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Figure 1. Qualitative results comparing the proposed method with EDI [27], AKF [39], Time Lens [37], FILM [32], CBMNet [23],
EvUnroll [44], and REFID [36] on simulation datasets. In the “basketball” scene, our method provides frames that are rolling shutter effect
corrected and deblurred. In the “slingshot egg” scene, our method can reconstruct the shape of the pellet with the best quality, as indicated
in the yellow box. The images have been magnified for optimal viewing quality.

Abstract

Event-based Vision Sensors (EVS) gain popularity in en-
hancing CMOS Image Sensor (CIS) video capture. Nonide-
alities of EVS such as pixel or readout latency can signif-
icantly influence the quality of the enhanced images and
warrant dedicated consideration in the design of fusion
algorithms. A novel approach for jointly computing de-
blurred, rolling-shutter artifact corrected high-speed videos
with frame rates up to 10 000FPS using inherently blurry
rolling shutter CIS frames of 120FPS to 150FPS in con-
junction with EVS data from a hybrid CIS-EVS sensor is
presented. EVS pixel latency, readout latency and the
sensor’s refractory period are explicitly incorporated into
the measurement model. This inverse function problem is
solved on a per-pixel manner using an optimization-based
framework. The interpolated images are subsequently pro-
cessed by a novel refinement network. The proposed method
is evaluated using simulated and measured datasets, un-
der natural and controlled environments. Extensive experi-
ments show reduced shadowing effect, a 4 dB increment in
PSNR, and a 12% improvement in LPIPS score compared
to state-of-the-art methods.

1. Introduction
Event-Based Vision Sensors (EVS) capture our world from
a completely different perspective compared to CMOS Im-
age Sensors (CIS) [9, 14, 24, 25]. In EVS, each pixel inde-
pendently triggers an event if a relative illuminance change
on the pixel reaches a certain triggering threshold (typically
in the range of 10% to 30%). Conversely to CIS, EVS
operate time-continuously and asynchronously - there is no
common exposure period or “frame rate”. Thus, EVS pixels
can be read out comparatively fast in a low-power manner
enabling efficient high-speed data capture. Recent work on
enhancement of high-quality images [23, 27, 34, 37, 39] fo-
cuses on fusing CIS and EVS information so that the high
fidelity of CIS measurement and the fast response of EVS
measurement can complement each other.

In practice it is observed [3, 14, 21, 25] that the dynamic
characteristics of EVS pixels are highly dependent on the
illuminance in the sensor plane. Under low-light conditions
such as indoor capture, a slower EVS response during video
enhancement can result in ghosting or blurry frames and
needs to be considered in algorithm design. Furthermore,
the inevitable readout latency and refractory period of EVS
pixels can significantly aggravate artifacts. Current methods
are not specifically designed to address sensor nonidealities.
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This paper presents an inverse model capturing the EVS
pixel latency (namely the VFE delay), the readout latency,
and the refractory period. The inverse model is solved
through nonlinear graph optimization to jointly address de-
blurring, rolling-shutter (RS) correction and video-frame
interpolation while compensating for sensor nonidealities.
In addition to the inverse model, a learning-based refine-
ment module is proposed to enhance the image quality by
further mitigating the noise and artifacts. The proposed
method is compared with existing CIS-based [32] and EVS-
assisted [8, 23, 27, 36, 37, 39] video enhancement methods
under challenging indoor scenarios with fast motion. As
illustrated in Figure 1, the proposed algorithm produces ex-
cellent image quality with much fewer artifacts.

The contributions of the paper can be summarized as:
• A formulation of a joint debluring, rolling-shutter cor-

rection and video-frame interpolation problem based
on CIS and EVS fusion, where EVS sensor nonideali-
ties are explicitly modeled (Section 3),

• An optimization methodology jointly solving this cou-
pled inverse problem (Section 4.1), as well as a post-
processing network for artifact removal (Section 4.2),

• A comprehensive comparison and analysis of simula-
tion and measured datasets in natural and controlled
environments (Section 5).

