
Efficient Hyperparameter Optimization with Adaptive Fidelity Identification

Jiantong Jiang1, Zeyi Wen2,3*, Atif Mansoor1, Ajmal Mian1

1The University of Western Australia, 2HKUST (Guangzhou), 3HKUST
jiantong.jiang@research.uwa.edu.au, wenzeyi@ust.hk, {atif.mansoor, ajmal.mian}@uwa.edu.au

Abstract

Hyperparameter Optimization and Neural Architecture
Search are powerful in attaining state-of-the-art machine
learning models, with Bayesian Optimization (BO) stand-
ing out as a mainstream method. Extending BO into the
multi-fidelity setting has been an emerging research topic
in this field, but faces the challenge of determining an ap-
propriate fidelity for each hyperparameter configuration to
fit the surrogate model. To tackle the challenge, we propose
a multi-fidelity BO method named FastBO, which excels in
adaptively deciding the fidelity for each configuration and
providing strong performance while ensuring efficient re-
source usage. These advantages are achieved through our
proposed techniques based on the concepts of efficient point
and saturation point for each configuration, which can be
obtained from the empirical learning curve of the configu-
ration, estimated from early observations. Extensive experi-
ments demonstrate FastBO’s superior anytime performance
and efficiency in identifying high-quality configurations and
architectures. We also show that our method provides a way
to extend any single-fidelity method to the multi-fidelity set-
ting, highlighting the wide applicability of our approach.

1. Introduction
Hyperparameters are crucial in machine learning pipelines.
Hyperparameter optimization (HPO) [11] and Neural Ar-
chitecture Search (NAS) [9] aims to find the hyperparame-
ters or architectures that can yield good performance with-
out human experts. Among different HPO and NAS meth-
ods, Bayesian Optimization (BO) [2, 14, 40] is an effec-
tive model-based method that has shown remarkable suc-
cess [8, 39]. BO maintains a surrogate model of the tar-
get performance metric based on past evaluations of hyper-
parameter configurations, which guides the choice of more
promising configurations to evaluate.

Despite its sample efficiency, standard BO requires a
full evaluation of each configuration, involving full-scale

*Zeyi Wen is the corresponding author.

training and testing of models, which can be highly time-
consuming, particularly with the recent trend to larger mod-
els. To avoid expensive full evaluations, multi-fidelity
methods [4, 16, 25, 26] have been proposed, where the fi-
delities refer to the levels of performance metrics obtained
under different resource levels. These methods follow the
principle of successive halving (SHA) [16]: initially, they
evaluate a set of randomly selected configurations using a
small number of resources; then, based on the low-fidelity
performances, the poorly-performing ones are successively
eliminated, while the well-performing ones continue to
be evaluated with increasing resources. Follow-up stud-
ies [10, 22, 27, 37, 47] propose model-based multi-fidelity
methods, replacing the random configuration selection with
a more informed model to improve sample efficiency.

Nevertheless, current model-based multi-fidelity meth-
ods face a major limitation: they are built upon the SHA
framework, which operates under the assumption that learn-
ing curves of different configurations rarely intersect. This
assumption does not hold in practice [46], i.e., early perfor-
mance observations cannot always indicate the final fidelity
performance at the full resource level. This leads to a fun-
damental challenge when extending model-based methods
to the multi-fidelity setting: What is the appropriate fidelity
for each configuration to fit the surrogate model? In other
words, which fidelity can provide performance observations
that reliably indicate the final fidelity performance? Exist-
ing methods struggle to address this fundamental challenge.
In particular, BOHB [10] and Hyper-Tune [27] fit separate
surrogate models for different fidelities, failing to capture
inter-fidelity correlations. FTBO [44] and A-BOHB [22]
fit a joint model but require strong assumptions to remain
tractable. Another work by Salinas et al. [37] suggests us-
ing the last observed fidelity performance to fit the surro-
gate model. However, it widens the gap between poorly-
and well-performing configurations at the early stage, po-
tentially leading to an inaccurate surrogate model.

To this end, we propose a multi-fidelity extension of BO,
namely FastBO, which tackles the challenge of deciding the
appropriate fidelity for each configuration to fit the surro-
gate model. FastBO identifies a so-called efficient point for

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

26181

each configuration to be the fidelity. The point balances
computational cost and performance quality while captur-
ing valuable learning curve trends. In essence, FastBO se-
lects the fidelity for each configuration instead of evaluating
all the configurations at the same fidelity. Additionally, a
saturation point for each configuration is identified to be an
approximation of the final fidelity, leading to high-quality
performance while reducing resource wastage. The two cru-
cial points are adaptively derived from the estimated learn-
ing curve of each configuration. Furthermore, the warm-up
and post-processing stages are carefully designed to enable
judicious early-termination detection and efficient satura-
tion level evaluation. Empirical evaluation against the state-
of-the-art methods shows that FastBO has strong anytime
performance and can considerably save up to 87% of the
time required to identify a good configuration or architec-
ture, lowering the barriers for engaging in HPO and NAS.
In summary, we make the following major contributions.

1. We propose a multi-fidelity model-based HPO method
that adaptively decides the fidelities for configurations
and efficiently offers strong performance, thanks to the
introduced concepts of efficient and saturation points.

2. We develop a learning curve modeling module to enable
adaptive derivation of the key points, a warm-up stage to
allow early-termination detection, and a post-processing
stage to ensure efficient saturation-level evaluation.

3. We show that our strategy can be used to extend exist-
ing single-fidelity methods to the multi-fidelity setting,
demonstrating the effectiveness and generality of our
method and highlighting promising future opportunities.

