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Abstract

In image question answering, due to the abundant and
sometimes redundant information, precisely matching and
integrating the information from both text and images is a
challenge. In this paper, we propose the Decomposition-
Integration Enhancing Multimodal Insight (DIEM) which
initially decomposes the given question and image into mul-
tiple subquestions and several sub-images aiming to isolate
specific elements for more focused analysis. We then in-
tegrate these sub-elements by matching each subquestion
with its relevant sub-images, while also retaining the orig-
inal image, to construct a comprehensive answer to the
original question without losing sight of the overall con-
text. This strategy mirrors the human cognitive process of
simplifying complex problems into smaller components for
individual analysis, followed by an integration of these in-
sights. We implement DIEM on the LLaVA-v1.5 model, and
evaluate its performance on ScienceQA and MM-Vet. Ex-
perimental results indicate that our method boosts accu-
racy in most question classes of the ScienceQA (+2.03%
in average), especially in the image modality (+3.40%). On
MM-Vet, our method achieves an improvement in MM-Vet
scores, increasing from 31.1 to 32.4. These findings high-
light DIEM’s effectiveness in harmonizing the complexities
of multimodal data, demonstrating its ability to enhance ac-
curacy and depth in image question answering through its
decomposition-integration process.

1. Introduction
With the rapid advancement of Large Language Mod-
els (LLMs) [2, 6, 38], they have showed astonishing ca-
pabilities across various tasks, simultaneously catalyzing
the development of Multimodal Large Language Models
(MLLMs) [1, 36, 40, 47]. In particular, when it comes to
complex reasoning tasks, a significant breakthrough method
of generating intermediate reasoning steps before infer-
ring answers, known as Chain-of-Thought (CoT) [42], has

gained considerable attention. This approach has sparked
the creation of numerous models aimed at improving the
CoT approach [24, 34, 41, 46]. Importantly, CoT [42] have
been extended to MLLMs, such as multimodal-CoT [52],
which utilizes a two-stage framework to focus on basic prin-
ciples before deriving the final answer from these princi-
ples. However, a limitation of CoT [42], particularly in its
application to MLLMs, is its focus only on text processing,
but overlooking the integration and critical analysis of vi-
sual data.

Compared to text, images often convey richer and more
diverse details, providing an abundance of visual cues and
background knowledge. However, the high dimensional-
ity, complex structure, and presence of visual noise make
extracting information from images more challenging than
text [3, 9, 35]. These complexities may cause models to
overlook crucial image details or focus on irrelevant con-
tent. Furthermore, the objects, relationships, and attributes
within images may have intricate connections with key tex-
tual information. Such intricacies in both image and text
highlight a need for a more holistic approach, ensuring that
both textual and visual elements are effectively utilized in
complex reasoning tasks.

To address this challenge, we drew inspiration from the
human method of processing text and image information.
When humans answer a question based on an image, the
process typically starts with a quick review of the ques-
tion’s text and a rapid ”pre-scan” of the image to grasp the
main content and context of both the question and the im-
age. Following this, we begin to think through the question
step by step and during this process, our attention is usu-
ally drawn to specific areas closely related to the question.
For instance, if the question mentions a particular object,
we might pay special attention to the color, shape, or other
details of that object within the image. This localized ob-
servation allows us to delve deeply into the specific details
and content within the image. Moreover, we also consider
the relationships between various elements in the image and
their connection to the question, which often furnish us with
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more accurate information.
To emulate the human approach of sequential informa-

tion processing, we introduce DIEM, a novel multimodal
decomposition-integration strategy. Firstly, we decom-
pose the original question into subquestions by GPT-3.5-
Turbo [29] and decompose image into several sub-images
using Segment Anything model [17]. Subsequently, by
matching each subquestion with the respective sub-image
using CLIP model [33], we identify multiple image regions
closely related to each subquestion, allowing the model to
capture key textual and visual information with more pre-
cise focus. To ensure that the overall image context is re-
taine, the original image is also provided for each subques-
tion. After this granular analysis, we then concatenate each
pair of subquestion and sub-answer, integrating the visual
information, to answer the original question. To illustrate
our approach more intuitively, Fig. 1 displays the frame-
work of DIEM.