2. Related Work
Video Frame Interpolation Video interpolation aims to
synthesize intermediate frames between two images to
achieve a temporally coherent video sequence. Traditional
CIS-based methods depend on optical flow for a smooth
transition. In SuperSlomo [18], the bi-directional flows are
combined with a linear combination followed by a refine-
ment using U-Net [33]. Such optical flow-based methods,
however, suffer from occlusion problems. In DAIN [1], re-
searchers estimate occlusion areas using depth information
and use contextual information from neighboring pixels to
fill the occluded regions. In RIFE [17], the flow and fu-
sion maps are generated simultaneously without an addi-
tional optical flow module for final result synthesis. FILM
[32] presents a multi-scale feature extractor within a uni-
fied network to achieve an enlarged receptive field aimed at
handling large object motion in the video.

Event-assisted Frame Enhancement A key issue low-
ering the image quality of CIS-based frame interpolation
methods is the lack of information between frames. EVS
provides such information thanks to its asynchronous low
latency capture not relying on a global exposure period.
Some early studies [31, 34] show that intensity reconstruc-
tion purely based on EVS modality is feasible. However,
as EVS captures events based on differential changes of il-
luminance, this approach struggles to estimate the absolute
light level. In [2], the optical flow and intensity frames are

estimated simultaneously by solving an optimization prob-
lem that takes EVS measurements as data terms. The au-
thors in [22] take a step further by formulating the event-
based SLAM problem, which can be decomposed into cam-
era ego-motion estimation and 3-D scene reconstruction.
However, the quantization error makes it difficult to re-
construct high-quality frames from EVS alone. As EVS
pixels trigger independently, researchers simplify the prob-
lem formulation to pixel-wise estimation by fusing CIS and
EVS, without seeking explicit representation of the 3-D en-
vironment. The Event-based Double Integral (EDI) [27, 28]
method is proposed as a straightforward and effective way
to deblur CIS frames and generate high frame rate videos.
EVS and CIS measurements are connected by integrating
events twice, such that the continuous intensity curve for
each pixel can be determined. [34] presents a complemen-
tary filter-based framework to combine a high-pass signal
from EVS and a low-pass signal from CIS to compute an
all-pass signal for pixel intensity. To make the complemen-
tary filter gain adaptive to measurement noise, a pixel-wise
Kalman filter is used in [39] where a unifying EVS/CIS un-
certainty model is proposed.

Machine learning methods such as Time Lens [37] and
its subsequent versions [10, 36, 38, 41] or others [29, 43]
concatenate both CIS and EVS data using a voxel grid
representation [12] as input to feed the network of two
branches: an optical flow warping-based branch and a
synthesis-based branch. The final result is blended with
a trained attention module to avoid the disadvantages of
any individual branch. CBMNet [23] is proposed to han-
dle complex real-world motion using a novel cross-modal
asymmetric bidirectional motion field estimation. Due to
the high temporal resolution of EVS data, the rolling shutter
problem which is commonly observed in fast-motion sce-
narios can be corrected using EVS data [6, 44].

EVS Latency Many studies model EVS latency [20, 25,
30, 35], but few of them have been applied to algorithm
design such as frame enhancement. To the best of the au-
thors’ knowledge, this is the first work that considers an
EVS latency model explicitly in generating high frame rate,
deblurred, rolling-shutter artifact-free videos.

3. Problem Formulation
Event Pixel Operation and Pixel Latency Model In this
work, a hybrid CIS-EVS sensor [14, 15] is used. As shown
in Figure 2(a), EVS and CIS share the same photodiode de-
sign on the hybrid sensor and it is assumed that the light
level is identical for nearby CIS and EVS pixels. The pho-
tocurrent ipd is converted to front-end voltage VFE in module
i2v, which models dynamic characteristics as a 1st-order
Low-Pass Filter (LPF) [21, 26]. The update rule for VFE be-
tween discrete event indices k and k + 1 can be written as:
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Figure 2. (a) Hybrid CIS-EVS sensor principle. The upper and
lower branches indicate physical quantity conversion in CIS pixels
and EVS pixels, respectively. (b) Example of VDC and VFE curves
and triggered events that illustrate the impact of VFE delay, readout
latency, and refractory period.