2. Related Work
HPO and NAS incur significant costs, especially consider-
ing the escalating model evaluation overhead. Despite ef-
forts to directly accelerate computation [17–19, 52], smarter
HPO strategies are still required for the widespread adop-
tion of automation. Two crucial directions include model-
based and multi-fidelity methods, which can also be com-
bined. Here, we review the methods in these categories.
Model-based methods. BO is the representative of model-
based methods. Based on the surrogate model constructed
by historical evaluation results, BO selects the configura-
tions to evaluate via an acquisition function that balances
exploration and exploitation. Commonly used surrogate
models are Gaussian processes [40], random forests [14],
tree-structured Parzen estimator [2], and deep networks [41,
42]. Popular acquisition functions include Expected Im-
provement [28], Knowledge Gradient [12], Upper Confi-
dence Bound [43], and Predictive Entropy Search [13]. Re-
cent studies on BO have explored the utilization of expert
priors [15, 24, 33, 38] and derivative information [1, 34, 49].
There also has been a recent focus on enhancing the inter-
pretability [5, 50, 51] of the HPO process [3, 31, 32].

Multi-fidelity methods. Multi-fidelity methods exploit low
and high fidelities for configurations to save the evaluation
time. Successive halving (SHA) [16] runs a set of config-
urations using a small number of resources and promotes
only the best-performing half of configurations to continue
for twice as many resources. Hyperband [25] calls SHA as
a sub-routine with varying maximum resources and intro-
duces a reduction factor to control the fraction of promo-
tion. ASHA [26] extends SHA to the asynchronous setting
by aggressive early-stopping. Later, PASHA [4] further ex-
tends ASHA through more aggressive early-stopping based
on the ranking of configurations during the tuning process.
Combination of model-based and multi-fidelity meth-
ods. BOHB [10] and a parallel work [47] first propose
to combine model-based and multi-fidelity methods by re-
placing the random sampling in Hyperband with BO. A-
BOHB [22] employs a joint GP surrogate over fidelities and
supports asynchronous scheduling. Hyper-Tune [27] im-
proves its Hyperband by a delayed strategy to decrease in-
accurate promotions. Salinas et al. [37] proposed to extend
methods to multi-fidelity settings by using the performance
of the last fidelity in an ASHA running. DyHPO [48] and
DPL [20] introduce new surrogates for multi-fidelity BO
considering the learning curves; the former uses deep GP
kernels while the latter integrates deep power law functions.

3. Problem Formulation
Given an algorithm having hyperparameters �1, ...,�m with
domains ⇤1, ...,⇤m, we define its hyperparameter space as
⇤ = ⇤1 ⇥ ... ⇥ ⇤m. Here, we define the problem and out-
line the key challenge related to hyperparameter optimiza-
tion (HPO). Notations are in Supp. 7 for reference.
Single-fidelity setting. For each hyperparameter config-
uration �, we denote f(�) as the performance achieved
using �. For consistency, the metric in this paper refers
to descending metrics like validation loss, with ascending
metrics being treated similarly. In the single-fidelity HPO
setting, we aim to find �⇤ minimizing function f(�), i.e.,
�⇤ = argmin�2⇤ f(�). BO is one of the most popu-
lar single-fidelity HPO methods. The vanilla BO has two
key components: a surrogate model M to approximate the
objective function f(�), and an acquisition function a to
identify a promising configuration from search space. With
these ingredients, BO iterates three steps: (i) select a con-
figuration �i by maximizing the acquisition function; (ii)
evaluate �i to get yi and add the data (�i, yi) into the cur-
rent observation set Di�1 = {(�1, y1), ..., (�i�1, yi�1)};
(iii) update the surrogate model and the acquisition function
based on the augmented Di. In this work, M is a Gaussian
Process and a is Expected Improvement.
Multi-fidelity setting. Multi-fidelity methods consider re-
source information, such as training epochs or training sub-
set ratios. Evaluations at various resource levels results in

26182

different performance levels, known as the fidelities. Differ-
ent fidelities provide a way to balance computational cost
and performance quality. In multi-fidelity HPO problems,
the target is extended to �⇤ = argmin�2⇤ f(�, r), where
f(�, r) is the objective function obtained for � at r. We use
r to denote the resource level, which can also be interpreted
as the fidelity, and r 2 {rmin, ..., rmax}.
Extending single-fidelity methods to the multi-fidelity
setting. The inefficiency of single-fidelity methods stems
from their reliance on the final fidelity evaluation of
f(�, rmax) to be the evaluation of its objective f(�, r).
Fitting surrogate models by such final fidelity evaluations
incurs high cost due to the full evaluation of the configu-
rations. Notably, low-fidelity evaluations at r < rmax pro-
vide informative insights into the objective but are computa-
tionally cheaper, which is valuable to the optimization pro-
cess. Therefore, we seek an effective way to extend single-
fidelity methods like BO to the multi-fidelity setting. More
specifically, recalling the earlier steps of BO, when eval-
uating the configuration �i in the second step, we instead
acquire its low-fidelity performance y

ri
i at ri, where ri de-

notes the fidelity used for �i to fit the surrogate model. The
observations Di then becomes {(�1, y

r1
1), ..., (�i, y

ri
i)}. To

conclude, in order to extend single-fidelity methods to the
multi-fidelity setting, the key challenge to be addressed is
to determine ri for each �i.

4. Methodology
In this section, we propose a novel multi-fidelity model-
based algorithm FastBO. We first propose the key concepts
of efficient point and saturation point, which are crucial in
deciding the fidelity level to fit the surrogate model and to
approximate the final fidelity respectively. Secondly, we
elaborate on the details of learning curve modeling, where
the two crucial points can be extracted. Then, we present
the techniques associated with the auxiliary warm-up and
post-processing stages. Finally, we summarize FastBO and
discuss its wide applicability to any single-fidelity methods.

4.1. Estimation of Efficient and Saturation Points
In our method, we adaptively identify efficient and satura-
tion points for each configuration. The two points are cru-
cial in the optimization process. We first formally define the
efficient point as follows.

Definition 1 (Efficient point). For a given learning curve
Ci(r) of hyperparameter configuration �i, where r repre-
sents the resource level (also referred to as fidelity), the ef-
ficient point ei of �i is defined as: ei = min{r | Ci(r) �
Ci(2r) < �1}, where �1 is a predefined small threshold.