This decomposition-integration strategy in multimodal
tasks enables a more precise extraction and utilization of the
deep links between images and text, leading to a thorough
understanding and accurate reasoning of the original query.
The design of DIEM allows for future adjustments or ex-
tensions based on different questions or image content, like
modifying the number of sub-images matched to each sub-
question as needed. Furthermore, DIEM is a training-free,
plug-and-play method, which means it can be easily inte-
grated with existing MLLMs. This flexibility allows DIEM
to enhance these models without the need for extensive re-
training or complex integration processes.

We evaluate DIEM on the ScienceQA [25] and MM-
Vet [49]. Using the LLaVA-1.5 model [22], which had
not been specifically trained or fine-tuned, as our baseline,
our DIEM enhanced the average accuracy by 2.03% with
the image accuracy by 3.40% on ScienceQA [25], and im-
proved MM-Vet scores [49] from 31.1 to 32.4. Our re-
sults indicate that decomposing questions into subquestions
and matching them with corresponding sub-images decom-
posed from the original image, followed by integrating all
these fragments of information, can lead to a more coherent
and precise understanding in multimodal task.

2. Related Work

2.1. CoT reasoning

As the data size grows and the parameters of the mod-
els become larger, Large Language Models(LLMs) exhibit
remarkable emergent capabilities [8, 11, 31, 32]. There
are many approaches that have shown to improve re-
sults with extended reasoning steps by the system, such
as chain-of-thought [42], deductive verification [21], and
self-verification [15, 26, 43]. Among them, chain-of-
thought [42] is a prompting strategy that derives the fi-
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Figure 1. The framework of DIEM method. DIEM contains three
stages: (1) Text-Visual Decomposition: Decompose the original
question and image to derive a list of subquestions and a list of sub-
images. (2) Text-Visual Matching: Determine several sub-images
most relevant to each subquestion, making the visual information
more targeted. (3) Answer Generation: After answering all sub-
questions, add subquestion-subanswer pairs to prompt the original
question. Combined with the sub-images information correspond-
ing to the original question, the correct option is finally chosen.

nal answer through a sequence of intermediate reason-
ing steps, mirroring human cognitive processes. It’s been
demonstrated to be highly effective for complex reason-
ing tasks. Inspired by the success of CoT, several stud-
ies [18, 27, 46, 51, 52] have ventured into extending the
unimodal CoT to a multimodal version.

2.2. Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) have made
significant strides in recent years[12, 20, 48]. By integrat-
ing textual and visual modalities, MLLMs can transcend the
limitations inherent in textual information [7, 14, 44, 50].

In current large-scale multimodal pre-training models,
whether it’s CLIP [33], UNITER [4], or ViLT [16], the
embedding layers or the complexity of the visual features
surpass that of the textual features. Multimodal models
need to derive more knowledge from these visual charac-
teristics. MiniGPT-4 [53] aligns a frozen visual encoder
(BLIP-2 [19]) with a frozen LLMs (Vicuna [5]) using just
a single projection layer. Initially trained with 5 million
text-image pairs, it is subsequently fine-tuned with 3,500
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high-quality datasets, rapidly equipping the language model
with image understanding capabilities. A recent work,
LLaVA [23], is a model capable of visual and textual mul-
timodal transformations, consisting of a visual encoder and
Vicuna v1.5 [5]. Through end-to-end training, LLaVA has
achieved high performance in visual reasoning. Building
on this, LLaVA-1.5 [22] has been further optimized and
improved, surpassing several state-of-the-art (SOTA) mod-
els on various benchmarks. LLaVA [23] employs the pre-
trained CLIP [33] VIT-L/14 as its encoder and is linked with
the open-sourced LLaMA [39]. Unlike MiniGPT-4 [53],
LLaVA [39] mainly applies instruction-tuning to the multi-
modal model. This represents the first attempt to extend in-
struction adjustment to the multimodal domain, using Chat-
GPT [28]/GPT-4 [30] to transform image-text pairs into
appropriate instruction-following formats. By connecting
the CLIP [33] visual encoder with the LLaMA [39] lan-
guage decoder and undergoing end-to-end fine-tuning, it
also achieves impressive performance.

There are also lots of related works in improving reason-
ing for multimodal tasks. Visual ChatGPT [23] primarily
focuses on image generation and editing. KOSMOS-1 [13]
and PaLM-E [10] demonstrate the zero-shot multimodal
CoT capabilities with large-scale training. ViperGPT [37]
instructs LLMs to generate Python code for a one-round
query answering while MM-REACT [45] is a multi-round,
dialogue-based system that may integrate the strong QA
model as one of its vision experts.