VFE(k+1)=VFE(k) + γ(k)(VDC(k+1)−VFE(k)), (1)
where VDC(k + 1) = fDC(ipd(k + 1)) represents the VFE
under DC excitation (i.e., the VFE with infinite LPF band-
width); fDC(ipd) is the logarithmic-like current-voltage con-
version function and

γ(k) = 1− exp

(
− ∆t

τ(k)

)
(2)

is the time-varying coefficient of the LPF, where ∆t is
the time interval between two indices. The photocurrent-
dependent time constant τ(k) can be modeled as [16, 26]:

τ(k) = τ0 +
α

ipd(k)
, (3)

where τ0 and α are pixel parameters. The pixel latency in
module i2v due to the LPF behavior is called “VFE delay”.
As illustrated in Figure 2(b), an event is triggered at time tin
once the difference between VFE and reference voltage Vref
reaches the triggering threshold voltage:{
VFE(tin)− Vref(tin) ≥ cup for positive events
VFE(tin)− Vref(tin) ≤ cdown for negative events , (4)

where cup/down denotes the contrast threshold voltage. The
in-pixel timestamp tin is recorded when the event fires, after
which the pixel experiences “readout latency trl” and “re-
fractory period trp”. The Vref is updated to follow VFE af-
ter the refractory period. Finally, we have a 5-dimensional
output {x, y, tin, toff, p}, which contains row and column in-
dices, in-pixel and off-pixel timestamps, and polarity.
Pixel-wise Photocurrent Estimation Suppose that the il-
luminance on the sensor plane results in photocurrent ipd
for a single pixel. We aim to estimate ipd when an event
is triggered to avoid the impact of pixel latency in the i2v

module. Based on Figure 2(a), we have the following CIS
measurement equation:

DN = G

∫ te

ts

ipd(t)dt, (5)

where DN is the CIS intensity frame measured in digi-
tal numbers; G indicates the total gain of charge-voltage
conversion and ADC; ts and te denote the CIS expo-
sure start and end, respectively. As for EVS measure-
ments, suppose we have an event sequence with N events
{x(k), y(k), tin(k), toff(k), p(k)}. By assuming VFE(1) =
VDC(1), with Eq. (1) we have the recurrence relation:

VFE(1) = fDC (ipd(1)) (6)
VFE(k + 1) = fγ (ipd(k)) (fDC (ipd(k + 1))− VFE(k)) , (7)
where k ∈ {1, · · · , N − 1} and fγ(·) denotes the function
that maps ipd onto γ. By assuming Vref(k + 1) ≈ VFE(k),
the EVS measurements provide additional N − 1 equations
as:

c(k + 1) ≈ VFE(k + 1)− VFE(k), (8)
where c(k) ∈ {cup, cdown} are the known triggering thresh-
olds that are configurable. These state transition equations
and measurement equations (6)-(8) can be expressed as a
system of 2N − 1 nonlinear equations and 2N unknowns
- ipd(k) and VFE(k). By using a zero-order holder, the
discrete states ipd(k) and VFE(k) can be approximated as
continuous signals ipd(t) and VFE(t). This makes it pos-
sible to utilize CIS measurements in Eq. (5) as additional
constraints. In conclusion, the pixel latency compensa-
tion can be expressed as pixel-wise optimization problem,
solving the nonlinear system with 2N unknown states and
2N+M−1 equations, where M and N denote the number
of CIS and EVS measurements, respectively.