The semantic of Definition 1 is that starting from the ef-
ficient point onwards, when the resources are doubled (i.e.,

from r to 2r), the performance improvement falls below a
small threshold �1. Consequently, this point characterizes
the fidelity at which a configuration demonstrates strong
performance while still efficiently utilizing resources. In
simpler terms, it signifies an appropriate fidelity of perfor-
mance that can be achieved with comparably efficient re-
source usage. Therefore, we make the following remark.

Remark 1. The efficient points of the hyperparameter con-
figurations can serve as their appropriate fidelities used for
fitting the surrogate model. This is due to their (i) opti-
mal resource-to-performance balance, (ii) ability to capture
valuable learning curve trends, and (iii) customization for
different hyperparameter configurations.

We elaborate on the reasons in Remark 1 as follows.
Firstly, efficient points balance the trade-off between com-
putational cost and result quality. Beyond the efficient point
of a given configuration, allocating additional resources to
that configuration becomes less efficient. Secondly, ef-
ficient points capture valuable trends within the learning
curves. For example, the learning rate influences the shape
of learning curves; the identification of efficient points for
configurations with smaller learning rates often occurs at
later stages. The insights into learning curve behaviors en-
able more informed decision-making. Thirdly, the ability
to customize the fidelity for each specific configuration is a
significant advantage. This adaptive approach is more rea-
sonable than previous studies that use a fixed fidelity for all
configurations, as it better accounts for the unique charac-
teristics of individual learning curves.

This insight leads us to use the efficient point ei iden-
tified for each configuration �i as its fidelity used to fit the
surrogate model. Specifically, we evaluate �i until reaching
ei and obtain the observed performance y

ei
i . The resulting

data point (�i, y
ei
i) is then added into the current observa-

tion set Di�1 to refit the surrogate model. We proof the
superiority of FastBO over SHA-based methods in Supp. 8.

Besides efficient points, we identify saturation points for
all configurations from their learning curves as well. We
provide the definition of the saturation point as follows.

Definition 2 (Saturation point). For a given learning curve
Ci(r) of configuration �i, where r represents the resource
level (also referred to as fidelity), the saturation point si of
�i is defined as: si = min{r | 8r

0
> r, |Ci(r0) � Ci(r)| <

�2}, where �2 is a predefined small threshold.

The semantic of Definition 2 is that beyond the satura-
tion point, the observed performance no longer exhibits no-
table variations with more resources. Thus, this point char-
acterizes the fidelity at which the performance of a config-
uration stabilizes. The concept of saturation point is well-
recognized within the machine learning community. Build-
ing on the above definition, we make the following remark.

26183

Remark 2. The saturation points of the hyperparameter
configurations can serve as their approximate final fideli-
ties, as they provide performance results that meet prede-
fined quality thresholds while reducing resource wastage.

This insight leads us to use the saturation point si identi-
fied for each configuration �i as its final fidelity approxima-
tion. The point is used in the post-processing stage for pro-
moting some well-performing configurations to get higher-
fidelity performances. In essence, when aiming for a full
evaluation of the configurations, we suggest that terminat-
ing the evaluation at the saturation point is sufficient. A
more intuitive illustration of the concepts of efficient and
saturation points is provided in Supp. 9.

4.2. Learning Curve Modeling
From Definitions 1 and 2, we can extract the efficient
and saturation points of configurations from their learn-
ing curves. The curve Ci(r) corresponds to configuration
�i and describes the predictive performance with �i as a
function of the fidelity r. Here, r can be either the num-
ber of training instances or the number of training epochs.
In the context of learning curves, the former is referred
to as observation learning curves, while the latter is iter-
ation learning curves [29]. Both types are applicable to
FastBO, so we use the term learning curve to encompass
both. Given the observation set Ow

i = {(r, yri)}r=rmin,...,w

for �i, which comprises pairs of data points representing
fidelities r 2 {rmin, ..., w} and the corresponding evalua-
tions y

r
i , where w is a pre-defined warm-up point to stop

collecting data, FastBO can estimate a learning curve for
�i based on O

w
i by first constructing a parametric learning

curve model, then estimating the parameters.
Constructing a parametric learning curve model. Empir-
ical learning curves can be modeled with function classes
relying on some parameters. Viering and Loog [46] com-
prehensively summarized the parametric models studied in
machine learning. In practice, different problems have dif-
ferent learning curves; even under the same problem, differ-
ent hyperparameter configurations (e.g., learning rate, regu-
larization, etc.) may lead to significantly different learning
curves. Since one single parametric model is not enough
to characterize all the learning curves by itself, we consider
combining different parametric models into a single model.
Specifically, we consider three parametric models POW3,
EXP3 and LOG2, as listed in Tab. 1, which have shown

Table 1. Parametric learning curve models used.

Model Formula Family

POW3 y = d+ ax
�↵ Power law

EXP3 y = d+ e
�ax+b Exponential

LOG2 y = d+ a log(x) Logarithmic

good fitting and predicting performance in previous empiri-
cal studies [29, 46]. We provide detailed discussions on the
choice of parametric models in Supp. 10.

Here, we denote each parametric model as cj(r|✓j) with
parameters ✓j , where the independent variable r represents
the fidelity. We combine three models into one model via a
weighted linear combination:

C(r|�) =
X

j2{1,2,3}
!jcj(r|✓j), (1)

where � = {!1,!2,!3,✓1,✓2,✓3} is the parameter of the
combined model, which consists of parameters {✓1,✓2,✓3}

and weight {!1,!2,!3} of every single model. Therefore,
each pair of observations (r, yri) in O

w
i can be modeled by

the combined model as y
r
i = C(r|�) + ✏, where y

r
i is the

observed dependent variable and ✏ represents the error term.
Estimating parameters in the parametric learning curve
model. We employ maximum likelihood estimation to esti-
mate the parameters � in the parametric model C(r|�). As-
suming that ✏ ⇠ N (0,�2), the probability of an observed
performance yri under parameters is given by p(yri |�,�

2) =
N (yri ; C(r|�),�

2). Given the observations O
w
i of �i that

contains a set of observed data points (r, yri), the likelihood
function can be expressed as:

L(�,�2; r,yr
i) =

Y
p(yki |�,�

2)

=
wY

k=rmin

1

�
p
2⇡

exp

✓
�
(yri � C(r = k|�))2

2�2

◆
.