3. Methods
3.1. Overview

DIEM not only allows for a deep dive into the details of the
textual and visual information but also ensures a compre-
hensive grasp of the overall context. On the whole, DIEM
first decomposes both the question and image, then inte-
grates them, so that the model can more meticulously com-
bine key textual and visual information. It performs three
core steps:

1. Text-Visual Decomposition: Given an input of a ques-
tion and an image, generate a list of subquestions and
a list of sub-images.

2. Text-Visual Matching: Given a subquestion and the
sub-images list, generate a matching list that contains
several sub-images most relevant to the subquestion.

3. Answer Generation: Given the subquestion list and
the matching list of each subquestion, generate cor-
responding subanswers. And then given subquestion-
subanswer pairs and options, generate the final answer.

The first step shows the decomposition strategy of DIEM
while the last two steps indicate the integration strategy. In

Fig. 2, we take a detailed example to show how our method
works. We will elaborate on each part of our method in the
following subsections.

3.2. Text-Visual Decomposition

3.2.1 Question Decomposition

In the Question Decomposition Stage, we prompt the LLM
with a question q and instruct it to decompose the original
question into a series of subquestions to be answered. So
we derive an initial list of subquestions Subquestionq =
[q1, q2, . . . ]. Since there’s a dependency order among the
subquestions, to distinguish their sequence, we attach a pair
of label <sub q i></sub q i> to each subquestion qi to
clarify the order and identity of each subquestion. Thus, the
form of qi is like: qi = <sub q i>content</sub q i>.

Furthermore, given the contextual linkage between sub-
questions, each subquestion might need to reference the an-
swer(s) from any preceding subquestion(s) (termed as sub-
answers, with subquestion qi corresponding to subanswer
ai). We employ a specific label Ref to denote this refer-
ence. If subquestion qi requires the subanswer qj , then the
sentence for qi will include the Ref label, and:

Ref = <sub a j></sub a j>. (1)

Considering that the content of the final subquestion
might not necessarily align with the intended meaning of
the original question, we append the original question to
the end of the subquestion list to ensure that the final an-
swer directly addresses the original inquiry. Consequently,
the subquestion list derived from the Question Decomposi-
tion is:

Subquestionq = [q1, q2, . . . , qm, q], (2)

where m represents the number of subquestions obtained
after decomposing question q.

3.2.2 Image Decomposition

In the Image Decomposition Stage, we divide the original
image g into n sub-image. Each sub-image gi captures an
object or a distinct segment from the original image. The
value of n is not fixed, but is adaptive based on different
images. We construct a sub-image list G, specifically:

G = [g1, g2, . . . , gi, . . . , gn], gi ⊂ g. (3)

Such a procedure helps us pay closer attention to the in-
dividual details within the image. Because in some cases,
an entire image might be loaded with abundant informa-
tion, making it challenging to capture all key details from
a singular, holistic perspective. By breaking it down into
sub-images, we can focus more specifically on certain seg-
ments of the image, thereby capturing important features or
nuances that might otherwise be overlooked.
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 <sub_q_1>What countries are included in the image?</sub_q_1>

 <sub_q_2>Which country is highlighted in the image?</sub_q_2>

  Which country is highlighted?

Subquestion List

Image Sub-image List

  Which country is highlighted?

  Options: 
      (A) Fiji
      (B) Solomon Islands
      (C) Australia
      (D) the Marshall Islands

Question

Graph
Decomposition

Question
Decomposition

   [Subquestion]: <sub_q_1>What countries ... image?</sub_q_1>

   [Matching Sub-image]: [1, 3, 4] 

   [Subquestion]: <sub_q_2>Which country ... image?</sub_q_2>

   [Matching Sub-image]: [3, 1, 4] 

   [Subquestion]: Which country is highlighted?

   [Matching Sub-image]: [3, 1, 4] 

Top-3 Matching List

    Human: <sub_q_1>What countries are included in the image?</sub_q_1>,<sub_a_1>The countries included in the image are         
        Australia, New Zealand, Solomon Islands. and Papua New Guinea.</sub_a_1>, <sub_q_2>Which country is highlighted
                in the image? </sub_q_2>, <sub_a_2>The country highlighted in the image is the Solomon Islands.</sub_a_2>
                Which country is highlighted? 
                     Options: 
                           (A) Fiji
                           (B) Solomon Islands
                           (C) Australia
                           (D) the Marshall Islands

          Context：
    Answer with the option's letter from the given choices directly.