Modeling Readout Latency and Refractory Period The
EVS measurement model equation (8) is an approximation
since the state variation during the readout latency and the
refractory period is not considered. Using both in-pixel
timestamps and off-pixel timestamps, it is possible to com-
pensate for some of the “missed” VFE change by assuming
that the slope of VFE is locally constant for a short period.
As illustrated in Figure 2(b), it is noted that:

m(k + 1) =
c(k + 1)

tin(k + 1)− toff(k)− trp
, (9)

where m describes the slope approximation of the VFE
curve. For the readout latency, the missed VFE is represented
as:

∆V rl
FE(k) = m(k + 1) [toff(k)− tin(k)] . (10)

For the refractory period, we have ∆V rp
FE(k) = m(k + 1)trp

since trp is a fixed parameter. Thus the reference voltage
after compensation can be adjusted to:

Vref(k + 1) = VFE(k) + ∆V rl
FE(k) + ∆V rp

FE(k). (11)
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Figure 3. Block diagram of the proposed method. Note that after
the frame reconstruction the blurry texture due to motion is en-
hanced and the RS effect is removed. The noise and artifacts are
further reduced by the refinement network.

By substituting the compensation equation (11) into (4), the
impact of readout latency and refractory period can be com-
pensated:
c(k+1) ≈ VFE(k+1)−VFE(k)−∆V sl

FE(k)−∆V rp
FE(k), (12)

where ∆V rl
FE(k) and ∆V rp

FE(k) are voltage compensation for
readout latency and refractory period, respectively. Note
that this compensation is enabled by the availability of in-
pixel and off-pixel timestamps.

4. Method
The proposed frame enhancement framework is presented
in Figure 3. The frame reconstruction module jointly de-
blurs images, removes the RS effect, and interpolates high
frame rate images. The refinement network focuses on re-
moving noise and improving image quality.

4.1. Solving the Inverse Model via Optimization

Graph Modeling for a Single Pixel Due to the pres-
ence of pixel latency, the system is governed by nonlinear
equations, rendering the models and solutions designed for
linear systems inapplicable. Graph optimization [13] pro-
vides a straightforward way to model nonlinear systems,
where the states and measurements are represented as nodes
and edges in a graph as shown in Figure 4(a). Let l ∈
{1, · · · ,M} and k ∈ {1, · · · , N − 1} be the indices of CIS
and EVS, respectively. By defining states x = [ipd(k)]

⊤

and measurements zCIS = [DN(l)]⊤, zEVS = [c(k + 1)]⊤,
the pixel-wise graph optimization framework aims to deter-
mine the state vector x:

x∗ = argmin
x

(
e⊤CISΩCISeCIS + e⊤EVSΩEVSeEVS

)
(13)

where eCIS = zCIS− z̃CIS, eEVS = zEVS− z̃EVS denote mea-
surement error vectors; z̃CIS and z̃EVS are predicted mea-
surements which can be calculated from estimated states
according to CIS measurement equation (5) and EVS mea-

Eq
n.

 (6
) ipd(1) ipd(2) ipd(N)   ...

...

Eq
n.

 (7
)

Eq
n.

 (7
)
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time
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Figure 4. (a) Graph modeling of the pixel-wise photocurrent esti-
mation problem, where nodes and edges denote states and mea-
surements. The arrows indicate the order of state calculation.
“zCIS” and “zEVS” indicate CIS and EVS measurements, respec-
tively. Eqn. (8) is replaced with Eqn. (12) when voltage com-
pensation for readout latency and refractory period is enabled.
(b) Row-based reconstruction scheme showing three CIS images
as input. After row-wise computation, interpolated and deblurred
frames without RS effect can be generated as shown in the blue
box. The proposed scheme can be applied to video enhancement
with any number of CIS images.

surement equation (8); zEVS is adjusted using register set-
tings and calibrated using the “S-curve method ”[7]. The
statistical distribution of the threshold is not explicitly mod-
eled in the current method. The diagonal weighing matrices
ΩCIS and ΩEVS reflect the reliability of CIS and EVS, re-
spectively. Using the cost function equation (13), the VFE
delay is modeled explicitly through the EVS measurement
equations. Solving the optimization problem leads to state
estimation such that the VFE delay is compensated. Many
approaches have been proposed to solve nonlinear opti-
mization problems iteratively [19]. We parallelize pixel-
wise tasks as there is no data interaction or computational
dependency between pixels.
Rolling Shutter (RS) Effect Correction As CIS param-
eters such as row exposure time and RS scanning speed
are known, we formulate the frame estimation problem as
pixel-wise computation using adjusted CIS timing param-
eters for each row. After solving the photocurrent at each
event time-step through optimization, a zero-order hold is
used to generate a time-continuous photocurrent ipd(t) for
all pixels. The CIS measurement equation (5) is used to
generate a rolling shutter artifact-free target frame rate (such
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Figure 5. Modified NAF block in the refinement network.

as 10 000FPS).

