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HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian
Splatting

Yuheng Jiang™? Zhehao Shen'

Penghao Wang!

Zhuo Su® Yu Hong!

Yingliang Zhang Jingyi Yu! Lan Xu!

'ShanghaiTech University

2NeuDim

Humgy, Performance Captvr®

High-Fidelity 4D Gaussians Rendering

SByteDance  “DGene

Figure 1. High-fidelity rendering with our compact Gaussian Splatting. From multi-view human performance video, HiFi4G marries
the traditional non-rigid fusion with differentiable rasterization advance to efficiently produce compact 4D assets.

Abstract

We have recently seen tremendous progress in photo-
real human modeling and rendering. Yet, efficiently ren-
dering realistic human performance and integrating it into
the rasterization pipeline remains challenging. In this pa-
per, we present HiFi4G, an explicit and compact Gaussian-
based approach for high-fidelity human performance ren-
dering from dense footage. Our core intuition is to marry
the 3D Gaussian representation with non-rigid tracking,
achieving a compact and compression-friendly representa-
tion. We first propose a dual-graph mechanism to obtain
motion priors, with a coarse deformation graph for effec-
tive initialization and a fine-grained Gaussian graph to en-
force subsequent constraints. Then, we utilize a 4D Gaus-
sian optimization scheme with adaptive spatial-temporal
regularizers to effectively balance the non-rigid prior and
Gaussian updating. We also present a companion compres-
sion scheme with residual compensation for immersive ex-
periences on various platforms. It achieves a substantial
compression rate of approximately 25 times, with less than
2MB of storage per frame. Extensive experiments demon-
strate the effectiveness of our approach, which significantly

outperforms existing approaches in terms of optimization
speed, rendering quality, and storage overhead. Project
page: https://nowheretrix.github.io/HiFi4G/.

1. Introduction

Volumetric recording and realistic rendering of 4D (space-
time) human performance diminish the boundaries between
viewers and performers. It brings numerous immersive ex-
periences like telepresence or tele-education in VR/AR.
Early solutions [8—10, 25] reconstruct textured meshes
from captured videos by explicitly leveraging non-rigid reg-
istration [44, 62]. Yet, they remain vulnerable to occlu-
sions and lack of textures which cause holes and noise in
the reconstruction results. Recent neural advances, repre-
sented by NeRF [41], bypass explicit reconstruction and
instead optimize a coordinate-based multi-layer perceptron
(MLP) to conduct volume rendering at photo-realism. Some
dynamic variants [13, 4648, 66, 68] of NeRF attempt to
maintain a canonical feature space to reproduce features in
each live frame with an extra implicit deformation field.
However, such a canonical design is fragile to large mo-
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tions or topology changes. Recent approaches [22, 59, 69]
remove the deformation fields and compactly represent the
4D feature grid through planar factorization [7, 12] or Hash-
encoding [42]. They notably accelerate both the train-
ing and rendering speed for interactive applications but the
challenges of runtime memory and storage still exist. The
recent 3D Gaussian Splatting (3DGS) [26] marks a signif-
icant return to an explicit paradigm for static scene rep-
resentation. Based on GPU-friendly rasterization of 3D
Gaussian primitives, it allows real-time and high-quality ra-
diance field rendering unseen before. Various concurrent
works [40, 71, 76, 77] adapt 3DGS for dynamic scenes.
Some [40] focus on extracting the non-rigid motions from
dynamic Gaussians yet sacrificing the rendering quality.
Others [71, 76] adopt extra implicit deformation fields to
compensate for the motion information, and hence fall short
of handling long-duration motions and lose the explicit and
GPU-friendly beauty of the original 3DGS.