    Assistant: The answer is (B) Solomon Islands

   [Subquestion]: <sub_q_1>What countries ... image?</sub_q_1>

   [Subanswer]: <sub_a_1>The countries ... New Guinea.</sub_a_1>

   [Subquestion]: <sub_q_2>Which country ... image?</sub_q_2>

   [Subanswer]: <sub_a_2>The country ... Solomon Islands.</sub_a_2>

Subanswer List

k = 3

Final Q&A
Answer

Final
Answer

Figure 2. A specific example(omitting some formatting). First, the original question is decomposed into 2 subquestions and the original
question is appended to the end of the subquestion list. Simultaneously, we segment the origional image into various sub-images, adding
the origional image to the end of sub-image list as well. Then, we match each subquestion with 3 most relevat sub-images that must contain
the origional image to ensure the integrity of the visual information. Based on the visual information of images in the matching list, we
answer each subquestion, and derive 2 subanswers. In the end, we add 2 subquestion-subanswer pairs, options and context from the dataset
to the prompt, combinig visual information from its matching list to derive the final answer.

3.3. Text-Visual Matching

To more accurately associate each subquestion with the rel-
evant image content, we evaluate the similarity score Sij be-
tween the features of subquestion qi and sub-image gj . The
top k sub-images with the highest scores are considered to
be most related to that subquestion. The set of images with
the highest similarity scores for subquestion qi constitutes
the matching sub-image list Gk(qi):

argtopk({Si1, Si2, . . . , Sin}) → {j1, j2, . . . , jk}, (4)
Gk(qi) = [gj1 , gj2 , . . . , gjk ], (5)

The function argtopk(·) returns an indices set
[j1, j2, . . . , jk] corresponding to the indices of the top
k elements in the similarity scores set. The sub-images
indexed by these indices form Gk(qi).

Additionally, to preserve the overall context, we treat
the original image g as a sub-image and include it in the
sub-image list for each subquestion. This way, aside from
conducting a localized visual analysis, we also maintain an
understanding of the entire structure and content of the im-
age. within the subquestion list Subquestionq for question
qeach subquestion qi is associated with a list of sub-images
SubImgqi described as:

SubImgqi = Gk(qi) ∪ {g}. (6)

It’s worth noting that since the original question q is
also included in the subquestion list Subquestionqq will

also be associated with a corresponding list of sub-images
SubImgq .

3.4. Answer Generation

In the Answer Generation Stage, we combine the textual
information of each subquestion qi with the visual infor-
mation from the corresponding matching sub-image list
SubImgqi and sequentially answer each subquestion with-
out providing options. A reference tag Ref within a sub-
question qi indicates a dependency on another subanswer
aj . When such a reference is detected, we perform a sub-
stitution, replacing the tag Ref with the content of the rel-
evant subanswer, updating it to ensure it does not reference
any subanswer, as shown in Fig. 3, which follows this con-
ditional logic:

qi =

{
Replace(Ref, aj), if qi contains Ref

qi, else
, (7)

where Replace(X,Y ) denotes replacing X with Y .
A function Answer(·) representing the answer genera-

tion process, which requires the refined subquestion qi and
its matching sub-images list SubImgqi , is then applied to
produce an answer ai:

ai = Answer(qi, SubImgqi). (8)

Combine the subquestion qi and its corresponding sub-
answer ai into a tuple, represented by Ti = (qi, ai), where

27307



i = 1, 2, . . . ,m.

When answering the last subquestion in the list, which
is the original question q, we concatenate all the previous
tuples before the question to guide the generation of the fi-
nal answer. Additionally, visual features derived from the
matching sub-image list corresponding to the original ques-
tion q are incorporated. We then present options for the
question, ultimately obtaining the answer as FinalAnswer,
as determined by:

T
′
=

m⊕
i=1

Ti, (9)

FinalAnswer = Answer(T
′
⊕ q, SubImgq), (10)

where X ⊕ Y represents the text concatenation operation
with X preceding Y .