(2)

We estimate � by maximizing log-likelihood function,
which is easily calculated given Eq. 2.

An existing model-free method [7] also considers us-
ing learning curves for the HPO problem. However, it tar-
gets predicting the high-fidelity performance from the low-
fidelity observations and thus stopping configurations that
are unlikely to beat the current best values, which is differ-
ent from our main target of identifying appropriate fidelity
levels for the configurations to fit the surrogate model from
their estimated learning curves.

4.3. Warm-up And Post-processing Stages
In addition to its core components, FastBO incorporates
two auxiliary stages: the warm-up and post-processing
stages. For the completeness of our method, we provide an
overview of these stages, outlining their targets and present-
ing the key techniques of early-termination detection and
saturation-level evaluation that are applied within.
Warm-up stage. The warm-up stage prepares the early
observation set Ow

i for each configuration �i that is used
to estimate its learning curve, as discussed in § 4.2. Here
w 2 (rmin, rmax) is a pre-determined fidelity, denoted as
warm-up point. Specifically, we initiate the evaluation of

26184

each newly selected �i, proceeding until reaching w. Dur-
ing this process, we record each fidelity r and its evaluation
result yri , forming pairs (r, yri). Upon reaching w, we pause
the evaluation for �i and obtain its early observation set
O

w
i = {(r, yri)}r=rmin,...,w, and start modeling the learning

curve. During the warm-up stage, we monitor the perfor-
mance changes across every two continuous fidelities. If we
detect that the performance of �i has consecutively dropped
twice by more than a ratio ↵, i.e., (yr�1

i � y
r�2
i) > ↵y

r�2
i

and (yri � y
r�1
i) > ↵y

r�1
i , we promptly terminate the eval-

uation for �i at its current fidelity r, because such con-
secutive performance deterioration indicates �i is unlikely
to achieve satisfactory performance. Once terminated, we
directly incorporate the current performance y

r
i of �i into

Di�1 that is used for updating the surrogate model. Thus,
further operations like learning curve modeling are dis-
continued for �i. Moreover, if we observe a single case
of performance drop without subsequent occurrences, i.e,
y
r�1
i � y

r�2
i > ↵y

r�2
i and y

r
i � y

r�1
i ↵y

r�1
i , we opt not

to include data from fidelity r � 1 in O
w
i . This is to manu-

ally filter out potential noise in the data that may adversely
affect the fitting of the learning curve.
Post-processing stage. The post-processing stage aims
at two tasks: promoting the well-performing configura-
tions for saturation-level evaluations and identifying the
best configuration and its performance. Firstly, FastBO pro-
motes the top-k well-performing configurations and evalu-
ates them to their saturation points to ensure high-quality
performance while maintaining efficient resource utiliza-
tion. We set k to be always less than or equal to the number
of parallel workers available, ensuring a manageable over-
head of saturation-level evaluations. It is worth noting that
the additional time required is factored into the overall time.
Secondly, FastBO finds the best configuration along with its
performance achieved so far, which is a standard final step
in most HPO methods. However, an increase in fidelities
does not always result in performance improvement, possi-
bly due to overfitting, resource saturation, or problem com-
plexity. Therefore, we treat the evaluation at each fidelity
as an individual task and record all these intermediate eval-
uation results, which is also a common practice in recent
implementations. In this way, FastBO finds the best per-
formance by considering all the results, rather than relying
solely on the highest-fidelity performances of the configu-
rations. In the parallel setting, treating each fidelity evalua-
tion as an individual task offers an added benefit due to its
finer granularity. More specifically, when a worker is idle,
it takes on a new task of evaluating a configuration at a spe-
cific fidelity, rather than evaluating an entire configuration.

4.4. FastBO and Generalization

Algorithm 1 summarizes our proposed FastBO. It takes sur-
rogate model M, acquisition function a, warm-up point w,

Algorithm 1: FastBO algorithm
input : M, a, w, ↵, k, �1, �2.
output: �⇤, y⇤

1 i 0, D ;
2 while not meet the stop criterion do
3 find �i argmax�2⇤ a(�,Mi�1)
4 O

w
i , t warm-up given w, ↵ // cf . §4.3

5 if Ow
i is not empty then

6 fit Ci(r) to O
w
i // cf . §4.2

7 find ei, si given Ci(r), �1, �2 // cf . §4.1
8 y

ei
i continue evaluating �i to ei

9 else
10 ei t, si rmax

11 Di Di�1 [(�i, y
ei
i)

12 refit Mi to Di

13 i i+ 1

14 �⇤, y⇤ post-process given s = {si}, k // cf . §4.3

performance decrease ratio ↵, promotion number k, and
thresholds �1, �2 as inputs, and output the best-founded
configuration �⇤ and its performance y

⇤. FastBO follows
a similar iterative process of model-based methods but re-
places the expensive full evaluations with a more intelligent
alternative (cf . Lines 4-10). Specifically, each configuration
�i first enters a warm-up stage to collect its early observa-
tion set Ow

i and to be detected and terminated if it exhibits
consecutive performance deterioration (cf . Line 4). If �i

is not terminated, FastBO then estimates a learning curve
Ci(r) for �i based on O

w
i (cf . Line 6), and thus the efficient

point and saturation point of �i can be obtained (cf . Line
7). After that, �i continues to be evaluated until reaching
ei (cf . Line 8); the result is added to the observation set D
(cf . Line 11) that is used for updating M (cf . Line 12). On
the other hand, the poorly-performing configuration will be
terminated early at fidelity t with its result being added di-
rectly to D (cf . Lines 10, 11). Finally, the post-processing
stage promotes the most promising configurations to their
saturation points and finds the best-founded configuration
�⇤ and its performance y

⇤ (cf . Line 14).