Video Glitch Effect Deblurring and video frame interpo-
lation performance can experience glitches in case these are
computed on a frame-by-frame basis. To mitigate this issue,
we solve the coupled deblurring, rolling-shutter correction
and interpolation problem jointly for subsequent frames uti-
lizing the row-specific rolling shutter timing characteristics
as shown in Figure 4(b), where we reconstruct each row
according to its specific exposure time by fusing two con-
secutive CIS frames and their corresponding events.

4.2. Refinement Network

A refinement network is developed as a post-processing
module to further mitigate the noise and artifacts in the
reconstructed frames. NAFNet [4] is designed for image
restoration. It is structured as a U-Net, arranging NAF
blocks to allow the network to progressively downsample
the input for semantic feature extraction and then progres-
sively upsample it to restore the output. NAFNet provides
additional skip connections that preserve information and
allow feature reusability from earlier layers. NAF blocks
are structured as original ResNet blocks, with additional
layers such as layer normalization and channel attention.
We adopt the NAFNet basic concept, and further modify
making two major additions: 1) spatial attention [40] as
shown in Figure 5 and 2) perceptual loss [32]. The rea-
son for choosing spatial attention is that most of the noise is
located in motion areas instead of being ubiquitous across
the image. Spatial attention allows the network to focus on
these noisy regions of the image, which contributes to bet-
ter denoising results. Moreover, the rationale for choosing
the perceptual loss is that even though the proposed net-
work does well in removing the pixel-level saturation noise,
it also introduces blurriness or texture degradation. Percep-
tual loss helps to recover the image quality in a way that
better aligns with the human vision system. The losses ap-
plied in this paper are summarized as:

Ls = wlL1 + wVGGLVGG + wGramLGram, (14)

where the L1 loss is the pixel-wise difference be-
tween the reconstructed RGB image and ground truth
image; the LVGG loss is calculated as LVGG =
1
L

∑L
l=1 αl ∥Ψl(IRecon)−Ψl(IGT)∥1; Ψl(I) is the feature

tensor from the lth layer of an ImageNet pre-trained VGG-
19 network generated by passing the image I through the
network. In this case, L specifies the total number of lay-
ers in the VGG-19 network, while αl is the hyperparam-
eter assigned to each layer. Finally, the Gram loss [11]
is computed as the L2 difference between the autocorre-
lation of the VGG-19 features of the reconstructed image
and ground truth image with the formulation: LGram =
1
L

∑L
l=1 αl ∥Ml(IRecon)−Ml(IGT)∥2, where given an im-

age I , the Gram matrix is computed for every layer l as
Ml = (Ψl(I))

⊤(Ψl(I)).

5. Experiments
We compare our proposed method with state-of-the-art
EVS+CIS video reconstruction methods: EDI [27], AKF
[39], Time Lens [37], CBMNet [23], EvUnroll [8] and RE-
FID [36]. Among them, EvUnroll proposes an RS correc-
tion based reconstruction and REFID combines image de-
burring with EVS based frame interpolation. We also show
the results of the CIS-only interpolation method FILM [32]
as reference. Before optimization, ipd are initialized accord-
ing to the first CIS image DN and the inverse photocurrent-
DN relation. The elements in the weighing matrices for
CIS, EVS terms are set to 1. The performance of the in-
terpolation methods are evaluated both quantitatively and
qualitatively, based on the metrics of Peak Signal-to-Noise
Ratio (PSNR), LPIPS [42], and pixel-wise reconstruction
error on DN. Furthermore, to study the performance degra-
dation concerning ambient illuminance and motion speed,
we measured a test set utilizing a rotating disk in a con-
trolled environment. We analyze the Blurred Edge Width
(BEW) [5] of the reconstructed frames – a larger BEW in-
dicates a blurrier image and, therefore, a worse deblurring
result.