4. Experiments

4.1. Dataset

ScienceQA We evaluate our methods on the ScienceQA
benchmark [25]. It is the first large-scale multimodal sci-
ence question dataset that annotates the answers with de-
tailed lectures and explanations. The dataset contains 21k
multimodal multiple choice questions with rich domain di-
versity across 3 subjects, 26 topics, 127 categories, and 379
skills. The benchmark dataset is split into training, valida-
tion, and test splits with 12726, 4241, and 4241 examples,
respectively. Each question is presented with a context in
the form of natural language or an optional image.

In the test set of ScienceQA [25], there are 2178 mul-
timodal questions and 2063 text-only questions. For the
multimodal questions, we directly apply our method. For
the text-only questions, we also carry out the Question De-
composition step, answering each subquestion in the list in
sequence. Finally, the pairs of subquestions and subanswers
are passed on to answer the original question. Fig. 3 shows
an example of the text-only situation.

MM-Vet MM-Vet [49] is to evaluate Large Multimodal
Models’ ability on complicated multimodal tasks. It de-
fines 16 emergent tasks of interest, integrated from the 6
defined core Vision-Language capabilities. The dataset con-
tains 200 images, and 218 questions(all multimodal), all
paired with their respective ground truths. Questions and
expected responses in MM-Vet are designed to be open-
ended to cover the diversereal-world scenarios. To better
evaluate the responses, it leverage GPT-4 for evaluation.
Each question is scored from incorrect (0 points) to cor-
rect (1 point), including defining different types of partially
correct scores.

 <sub_q_1>What are the possible units of measurement for volume?</sub_q_1>

 <sub_q_2>Which unit in <sub_a_1></sub_a_1> is used for measuring the volume of a mustard bottle?</sub_q_2>

 What is the volume of a mustard bottle?

Subquestion List

 [Subquestion]:  <sub_q_1>What are the possible units of measurement for volume?</sub_q_1>

 [Subanswer]: <sub_a_1>1. Liters (L)\n2. Milliliters (mL)\n ...... \n10. Cubic centimeters (cm^3)</sub_a_1>

 [Subquestion]: <sub_q_2>Which unit in 1. Liters (L)\n2. Milliliters (mL)\n ......\n 10. Cubic centimeters (cm^3)

 is typically used for measuring the volume of a mustard bottle?</sub_q_2>

 [Subanswer]: <sub_a_2>The volume of a mustard bottle is typically measured in milliliters (mL).</sub_a_2>

Subanswer List

   Human:  <sub_q_1>What are the possible units of measurement for volume?</sub_q_1>, <sub_a_1>1. Liters
  (L)\n2. Milliliters (mL)\n ...... 10. Cubic centimeters (cm^3)</sub_a_1>, <sub_q_2>Which unit in 1.
  Liters (L)\n2.Milliliters (mL)\n ...... \n10. Cubic centimeters (cm^3) is typically used for measuring the
  volume of a mustard bottle?</sub_q_2>, <sub_a_2>The volume of a mustard bottle is typically measured
  in milliliters (mL).</sub_a_2>

                  What is the volume of a mustard bottle? 
                  Options: 
                         (A) 9 gallons
                         (B) 9 cups
                         (C) 9 fluid ounces
                Context：Select the best estimate.
              Answer with the option's letter from the given choices directly.
  Assistant: The answer is (C) 9 fluid ounces.

Final Q&A

   What is the volume of a mustard bottle?  

   Options: (A) 9 gallons (B) 9 cups          (C) 9 fluid ounces

Question

Figure 3. An example for the text-only questions. We only need to
decompose the question, attaining a subquestion list. Then we se-
quentially answer the subquestions in the subquestion list. Since
the second subquestion requires referencing the first subanswer,
we replace the <sub a 1></sub a 1> tag with the first suban-
swer. After replacing, the new subquestion is devoid of any refer-
ences, and we then proceed to answer it.