Generalizing FastBO to single-fidelity methods. The core
of FastBO is to tackle the key challenge of deciding an ap-
propriate fidelity for each configuration to fit the surrogate
model by adaptively identifying its efficient point. This
strategy of using the efficient point performances for sur-
rogate model fitting also provides a simple but effective
way to bridge the gap between single- and multi-fidelity
methods. While it is primarily described in the context of
model-based methods, the strategy can be generalized to
various single-fidelity methods. For example, when evalu-
ating configurations within the population for an evolution-

26185

Fashion-MNISTAirlines Albert CovertypeChristine

Figure 1. Performance of average validation accuracy on the LCBench benchmark.

SliceCIFAR-10 CIFAR-100 ProteinImageNet16-120

(a) NAS-Bench-201 benchmark (b) FCNet benchmark

Figure 2. Performance of (a) average validation error on NAS-Bench-201 and (b) average validation loss on FCNet.

ary algorithm-based HPO method, we can similarly evalu-
ate the efficient point performances instead of the final per-
formances of these configurations and integrate the perfor-
mances in the subsequent processes, such as selection and
variation. Relying on the efficient point rather than the final
fidelity or all fidelities available simplifies the extension of
the single-fidelity methods to the multi-fidelity setting. The
rationale behind this adaptive fidelity identification strategy
is discussed in Remark 1. We also demonstrate in our ex-
periments the efficacy of this strategy in extending a range
of single-fidelity methods to the multi-fidelity setting.

5. Experiments
We empirically evaluate the performance of FastBO and
compare it with the random search baseline (RS) and 9
competitive baselines from 3 related categories, includ-
ing (i) model-based methods: standard Gaussian Process-
based BO [40]; (ii) multi-fidelity methods: ASHA [26],
Hyperband [25], PASHA [4]; and (iii) model-based multi-
fidelity methods: A-BOHB [22], A-CQR [37], BOHB [10],
DyHPO [48], Hyper-Tune [27]. RS and BO are single-
fidelity baselines, while the others are multi-fidelity ones.

Our experiments are conducted on 10 datasets from 3
popular benchmarks LCBench [53], NAS-Bench-201 [8]
and FCNet [21]. Detailed information on the benchmarks
is provided in Supp. 13.1. All the experiments are evalu-
ated with four parallel workers and 10 random seeds. We

allocate 20% total budget for warm-up, i.e., w = rmin +
0.2 · (rmax� rmin). Ratio ↵ is set to 0.1; thresholds �1 and
�2 are set to 0.001 and 0.0005 1. We set k based on the num-
ber of workers #w and the number of started configurations
#c: k = max{d#c/10e,#w}. We provide more experi-
ments and discussions on the hyperparameters in Supp. 12.
We use implementations of the baselines in Syne Tune [36].
Details of the baseline settings are in Supp. 13.2.

5.1. Anytime Performance
To evaluate the anytime performance, we compare FastBO
against the baselines on wall-clock time. For fair compar-
isons, all the baselines, even single-fidelity BO and RS, are
extended to consider intermediate results at all the fidelities
when identifying the configuration, akin to FastBO as dis-
cussed in § 4.3. Consequently, all the baselines are able to
achieve their best possible anytime performance.

The results on LCBench, NAS-Bench-201, and FCNet
are shown in Figs. 1 and 2. We report the validation ac-
curacy, error, and loss over wall-clock time for the three
benchmarks, as provided by the benchmarks. We provide
the results on NAS-Bench-301 [39] in Supp. 11.1. Overall,
FastBO can handle various performance metrics and shows
strong anytime performance. We can observe that FastBO
gains an advantage earlier than other methods, rapidly con-

1Parameters �1 and �2 given here are derived after standardizing met-
rics to a uniform scale from 0 to 1.

26186

Table 2. Comparison of relative efficiency on configuration identification. FastBO is set as the baseline with a relative efficiency of 1.00.
Wall-clock time (abbr. WC time) reports the elapsed time spent for each method on finding configurations with similar performance
metrics, i.e., validation error (⇥10�2) for Covertype and ImageNet16-120 and validation loss (⇥10�5) for Slice.

Dataset

Metric Method
FastBO BO PASHA A-BOHB A-CQR BOHB DyHPO Hyper-Tune

Covertype
Val. error 22.9±0.2 23.0±0.3 25.1±2.5 23.5±1.1 31.6±1.9 32.5±0.8 23.0±0.3 23.0±0.2
WC time (h) 0.7±0.3 2.9±0.7 3.9±1.0 2.0±1.0 3.9±0.2 2.5±1.0 1.7±0.6 1.8±0.7
Rel. efficiency 1.00 0.25 0.18 0.37 0.19 0.29 0.41 0.40

ImageNet
16-120

Val. error 55.3±0.2 57.4±1.2 55.7±0.3 55.8±1.6 55.5±0.9 55.5±1.1 55.5±1.0 55.3±2.0
WC time (h) 2.2±0.7 6.6±0.9 2.5±1.2 5.9±1.1 6.0±1.3 3.2±0.7 4.3±1.0 3.4±1.1
Rel. efficiency 1.00 0.34 0.90 0.38 0.37 0.68 0.51 0.67

Slice
Val. loss 26.3±2.6 26.4±4.4 26.8±9.5 26.3±6.3 27.1±4.2 26.8±5.6 27.4±2.3 28.7±1.3
WC time (h) 0.4±0.1 3.1±0.7 1.2±0.9 2.1±0.7 2.5±0.7 2.2±0.9 2.5±0.5 1.8±0.6
Rel. efficiency 1.00 0.13 0.35 0.20 0.17 0.19 0.17 0.24

verging to the global optimum after the initial phase.
The superiority can be attributed to two main factors.

