the original shot characteristics. It
is important to acknowledge that in movie shots, the char-
acter’s body is often partially visible, which may lead to
an accurate visual representation but lacks accuracy in 3D
space. For example, the feet may not be properly positioned
on the ground but suspended in the air.

5. Discussion and Conclusion

In comparison to previous works, our method exhibits im-
proved performance and robustness across a wide range
of scenes. However, our approach still has certain limita-
tions: 1) Our approach relies on a starting camera trajectories
obtained from SLAM technology to acquire SMPL tracks.
Consequently, when the content of a shot changes too rapidly
to extract SMPL tracks, our method is unable to produce the
correct results. ii) Our approach is specifically designed for
shots that prominently feature human subjects. However, in
scenarios where the primary focus of a shot shifts towards
showcasing the environment or objects, our method transi-
tions into a simplified version resembling a SLAM approach.

We introduce a reverse filming behavior estimation tech-
nique that enables cinematic behavior transfer. It utilizes
NeRF as a differentiable renderer, effectively optimizes
camera trajectories and refines character movements with
SMPL models. Additionally, our innovative cinematic trans-
fer pipeline demonstrates its versatility by efficiently trans-
ferring various shot types to both 2D video and 3D virtual
environments. The integration of a 3D engine workflow not
only enhances rendering quality and control but also garners
a higher user satisfaction rating, showcasing the potential of
our approach in digital media production.
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