4.2. Implementation

In our experiments, during the Question Decomposition
Stage, we utilized GPT3.5-Turbo-4k [29] for subquestion
decomposition and provided a few few-shot examples [34].
In the Image Decomposition Stage, we employed the Seg-
ment Anything model [17] for sub-image partitioning,
where 811 questions resulted in only one sub-image, and 14
questions yielded up to 16 sub-images. In the Text-Visual
Matching Stage, we used the CLIP [33] model to match
each subquestion with its k most relevant sub-images. If
the number of sub-images is less than k, we retain all of
them in the sub-image lists. During the Answer Gener-
ation Stage, we used LLaVA-1.5-7b [22], a strong open
multimodal model, as our fundamental model architecture.
Our Standard data represents the performance of LLaVA-
1.5-7b [22] on ScienceQA [25] and MM-Vet [49] without
any training or fine-tuning. We applied our method directly
on LLaVA-1.5-7b without any training or fine-tuning either.
The rest of the settings are consistent with LLaVA-1.5 [22],
including providing ”Context” for questions and appending
”Answer with the option’s letter from the given choices di-
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Method Subject Context Modality Grade AverageSOC NAT LAN TXT IMG NO G1-6 G7-12

Standard 69.18 65.76 67.18 71.83 65.70 65.93 70.52 60.25 66.85

Results on our own methods
DIEM(SQ-only) 71.33 69.98 63.64 76.68 68.64 64.12 72.10 62.43 68.64

DIEM(SQ+SI, k=5) 71.65 70.34 63.64 76.68 69.10 64.12 72.80 61.83 68.88

Table 1. Main results on ScienceQA (accuracy %). NAT = natural science, SOC = social science, LAN = language science, TXT = text
context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12, SQ = subquestion, SI = sub-image. k = 5
means each subquestion is matched with the 5 most relevant sub-images on Text-Visual Matching stage. DIEM achieves improvements
across most question classes, with the 3.4% increase in the IMG Modality that we particularly focused on.

Method Rec OCR Know Gen Spat Math Total

Standard 36.1 23.5 17.4 22.2 25.9 11.5 31.1

Results on our own methods
DIEM(SQ-only) 37.9 19.9 18.0 20.6 29.9 11.2 31.3

DIEM(SQ+SI, k=4) 38.3 22.5 18.9 22.5 30.8 11.2 32.4

Table 2. Main results on MM-Vet (points). Rec = recognition, OCR = optical character recognition, Know = knowledge, Gen = language
generation, Spat = spatial awareness, SQ = subquestion, SI = sub-image. k = 4 means each subquestion is matched with the 4 most
relevant sub-images. DIEM achieves improvements in most core visual-language capabilities, especially in Rec (+2.2) and Spat (+4.9).

rectly” to the prompt of the original question. Our tests were
conducted on four NVIDIA GeForce RTX 3090 24G GPUs.

4.3. Results and Discussions

Main Results We compared the performance of DIEM
with the Standard method, which neither decomposes the
question nor the image, across different classes on both
benchmarks. Main results on ScienceQA [25] is shown
in Tab. 1. The average accuracy of our baseline, LLaVA-
v1.5, is 66.85%. When we only decompose the question
into subquestions(SQ-only), the average accuracy increases
to 68.64%. When we combine both subquestions and sub-
images (SQ+SI) to reasoning, the average accuracy reaches
68.88%, bringing improvements in almost all subjects, con-
text modalities, and grades. Since DIEM pays attention
on processing images, we should pay more attention to
its performance in the IMG Modality. DIEM’s accuracy
in the IMG Modality is 69.10%(+3.4%) and compared to
subquestion-only, incorporating sub-images to aid in sub-
question reasoning further improves accuracy by 0.46%,
bringing enhancements across all subjects.

Main results on MM-Vet [49] are shown in Tab. 2. It
demonstrates that DIEM has achieved improvements across
multiple core visual-language capabilities, particularly in
the areas of Recognition and Spatial Awareness. This in-
dicates that our decomposition-integration strategy enables
the model to focus more on recognizing specific objects or
features within an image, rather than being distracted by
other irrelevant visual information. It also improves the un-

derstanding of the spatial relationships between objects in
the image, helping the model to more accurately parse the
positional relationships among these objects, thereby en-
hancing its ability to comprehend spatial layouts.

Overall, our DIEM method, through its more detailed
and precise decomposition and matching mechanism, en-
hances the performance of the model in image ressoning
problems, and is training-free, plug-and-play.