Firstly, FastBO maintains, and in some cases even sur-
passes, the sample efficiency of vanilla BO, thanks to
our techniques that enable quick and precise identification
of the fidelities for configurations to update the surrogate
model. We provide more explanations and experiments on
sample efficiency in Supp. 11.2. Secondly, the multi-fidelity
extension speeds up the evaluations, contributing to its over-
all efficiency. In contrast, the single-fidelity baselines tend
to waste more time on the full evaluations. While the multi-
fidelity baselines efficiently explore numerous configura-
tions, they limit their evaluations to only constrained fideli-
ties for some time, thus struggling to provide relatively high
performance in a short time. This issue in multi-fidelity
methods is particularly pronounced in PASHA when ap-
plied to NAS-Bench-201 and FCNet, as shown in Fig. 2.
In Supp. 11.3, we further provide the ranks of all methods
and statistically show FastBO’s superiorty on an early stage.
It is worth noting that all the additional overhead introduced
by FastBO is taken into account in the wall-clock time.

Regarding the final performance, most methods are able
to converge to satisfactory solutions, with negligible differ-
ences among them in most cases. Although our goal is not
to offer the best final performance as we limit the evalua-
tions to at most the saturation point even for those we con-
sider most promising, FastBO still achieves top-2 final per-
formance on 8 out of 10 datasets. In contrast, model-free
methods sometimes cannot obtain a satisfactory final per-
formance because they randomly select the configurations.
For example, on the “Covertype” dataset, only 3 out of 2000
configurations yield a validation accuracy exceeding 75%.
As a result, all the model-free methods face challenges in
converging to a satisfactory final performance.

5.2. Efficiency on Configuration Identification
One explanation for PASHA’s suboptimal anytime perfor-
mance (cf . Fig. 2) lies in its primary goal [4]: the goal of
PASHA is not high accuracy but to identify the best config-
uration more quickly. To ensure equitable comparisons, we
report the time spent for each method on identifying a sat-
isfactory configuration, consistent with the experiments de-
scribed in PASHA [4]. Results on three expensive datasets
“Covertype”2, “ImageNet16-120”, and “Slice” of the three
benchmarks are shown in Tab. 2. Similar results on addi-
tional datasets can be found in Supp. 11.4. Besides PASHA,
results of other model-free multi-fidelity methods are not in-
cluded, as PASHA demonstrates its superiority over them.

Tab. 2 shows that FastBO saves 10% to 87% wall-clock
time over other methods when achieving up to 9.6% better
performance values. It can be observed from the “rel. effi-
ciency” rows, where we set FastBO as the baseline with a
relative efficiency of 1.00 and report the efficiency of other
methods relative to ours. When compared with vanilla BO,
FastBO significantly shortens the time in identifying a good
configuration by a factor of 3 to 8, because FastBO pauses
a configuration earlier at an appropriate fidelity and fits the
surrogate model to guide the next configuration search. This
advantage creates opportunities to efficiently explore more
configurations. Another observation is that PASHA always
gets a relatively high variance in wall-clock time. This is
due to the fact that different random seeds can have a larger
impact on such model-free methods.

5.3. Effectiveness of Adaptive Fidelity Identification
As discussed in § 4.1, FastBO is able to adaptively identify
the efficient point ei for each configuration �i and serves

2We convert the accuracy of “Covertype” into error for readability.

26187

Slice ImageNet16-120 Covertype Slice ImageNet16-120 Covertype

(a) Impact of adaptive fidelity identification (b) Generality of FastBO

Figure 3. Performance comparison: (a) Performance of FastBO that adaptively sets ri = ei with the schemes that use fixed ri for all
configurations. (b) Performance of single-fidelity methods CQR, BORE, REA and their multi-fidelity variants using our extension method.

ei as its fidelity ri for surrogate model fitting. To investi-
gate the effectiveness of the adaptive fidelity identification
strategy, we conduct an ablation study to compare the per-
formance achieved with and without applying this strategy.
Specifically, we compare FastBO, where ri is adaptively set
to ei, with the partial evaluation schemes that employ fixed
predefined values as the fidelity for all the configurations
to fit the surrogate model. We consider three representative
fixed fidelities, including 25%, 50%, and 75% of the total
resource budget. In addition, we include a comparison with
vanilla BO that can be viewed as using 100% resource bud-
get as the fixed fidelity for all configurations.

We provide the results on three representative datasets
in Fig. 3(a), with more results available in Supp. 11.5. We
have three main observations. Firstly, FastBO always out-
performs the partial evaluation baselines that use a fixed fi-
delity, indicating the effectiveness of the adaptive strategy.
Secondly, FastBO shows stronger performance than vanilla
BO. The limitation of vanilla BO lies in the additional time
required for full evaluations. Secondly, compared to the
vanilla BO, partial evaluation schemes with fixed ri con-
verge faster in the initial stage due to their ability to evaluate
more configurations promptly, but this advantage is gradu-
ally offset over time because they fail to find appropriate
fidelities to create an accurate surrogate model. This causes
a suboptimal final performance compared to vanilla BO, as
shown in the first two figures in Figs. 3(a). In the case of the
last one, we can observe a noticeable upward trend exhib-
ited by the vanilla BO towards the end of the evaluation, in-
dicating its potential to improve the final performance given
abundant time. The comparison between the partial evalua-
tion baselines and vanilla BO also demonstrates the impor-
tance of our adaptive strategy, which ensures that the fideli-
ties align optimally with each configuration.

5.4. Generality of The Proposed Extension Method

The adaptive fidelity identification strategy provides a sim-
ple way to extend single-fidelity methods to the multi-
fidelity setting, as discussed in § 4.4. To examine the abil-
ity of our extension method, we conduct experiments using
three popular single-fidelity methods CQR [37], BORE [45]

and REA [35], extending them to the multi-fidelity variants
with our extension method, referred to as FastCQR, Fast-
BORE, and FastREA respectively. Similar to FastBO, all
the multi-fidelity extensions evaluate the configurations to
the adaptively identified efficient point and use the corre-
sponding performances for the subsequent operations. The
results on three datasets are illustrated in Fig. 3(b) and
similar results on other datasets are in Supp. 11.6. We
can clearly observe that the multi-fidelity variants with our
extension method always outperform their single-fidelity
counterparts. It is worth noting that REA is an evolu-
tionary algorithm-based HPO method and is also signifi-
cantly improved by our extension. The observation high-
lights the ability of the proposed adaptive strategy to extend
any single-fidelity method to the multi-fidelity setting. It
also suggests future opportunities to extend other advanced
single-fidelity techniques into the multi-fidelity setting.