In this paper, we present HiFi4G — a totally explicit and
compact Gaussian-based approach for high-fidelity, real-
time playback of human performance from dense footage
(see Fig. 1). Our key idea is to marry the 3D Gaussian
representation [26] with non-rigid tracking [44, 62], so as
to explicitly disentangle motion and appearance informa-
tion for a compact and compression-friendly representation.
HiFi4G significantly outperforms existing implicit render-
ing approaches, in terms of optimization speed, render-
ing quality, and storage overhead. Our explicit representa-
tion also enables seamlessly integrating our results into the
GPU-based rasterization pipeline., i.e., immersively watch-
ing high-fidelity human performances with VR headsets.

To organically bridge the Gaussian representation with
non-rigid tracking, we first introduce a dual-graph mech-
anism, which consists of a coarse deformation graph and
a fine-grained Gaussian graph. For the former, we obtain
per-frame geometry proxy via the NeuS2 [69] and then em-
ploy embedded deformation (ED) [62] in a key-frame man-
ner. Such an explicit tracking process splits the sequence
into segments and provides rich motion prior within each
segment. Analogous to the key-volume update [9], we fol-
low 3DGS to prune the incorrect Gaussians from the pre-
vious segment and update new ones to restrict the number
of Gaussians in the current segment. Then, we build a fine-
grained Gaussian graph and interpolate the motion of each
Gaussian from the coarse ED graph for subsequent initial-
ization. Naively warping the Gaussian graph with the ED
graph and splatting it onto screen space will cause severe
unnatural artifacts, while continuous optimization without
any constraints leads to jittery artifacts. Thus, we propose
a 4D Gaussian optimization scheme to carefully balance
the non-rigid motion prior and the updating of Gaussian
attributes. We adopt a temporal regularizer to enforce the
appearance attributes of each Gaussian, i.e., spherical har-

monic (SH), opacity, and scaling coefficients, to be con-
sistent. We also propose a smooth term for the motion at-
tributes (position and rotation) to produce locally as-rigid-
as-possible motions between the adjacent Gaussians. These
regularizers are further enhanced with an adaptive weight-
ing mechanism to penalize the flicking artifacts on the re-
gions with slight non-rigid motions. Once optimized, we
obtain spatial-temporally compact 4D Gaussians. To make
our HiFi4G practical for users, we demonstrate a com-
panion compression scheme that follows standard residual
compensation, quantization, and entropy encoding for the

Gaussian parameters. It achieves a substantial compres-

sion rate of approximately 25 times and requires less than

2 MB storage per frame, enabling immersively viewing hu-

man performances on various platforms like VR headsets.
To summarize, our main contributions include:

* We present a compact 4D Gaussian representation for
human performance rendering, which bridges Gaussian
Splatting and non-rigid tracking.

* We propose a dual-graph mechanism with various
regularization designs to effectively recover spatial-
temporally consistent 4D Gaussians.

* We showcase a companion compression scheme, support-
ing immersive experience of human performance with
low storage, even under various platforms.

2. Related Work

Human Performance Capture. Recently, human perfor-
mance capture [1, 2, 16, 17, 20, 29, 30, 45, 50, 58, 67, 72]
has been widely investigated to achieve detailed registration
for various applications. Zollhofer et al. [83] capture the
rigid template first but DynamicFusion [44] removes this
explicit template prior and enables real-time performance
which benefits from the GPU solvers. Guo et al. [14] model
the geometry, surface albedo, and appearance on the refer-
ence volume. Fusion4d [9] and Motion2fusion [10] rely on
a key-frame-based strategy to handle topological changes.
Based on the human parametric model [39], DoubleFu-
sion [78] proposes a two-layer representation for more ro-
bust scene capture, while Xu et al. [75] extend it to sparse
view setup. Su et al. [60, 61] further address the challenging
motions and human-object interaction scenarios. Addition-
ally, several studies [23, 32, 33, 79] combine explicit vol-
umetric fusion and implicit modeling to capture more dy-
namic details. Nevertheless, these methods primarily focus
on detailed geometry rather than high-quality texture.