The Influence of k To investigate the impact of the num-
ber of sub-images k on answering questions, we took dif-
ferent k and compared the results on ScienceQA [25] and
MM-Vet [49] relatively. The results are shown in Fig. 4.
On ScienceQA [25], we divided it into two scenarios: de-
composing and not decomposing the original questions.
In the case of decomposing the questions(SQ), the perfor-
mance of the model first rises with the increase of k. At
k = 5, the model’s average accuracy (Ave-Acc) and image
accuracy (IMG-Acc) reach their peaks, which are 68.88%
and 69.10%, respectively. However, at k = 6, although
the average accuracy and image accuracy are still high,
they begin to decline. When we only decompose the im-
age without decomposing the question(No SQ), the perfor-
mance of the model becomes relatively stable. Especially at
k = 4, 5, 6, both the average accuracy and the image accu-
racy are very similar, and they are still better than the base-
line. Similar experimental results are also reflected on MM-
Vet [25]. This proves the beneficial effect of decomposing
sub-images on performance improvement. However, when
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Figure 4. The influence of different numbers of subgraphs k most
relevant to the subproblem on the results on ScienceQA and MM-
Vet. Ave-Acc = average accuracy, IMG-Acc = image accuracy, To-
tal = total scores. k = 0 indicates that the image is not segmented,
while k = ALL implies the use of all sub-images. The accuracy
and scores initially increase with the number of sub-images, and
the improvements then gradually slows down. After reaching a
certain point, it tends to stabilize and then starts to decline.

using all sub-images, the accuracy will drop significantly.
We think that this is because many images in the dataset
contain only one object or even no obvious object, lead-
ing to ineffective decomposition of sub-images. Therefore,
when the number of sub-images exceeds a certain threshold,
it may introduce too much noise or redundant information,
leading to a performance decline.

Interaction Between SQ and SI In multimodal tasks, the
connection between text and images is crucial. As can be
seen from Fig. 4, with the increase of k, the improvement
of image Accuracy brought by decomposing both the ques-
tion and the image (SQ) is greater than that of decompos-
ing the image-only(No SQ). Moreover, the image accuracy
of simultaneously decomposing both the question and the
image begins to exceed the average accuracy when k = 3,
while the image accuracy of only decomposing the question
is below the average. This indicates a positive interaction
between subquestions and sub-images. Decomposing the
image alone can already help the model to focus and filter
out unnecessary noise, bringing performance improvement.
However, when we decompose the question into subques-
tions, each subquestion is more specific and can be more
easily matched with the relevant sub-images. The model,
through such precise matching, can better grasp the subtle
relationships between text and images. By reducing infor-
mation redundancy and processing information more focus-
edly, the accuracy is significantly enhanced.

4.4. Further Exploration

Necessity of Integration DIEM method adds the original
question to the end of the subquestion list and includes the
original image in the sub-image list for each subquestion.
After sequentially answering all subquestions, all pairs of
subquestion-subanswer are used to prompt the final answer
to the original question. We focused on image accuracy on
ScienceQA [25] and total scores on MM-Vet [49] when the
subquestion list does not include the original question and
the original image is not included in sub-image lists, un-
der the condition of k = 4, while keeping other conditions
unchanged. We did not conduct tests without original ques-
tions on MM-Vet [49], as it contains numerous simple ques-
tions that cannot be decomposed into sub-questions. The
results are shown in Tab. 3. We can see that only by consid-
ering both the original question and the original image did
we observe the maximum increase in performance, under-
scoring the importance of integrating the original question
and original image in our method.

Dataset OQ OI IMG-Acc Total

ScienceQA
- ✓ 66.61 -
✓ - 68.50 -
✓ ✓ 69.01 -

MM-Vet ✓ - - 31.3
✓ ✓ - 32.4

Table 3. OQ = origional question, OI = original image. The perfor-
mance declines when neither the original question nor the original
image is considered after decomposition, highlighting the impor-
tance of the decomposition-integration strategy.

Subquestion Prompt Strategies On ScienceQA [25],
when answering the original question on the end of the
subquestion list, like the baseline method, we provide a
”Context” and ”Options” after the original question, where
the ”Context” is derived from the ”hint” in the ScienceQA
dataset. Hence, we sought to explore whether ”Context”
and ”Options” should also be provided when prompting to
subquestions. The results are shown in Tab. 4.

The results indicate that when only the ”Context” is pro-
vided for the subquestions, the accuracy reaches its peak at
68.83%. However, when we provide options for the sub-
questions, the accuracy drops by 0.64%. This demonstrates
that when solving problems, the ”Context” consistently of-
fers good guidance for the model at various stages. Since a
subquestion is merely a part or detail of the original ques-
tion, when we provide options for the subquestion to gen-
erate its answer, the resulting answer from the subquestion
might be biased. When integrating all the subquestions and
their answers to answer the final question, these biased an-
swers might mislead, causing the answer to the original
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question to deviate from the correct direction.