6. Conclusion
In this paper, we propose a model-based multi-fidelity HPO
method FastBO, which adaptively identifies the appropriate
fidelity for each configuration to fit the surrogate model and
offers high-quality performance while ensuring efficient re-
source utilization. The advantages are achieved through
our concepts of efficient and saturation point, the proposed
techniques of learning curve modeling, and well-designed
warm-up and post-processing stages with judicious early-
termination detection and efficient saturation-level evalua-
tion. Moreover, the proposed adaptive fidelity identification
strategy provides a simple way to extend any single-fidelity
method to the multi-fidelity setting. Experiments demon-
strate the effectiveness and wide generality of our pro-
posed techniques. FastBO source code is freely available
at https://github.com/jjiantong/FastBO.

Acknowledgment
This research was funded by ARC Grant number
DP190102443. Ajmal Mian is the recipient of an Australian
Research Council Future Fellowship Award (project num-
ber FT210100268) funded by the Australian Government.

26188

References
[1] Sebastian E Ament and Carla P Gomes. Scalable first-order

Bayesian Optimization via structured automatic differenti-
ation. In International Conference on Machine Learning,
pages 500–516. PMLR, 2022. 2

[2] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. Algorithms for hyper-parameter optimization. Ad-
vances in Neural Information Processing Systems, 24, 2011.
1, 2

[3] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok,
Jakob Richter, Stefan Coors, Janek Thomas, Theresa Ull-
mann, Marc Becker, Anne-Laure Boulesteix, et al. Hyper-
parameter optimization: Foundations, algorithms, best prac-
tices, and open challenges. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 13(2):e1484, 2023.
2

[4] Ondrej Bohdal, Lukas Balles, Martin Wistuba, Beyza Ermis,
Cédric Archambeau, and Giovanni Zappella. PASHA: ef-
ficient HPO and NAS with progressive resource allocation.
In International Conference on Learning Representations.
OpenReview.net, 2023. 1, 2, 6, 7, 4, 9

[5] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia
Rudin, and Jonathan K Su. This looks like that: deep learn-
ing for interpretable image recognition. Advances in Neural
Information Processing Systems, 32, 2019. 2

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data
mining, pages 785–794, 2016. 9

[7] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter.
Speeding up automatic hyperparameter optimization of deep
neural networks by extrapolation of learning curves. In In-
ternational Joint Conference on Artificial Intelligence, 2015.
4

[8] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the
scope of reproducible neural architecture search. In Interna-
tional Conference on Learning Representations, 2020. 1, 6,
8

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of Ma-
chine Learning Research, 20(1):1997–2017, 2019. 1

[10] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB:
Robust and efficient hyperparameter optimization at scale.
In International Conference on Machine Learning, pages
1437–1446. PMLR, 2018. 1, 2, 6, 9

[11] Matthias Feurer and Frank Hutter. Hyperparameter opti-
mization. Automated Machine Learning: Methods, Systems,
Challenges, pages 3–33, 2019. 1

[12] Peter I Frazier, Warren B Powell, and Savas Dayanik. A
knowledge-gradient policy for sequential information col-
lection. SIAM Journal on Control and Optimization, 47(5):
2410–2439, 2008. 2

[13] José Miguel Hernández-Lobato, Matthew W Hoffman, and
Zoubin Ghahramani. Predictive entropy search for efficient
global optimization of black-box functions. Advances in
Neural Information Processing systems, 27, 2014. 2

[14] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
Sequential model-based optimization for general algorithm
configuration. In Learning and Intelligent Optimization,
pages 507–523. Springer, 2011. 1, 2

[15] Carl Hvarfner, Danny Stoll, Artur L. F. Souza, Marius Lin-
dauer, Frank Hutter, and Luigi Nardi. πBO: Augmenting
acquisition functions with user beliefs for bayesian optimiza-
tion. In International Conference on Learning Representa-
tions. OpenReview.net, 2022. 2

[16] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best
arm identification and hyperparameter optimization. In Ar-
tificial Intelligence and Statistics, pages 240–248. PMLR,
2016. 1, 2, 9

[17] Kasra Jamshidi, Harry Xu, and Keval Vora. Accelerating
graph mining systems with subgraph morphing. In European
Conference on Computer Systems, pages 162–181, 2023. 2

[18] Jiantong Jiang, Zeyi Wen, Zeke Wang, Bingsheng He, and
Jian Chen. Parallel and distributed structured svm training.
IEEE Transactions on Parallel and Distributed Systems, 33
(5):1084–1096, 2021.

[19] Jiantong Jiang, Zeyi Wen, and Ajmal Mian. Fast parallel
bayesian network structure learning. In IEEE International
Parallel and Distributed Processing Symposium, pages 617–
627. IEEE, 2022. 2

[20] Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif
Grabocka. Scaling laws for hyperparameter optimization. In
Advances in Neural Information Processing Systems, 2023.
2

[21] Aaron Klein and Frank Hutter. Tabular benchmarks for
joint architecture and hyperparameter optimization. arXiv
preprint arXiv:1905.04970, 2019. 6, 8

[22] Aaron Klein, Louis C Tiao, Thibaut Lienart, Cedric Archam-
beau, and Matthias Seeger. Model-based asynchronous hy-
perparameter and neural architecture search. arXiv preprint
arXiv:2003.10865, 2020. 1, 2, 6, 9

[23] Prasanth Kolachina, Nicola Cancedda, Marc Dymetman, and
Sriram Venkatapathy. Prediction of learning curves in ma-
chine translation. In Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
22–30, 2012. 2

[24] Cheng Li, Santu Rana, Sunil Gupta, Vu Nguyen, Svetha
Venkatesh, Alessandra Sutti, David Rubin de Celis Leal, Teo
Slezak, Murray Height, Mazher Mohammed, and Ian Gib-
son. Accelerating experimental design by incorporating ex-
perimenter hunches. In International Conference on Data
Mining, pages 257–266. IEEE Computer Society, 2018. 2