5.1. Datasets

We evaluate the proposed method using the simulation
data based on the CIS-EVS hybrid sensor simulator [26]
which considers VFE delay, readout latency, and refractory
period. Our measurement data was collected from the hy-
brid CIS-EVS sensor [14, 15]. Here, only off-pixel times-
tamp data was captured. Two measured datasets were cre-
ated for evaluation: The natural scene dataset focuses on
indoor scenarios where EVS is significantly influenced by
pixel latency. The other dataset captured a rotating disk
with a Siemens star pattern under different ambient illumi-
nation levels and rotating speeds. In addition to the above
datasets specifically captured for this work’s evaluation, we
also test our method using the publicly available HS-ERGB
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Table 1. Quantitative comparison of state-of-the-art video reconstruction methods on the proposed simulation dataset in terms of PSNR
(in dB, higher is better) and LPIPS (a dimensionless quantity, lower is better). Each row shows results for a particular scene. Results from
different methods are listed column-wise. The first and second places are highlighted with bold underline and bold, respectively.

Ours Ours EDI AKF Time Lens FILM CBMNet EvUnroll REFID
w/o refinement

Scene PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
basketball 24.01 0.217 27.23 0.155 22.49 0.220 15.63 0.280 23.65 0.240 23.86 0.220 24.51 0.252 23.13 0.218 22.38 0.223
checkerboard 24.23 0.203 28.24 0.187 20.48 0.218 19.56 0.261 22.60 0.239 23.02 0.216 22.76 0.212 23.84 0.204 21.23 0.235
slingshot egg 25.23 0.100 32.85 0.106 24.95 0.164 15.59 0.110 25.19 0.244 24.04 0.203 22.76 0.234 24.61 0.210 23.92 0.201
running man 24.60 0.164 24.72 0.189 22.29 0.135 20.71 0.189 25.01 0.117 25.06 0.089 25.16 0.069 23.04 0.117 23.52 0.163
fan 22.40 0.189 24.50 0.163 18.17 0.255 10.78 0.184 20.64 0.233 18.93 0.184 21.28 0.204 19.64 0.190 18.30 0.198
Average 24.09 0.175 27.51 0.16 21.68 0.198 16.45 0.205 23.42 0.215 22.98 0.182 23.29 0.194 22.85 0.188 21.87 0.204

Table 2. Quantitative results of ablation study. The first and second places are highlighted with bold underline and bold, respectively.

without with VFE delay with RL+RP with VFE+RL+RP with VFE+RL+RP
compensation compensation compensation compensation compensation and refinement

Scene PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
basketball 22.95 0.316 23.47 0.306 23.50 0.307 23.56 0.302 23.64 0.295
slingshot egg 23.57 0.099 24.00 0.099 23.60 0.099 23.71 0.102 29.04 0.106

(e) Time Lens (f) FILM (g) CBMNet(b) Ours (c) EDI (d) AKF (h) EvUnroll (i) REFID(a) Event
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Figure 6. Qualitative comparison of state-of-the-art video reconstruction methods on the proposed measured datasets in terms of image
quality. The images have been magnified for optimal viewing quality.
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Figure 7. Frame-wise, quantitative comparison of state-of-the-art video reconstruction methods in terms of PSNR for varying scenarios of
the simulation dataset. Note that some algorithms exhibit pronounced discontinuities in the observed PSNR curves indicating the presence
of video glitches.

dataset based on a EVS camera that is collocated next to a
CIS camera. Since the paper focuses on mitigating artifacts
due to pixel latency, two indoor scenarios (“spinning plate”
and “spinning umbrella”) were selected. More details of the
dataset used are provided in the supplementary material.