Method CON OPT Ave-Acc IMG-Acc

DIEM(k=4)
- - 68.29 68.50
✓ - 68.83 69.01
✓ ✓ 68.19 67.22

Table 4. CON = context, OPT = option. We conducted three differ-
ent tests: providing context and options to subquestions, providing
only context without options, and not providing either. The results
showed that giving context to subquestions has a positive impact,
while providing options leads to a decrease in the model perfor-
mance.

4.5. Error Analysis

The answers to the subquestions play a crucial role in re-
sponding to the origional question. Incorrect subanswers
can lead to certain misleading conclusions for the original
question. To better understand the behavior of DIEM and
promote future work, we manually and randomly selected
50 multimodal incorrect answers generated by our method
when k = 5 on ScienceQA [25] to see where the problems
occurred.

We categorize them into two main groups, and further
subdivide each category based on the different situations
we observed. After each category, we have indicated the
number of errors and provided our reasoning for classifying
errors in that category. The results are as follows:
• Partial Subanswers Incorrect (39 / 50):

– Inappropriate Question Decomposition (5):
* Explanation: The decomposed subquestions are un-

related to the original question or deviate from the
intended meaning of the original question.

– Inappropriate Image Decomposition (15):
* Explanation:

1. Decomposing images from categories like
flowcharts incompletely will adeversely impacts
their strong comprehensive, results in the loss of
textual information and further complicating the
image-text matching step.

2. The original image either lacks any distinct ob-
jects or contains only one object. Decomposing
such images actually generates ineffective infor-
mation.

– Inappropriate Image-Text Matching (10):
* Explanation: Due to different numbers of most rel-

evant sub-images, some questions get matched with
irrelevant sub-images, while others do not match all
relevant sub-images.

– Subquestion Answering Failed (9):
* Explanation: Due to the limitations of the LLM, it

couldn’t generate comprehensible answers.

• Subanswers Correct (11 / 50):
– The answer’s meaning is correct, but options

weren’t selected (2):
* Explanation: The final answer did not directly spec-

ify which option should be chosen. Instead, it gen-
erated a sentence whose meaning actually indicated
the correct choice.

– Original Question Answered Incorrectly (9):
* Explanation: Even though we determined the sub-

answers to be correct, the final answer to the main
question was still incorrect.

Furthermore, we observed numerous instances where the
subanswers were incorrect, but the final answer was correct.
This indicates that DIEM is robust to some extent.

5. Limitations and Future Work
For the decomposition of sub-questions, we solely relied
on the GPT3.5-Turbo-4k [29] model. The shorter length
limitation means that the few-shot prompt’s performance is
not ideal. In the future, we plan to employ larger language
models for decomposing sub-questions and provide better
few-shot prompt to ensure the quality of subquestions. We
also suggest that decompose questions in conjunction with
images might yield better results.

Moreover, upon decomposition, textual information
might be lost, and strong inter-relationships between el-
ements in some types of images might be severed, even
though the original image is provided. If the original im-
age is too simple, the image-text matching process might
seem unnecessary. Moving forward, we aim to explore how
to more accurately exclude distractions from intricate dia-
grams and extract vital information. We also believe that,
for more complex images and questions, especially those
containing multiple objects, our decomposition-integration
strategy will yield better results.

6. Conclusion
We introduce DIEM, a multimodal reasoning method that
proposes a decomposition-integration strategy. Our DIEM
method first decomposes, then integrates, and focusing
on individual parts before the whole, which inherently
endows our method with training-free and plug-and-play
characteristics. Experimental results have proven the
effectiveness of our method, increasing image accuracy
by 3.40%, average accuracy by 2.03% on the ScienceQA
benchmark and the total score is improved by 1.3 points on
the MM-Vet benchmark. This enhancement in performance
not only demonstrates DIEM’s ability to enhance multi-
modal comprehension, but also highlights its effectiveness
in ensuring a more detailed and accurate synthesis of
insights. Our error analysis demonstrates the potential of
DIEM in handling complex problems and multi-object
images that require in-depth analysis and understanding.
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