[25] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research, 18(1):6765–6816,
2017. 1, 2, 6, 9

[26] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina
Gonina, Jonathan Ben-Tzur, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. A system for massively parallel hy-
perparameter tuning. Proceedings of Machine Learning and
Systems, 2:230–246, 2020. 1, 2, 6, 9

[27] Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Jixiang
Li, Ji Liu, Ce Zhang, and Bin Cui. Hyper-tune: Towards

26189

efficient hyper-parameter tuning at scale. Proceedings of the
VLDB Endowment, 15(6):1256–1265, 2022. 1, 2, 6, 9

[28] Jonas Mockus. The application of Bayesian methods for
seeking the extremum. Towards global optimization, 2:117,
1998. 2

[29] Felix Mohr and Jan N van Rijn. Learning curves for deci-
sion making in supervised machine learning–a survey. arXiv
preprint arXiv:2201.12150, 2022. 4, 2

[30] Felix Mohr, Tom J Viering, Marco Loog, and Jan N van Rijn.
Lcdb 1.0: An extensive learning curves database for classi-
fication tasks. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 3–
19. Springer, 2022. 2

[31] Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio,
Marius Lindauer, and Bernd Bischl. Explaining hyperpa-
rameter optimization via partial dependence plots. Advances
in Neural Information Processing Systems, 34:2280–2291,
2021. 2

[32] Julia Moosbauer, Giuseppe Casalicchio, Marius Lindauer,
and Bernd Bischl. Improving accuracy of interpretability
measures in hyperparameter optimization via Bayesian al-
gorithm execution. arXiv preprint arXiv:2206.05447, 2022.
2

[33] ChangYong Oh, Efstratios Gavves, and Max Welling.
BOCK: Bayesian optimization with cylindrical kernels.
In International Conference on Machine Learning, pages
3868–3877. PMLR, 2018. 2

[34] Misha Padidar, Xinran Zhu, Leo Huang, Jacob Gardner, and
David Bindel. Scaling gaussian processes with derivative
information using variational inference. Advances in Neural
Information Processing Systems, 34:6442–6453, 2021. 2

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 4780–4789, 2019. 8, 5, 9

[36] David Salinas, Matthias Seeger, Aaron Klein, Valerio Per-
rone, Martin Wistuba, and Cedric Archambeau. Syne tune:
A library for large scale hyperparameter tuning and repro-
ducible research. In International Conference on Automated
Machine Learning, pages 16–1. PMLR, 2022. 6, 9

[37] David Salinas, Jacek Golebiowski, Aaron Klein, Matthias W.
Seeger, and Cédric Archambeau. Optimizing hyperpa-
rameters with conformal quantile regression. In Inter-
national Conference on Machine Learning, pages 29876–
29893. PMLR, 2023. 1, 2, 6, 8, 5, 9

[38] Bobak Shahriari, Alexandre Bouchard-Côté, and Nando Fre-
itas. Unbounded Bayesian Optimization via regularization.
In Artificial intelligence and statistics, pages 1168–1176.
PMLR, 2016. 2

[39] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik,
Margret Keuper, and Frank Hutter. Nas-bench-301 and the
case for surrogate benchmarks for neural architecture search.
CoRR, abs/2008.09777, 2020. 1, 6, 3

[40] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practi-
cal Bayesian optimization of machine learning algorithms.
Advances in Neural Information Processing Systems, 25,
2012. 1, 2, 6, 9

[41] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Na-
dathur Satish, Narayanan Sundaram, Mostofa Patwary, Mr
Prabhat, and Ryan Adams. Scalable Bayesian optimization
using deep neural networks. In International Conference on
Machine Learning, pages 2171–2180. PMLR, 2015. 2

[42] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and
Frank Hutter. Bayesian optimization with robust bayesian
neural networks. Advances in Neural Information Process-
ing Systems, 29, 2016. 2

[43] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009. 2

[44] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams.
Freeze-thaw Bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014. 1

[45] Louis C Tiao, Aaron Klein, Matthias W Seeger, Edwin V
Bonilla, Cedric Archambeau, and Fabio Ramos. BORE:
Bayesian optimization by density-ratio estimation. In In-
ternational Conference on Machine Learning, pages 10289–
10300. PMLR, 2021. 8, 5, 9

[46] Tom Viering and Marco Loog. The shape of learning curves:
a review. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2022. 1, 4, 2

[47] Jiazhuo Wang, Jason Xu, and Xuejun Wang. Combina-
tion of hyperband and bayesian optimization for hyper-
parameter optimization in deep learning. arXiv preprint
arXiv:1801.01596, 2018. 1, 2

[48] Martin Wistuba, Arlind Kadra, and Josif Grabocka. Super-
vising the multi-fidelity race of hyperparameter configura-
tions. Advances in Neural Information Processing Systems,
35:13470–13484, 2022. 2, 6, 9

[49] Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter
Frazier. Bayesian optimization with gradients. Advances in
neural information processing systems, 30, 2017. 2

[50] Peiyu Yang, Naveed Akhtar, Zeyi Wen, Mubarak Shah, and
Ajmal Mian. Re-calibrating feature attributions for model in-
terpretation. In International Conference on Learning Rep-
resentations, 2022. 2

[51] Peiyu Yang, Naveed Akhtar, Zeyi Wen, and Ajmal Mian.
Local path integration for attribution. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 3173–
3180, 2023. 2

[52] Xueying Zhu, Jie Sun, Zhenhao He, Jiantong Jiang, and
Zeke Wang. Staleness-reduction mini-batch k-means. IEEE
Transactions on Neural Networks and Learning Systems,
2023. 2

[53] Lucas Zimmer, Marius Thomas Lindauer, and Frank Hutter.
Auto-Pytorch: Multi-fidelity metalearning for efficient and
robust AutoDL. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43:3079–3090, 2021. 6, 8

26190