5.2. Results

Image Quality Table 1 shows quantitative results for the
reconstructed video. Results in PSNR and LPIPS show
that the proposed method outperforms other state-of-the-art
methods in most of the scenes, especially with fast motion
(“slingshot egg”) or complicated rotation motion (“basket-
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ball”, “fan”). As expected the refinement network which
aims to alleviate artifacts and improve image quality reports
a higher score. Snippets of the reconstructed videos are pre-
sented in Figure 1 and Figure 6 for simulated and measured
data, respectively. Comprehensive input images are pro-
vided in the supplementary material. Thanks to the explicit
EVS latency modeling and compensation, our results avoid
obvious shadowing/ghosting artifacts – especially if there is
fast motion under challenging lighting conditions. It is also
noted that the proposed method successfully corrects the RS
effect, as shown in the “basketball” scene. Learning-based
methods face difficulties, as latency and the RS effect have
not been considered in model design and training. The CIS-
only method FILM provides natural image quality with low
noise but fails when the objects are too fast to be captured by
CIS, as shown in the “slingshot egg” scene. For the “basket-
ball” scene, our method shows an advantage in details and
sharpness compared to FILM.

In specific scenarios, such as the “spinning umbrella”
scene within the HS-ERGB dataset and the “running man”
scene in the simulation dataset, our method did not yield
improved image quality. This observation can be attributed
to several factors. Firstly, the HS-ERGB dataset employs
a different EVS with different pixel and readout latency as
well as refractory period. Secondly, this dataset is based
on a dual camera instead of a hybrid sensor so the spatio-
temporal alignment may differ. Thirdly, the scenes in ques-
tion involve relatively slower object movement speeds re-
sulting in reduced ghosting. In essence, the dynamic char-
acteristics of the EVS, the input signal frequency range, and
the reconstruction algorithm influence the quality of the re-
constructed images.

Video Glitch Effect To evaluate the glitch issue, we com-
pute the PSNR for each reconstructed frame as shown in
Figure 7. Overall, our method gives temporally more sta-
ble PSNR curves, which stem from the proposed row-based
reconstruction scheme. It is also noted that the refinement
network contributes significantly to higher PSNR.

Pixel-wise Error Analysis We select a pixel within the
region of interest (indicated as the yellow box in Fig-
ure 1(b)) and verify the pixel-wise reconstruction accuracy.
As shown in Figure 8(a), with the help of pixel latency com-
pensation the reconstructed VDC after optimization shows a
sharper peak (with 250 µs duration) compared to VFE (with
over 1ms duration). The high-frequency fluctuations on
ground truth VDC curve cannot be reconstructed due to the
VFE bandwidth limit. An overshoot is observed after the
peak resulting in a dark tail along the pellet’s trajectory,
as shown in Figure 1(b). This may stem from 1) the VFE
bandwidth, 2) the approximation error in equation (12), 3)
EVS measurement noise, and 4) choice of weighing matri-
ces for CIS and EVS. Figure 8(b), indicates that the pro-
posed method gives an excellent reconstruction of the pel-
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Figure 8. Pixel-wise reconstruction results for the “slingshot egg”
scene. The selected pixel is located at the path of the pellet,
in the yellow box of Figure 1. The refinement network is not
used here. (a) Comparison of the ground truth VDC, reconstructed
VFE and VDC, where the ground truth VDC is computed from the
ground truth DN of the pixel at 10 000FPS. (b) Comparison of
reconstructed pixel-wise DN of state-of-the-art video reconstruc-
tion methods.

(a) with no compensation (b) with VFE delay compensation

(c) with RL+RP compensation (d) withVFE+RL+RP compensation

Figure 9. Qualitative results of ablation study on the “basketball”
scene. Refer to Figure 1(a) for “with VFE+RL+RP compensation
and refinement” result.

let’s peak DN despite the overshoot.
Ablation Study We ablate the refinement network, VFE
delay compensation, readout latency (RL) and refractory
period (RP) compensation of our method. The numerical
evaluation are subject to selected ROIs on motion region.
To ablate VFE delay compensation, we set the time constant
τ = 0 such that VFE = VDC in Eq. (7). To ablate readout
latency and refractory period compensation, we use Eq. (8)
instead of Eq. (12) in the EVS measurement model. Re-
sults are summarized in Table 2 and Figure 9. The con-
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figuration using all modules gives significantly better vi-
sual and slightly better numerical results in PSNR com-
pared to having latency compensation and refinement dis-
abled. Disabling VFE or RL+RP compensation significantly
worsens the image quality, as severe shadowing artifacts are
observed. As for LPIPS in “slingshot egg” scene, the differ-
ence is not significant due to the small area of pellet ROI. It
is also noted that adding RL+RP compensation leads to im-
provement in the “basketball” but degrades the performance
in “slingshot egg” when comparing with VFE delay compen-
sation only. This is because RL+RP compensation is based
on the assumption that the slope of VFE is locally constant
for a short period. In cases such as “slingshot egg”, the as-
sumption may not hold due to close positive and negative
events. An ablation study against the use of NAFNet-only
is included in supplementary material.

Performance Regarding Illuminance and Speed The
proposed method is further investigated under a controlled
environment using varying illuminance and object motion
speed. BEW [5] is used to evaluate the image quality by
measuring edge sharpness. Figure 10(a)-(h) presents the
comparison of the state-of-the-art methods on a rotating
disk under 1000 lx and 292 rpm. It is observed that the pro-
posed method reconstructs sharper edges compared to the
others. Other EVS-based methods struggle resolving blurry
edges in presence of fast motion and also the CIS-based
FILM method fails to generate a sharp reconstruction. Fig-
ure 10(i) shows that the proposed method reports the lowest
BEW score (0.7) and has the sharpest edge profile.

The BEW scores under different speed and illumina-
tion conditions are summarized in Figure 11. Figure 11(a)
shows that the BEW increases with faster rotation speeds.
In Figure 11(b), the lower ambient light condition leads to
higher VFE latency degrading image quality. Our method
achieves the lowest BEW throughout all illuminance levels.

6. Conclusion
An EVS-assisted framework to solve motion blur, rolling-
shutter artifacts and video-frame interpolation in a joint
manner was presented. Existing methods use either a sim-
ple double integral model or a learning-based model, neither
of which explicitly address EVS sensor imperfections such
as EVS pixel latency, readout latency or refractory period.
This work overcomes these limitations by explicitly mod-
eling these characteristics. The compensation of readout
latency and refractory period is enabled by having access to
in-pixel and off-pixel time-stamps. The nonlinear inverse
model was solved through joint graph optimization of sub-
sequent frames utilizing row-by-row exposure information
to overcome rolling-shutter artifacts and possible glitches
between subsequent frames. A refinement network was pro-
posed to further improve the image quality by using specif-
ically designed spatial attention blocks. We showed that

Figure 10. (a)-(h) Comparison of state-of-the-art video reconstruc-
tion methods on the proposed rotating disk datasets with rotating
speed 292 rpm and environment illuminance 1000 lx. The yellow
box shows magnified edges. The visual “misalignment” is due to
EVS latency. (i) The DN-edge width relation at a fixed segment of
40 pixels (red line in (a)) on reconstructed rotating disk edge. The
refinement network is not used.

76 129 182 237 292
(a) speed (rpm)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 

BE
W

 (p
ixe

l)

EDI
AKF
FILM
Time Lens

CBM
EvUnroll
REFID
Ours w/o
refinement

50 100 300 500 1000
(b) illumination (lux)

0.5

1.0

1.5

2.0

2.5

3.0

Figure 11. Quantitative comparison of state-of-the-art video re-
construction methods on the proposed “rotating disk” scene in
terms of BEW. The lower the BEW values, the sharper the edge.
The refinement network is not used. (a) BEW under various rota-
tion speeds with a fixed illuminance of 1000 lx. (b) BEW under
various illuminance levels with a fixed speed of 292 rpm.

the proposed method outperforms state-of-the-art methods
in reconstructed image quality with an up to 4 dB improve-
ment in PSNR and 12% improvement in LPIPS score.
Limitation Since the pixel latency highly depends on
EVS design parameters, object motion, and ambient illu-
minance, the image quality improvement after latency com-
pensation may be subtle for slow objects or in bright scenes
such as “running man” and “spinning umbrella”.
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