Neural Human Modeling. In the domain of digital human
neural representation, various approaches [18, 19, 27, 35,
38, 63, 64, 73, 80] have been proposed to address this chal-
lenge. Non-rigid NeRF [66] utilizes a displacement field
to represent the motion, while Neuralbody [49] uses latent
codes anchored to SMPL [39] vertices. Humannerfs [70,
82] combine the SMPL with a deformation net. TAVA [28]
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and X-avatar [57] learn the skinning weight through root-
finding. NDR [3] defines a bijective function that satisfies
the cycle consistency. With recent advancements in Instant-
NGP [42], some works [22, 24, 35, 59, 69] demonstrate
the efficient training and rendering speed. However, most
methods produce blurriness, particularly in high-frequency
regions. The recent 3DGS [26] marks a significant return
to an explicit paradigm for high-performance static scene
representation. However, per-frame 3DGS disregards tem-
poral consistency, resulting in visual jitteriness. Some con-
current studies [40, 71, 76, 77] adapt 3DGS for dynamic
scenes. Yet, these methods typically offer real-time perfor-
mance only at low resolution and are not equipped to handle
large motions. In contrast, HiFi4G leverages dual-graph to
generate compact 4D Gaussians, enabling high-fidelity real-
time rendering with challenging motions.

Compact Representation. Compact representation plays
a pivotal role in dynamic rendering, engaging the inter-
est of numerous researchers. A series of works are pro-
posed for early point cloud compression with Octree [54,
65], Wavelet [43]. These are formalized into MPEG-
PCC [55] standards by the Moving Picture Experts Group
(MPEG), which are categorized into video-based (VPCC)
and geometry-based (GPCC). Following, learning-based
methods [34, 51, 52] emerge, focusing on enhancing effi-
ciency. For neural fields, several studies introduce compact
neural representations through tensor [7] and scene [59] de-
composition, tri-planes [21, 53] and multi-planes [4, 12,
56]. Instant-NSR [81] leverages the tracked mesh and tex-
ture video while HumanRF [22] employs temporal matrix-
vector decomposition. Despite their advancements, these
methods often compromise rendering quality and speed to
minimize storage requirements. Comparably, HiFi4G only
requires less than 2 MB storage per frame to enable high-
quality rendering results.

3. Method

Given human performance videos captured by multi-view
RGB cameras, HiFi4G integrates recent advancements in
differentiable rasterization with traditional non-rigid track-
ing, significantly outperforming existing rendering ap-
proaches [22, 36, 69, 81] in terms of optimization speed,
rendering quality, and storage overhead. The methodology
is visually summarized in Fig. 2. Our approach starts with
a dual graph mechanism, which consists of a coarse defor-
mation graph and a fine-grained Gaussian graph, detailed
in Sec 3.1. Subsequently, this representation is employed
along with corresponding temporal and smooth regulariza-
tion, leading to the generation of spatial-temporally com-
pact 4D Gaussians in Sec 3.2. In addition, we introduce
a companion compression scheme in Sec 3.3. This allows
for immersive viewing of high-fidelity human performances
with a storage requirement of less than 2 MB per frame.

3.1. Dual Graph Mechanism

We employ a dual graph structure to explicitly disentan-
gle motion and appearance, resulting in a compact and
compression-friendly representation. This design facilitates
expedited convergence and enhances visual quality.
Coarse Deformation Graph. Instead of using an addi-
tional implicit deformation network [71, 76] to handle non-
rigid motion, which could potentially affect the high per-
formance and GPU-friendliness of the original 3DGS, we
opt for the Embedded Deformation [62] to establish model-
to-model correspondences by leveraging conventional non-
rigid deformation techniques [15, 44, 74]. To achieve
this, we first generate per-frame geometry proxies using
NeuS2 [69]. We then apply non-rigid tracking to the result-
ing mesh sequences following a key-frame manner. Specifi-
cally, we parameterize the dynamic motions as an ED graph
W = {dg;, x; }, where x; represents the coordinates of sam-
pled ED nodes in keyframe space, and dg; denotes the dual
quaternions representing the corresponding rigid transfor-
mation in SE(3) space. Subsequently, we acquire each
point v, using Dual-Quaternion Blending:

> w(wi,ve)dg, (1)

1€N (ve)

DQ@B(v.) =

where N (v.) is a set of neighboring ED nodes of v, and
w(x;, v.) denotes the influence weight of the ith node z; on
v.. At frame ¢, we identify correspondence points between
the warped key mesh and the current mesh. Subsequently,
we optimize the motion by constructing the terms:

E= )\dataEdata + AregErega (2)

where Fq.i, and FE,; represent the energies associated
with the data term and the regularization term, respectively.
Please refer to Dynamicfusion [44] for more details. To ex-
plicitly handle coarse topological changes and reduce se-
vere misalignment issues, we implement the key-volume
strategy as described in Fusion4d [9]. This strategy involves
segmenting the sequence into multiple key volumes.

Fine-grained Gaussian Graph. To bypass the tedious pro-
cess of creating 3D Gaussians from Structure-from-Motion
(SfM) points for each frame, we utilize a more efficient ini-
tialization method. For the first frame, we construct the
3D Gaussians from the NeuS2 mesh using an importance
sampling strategy. We increase the sampling density in the
hand and face regions to significantly improve visual qual-
ity. For subsequent keyframes, analogous to the key-volume
update strategy, we follow 3DGS to prune incorrect Gaus-
sians from the previous keyframe and densify new ones at
the current keyframe. We then restrict the number of Gaus-
sians within the current segment. Afterward, we establish
a fine-grained Gaussian graph, consisting of refined Gaus-
sian kernels for subsequent constraints, determined by the
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Figure 2. Overview of HiFi4G. (a) The non-rigid tracking establishes a coarse deformation graph and tracks the motions for Gaussian
optimization. (b) HiFi4G initializes the first frame Gaussians from NeuS2 and constructs a fine-grained Gaussian graph to enhance
temporal coherence. We then employ the ED graph to warp 4D Gaussians, applying both Egmooth and Eiemp constraints to the Gaussian
graph, which yields spatial-temporally compact and compression-friendly 4D Gaussians, thus facilitating efficient compression.

k-nearest neighbors (KNN, k = 16). In addition, for each
Gaussian kernel in the fine-grained graph, we also find the
KNN (k = 8) from the ED nodes, which assists in calcu-
lating the influence weight for motion interpolation. The
initialization is still crucial for non-key frames to prevent
falling into local optima during the back-propagation of dif-
ferentiable rasterization. To this end, we warp the Gaussian
graph from the keyframe to other frames within the segment
according to the ED nodes’ motion interpolation:

P;,t = SE3(DQB(pik))pik,

/ 3)
¢+ = ROT(DQB(pi x))i.k

SE3(-) converts dual quaternion back into a transformation
matrix, while ROT (-) extracts the rotation component from
dual quaternion. p; j, g; 1 denote the position and rotation
of the i-th Gaussian kernel at keyframe k, respectively. p;’t
and ¢; , represent the initial position and rotation at frame ¢.
They will be further optimized in the subsequent stage.

3.2. 4D Gaussians Optimization

Directly warping the fine-grained Gaussian graph with
tracking prior and splatting it onto screen space can lead to
noticeable and unnatural artifacts. To mitigate this, we do
not use the Gaussians’ densification and pruning within the
segment. Instead, we impose a constraint on their number
and execute sequential optimization.

For the frame ¢, we categorize attributes for each 4D
Gaussian kernel 7 into two groups: 1). Appearance-aware
parameters, which include spherical harmonic C; ;, opacity
0, and scaling s; ;. 2). Motion-aware parameters, which
include position p; ; and rotation ¢; ;. Leveraging the initial-

ization from the warped Gaussian graph reduces the training
time to one-third while still yielding vivid results. However,
despite incorporating non-rigid tracking priors, we observe
notable temporal jitters in the rendered results. Concurrent
studies [40, 71, 76] address this issue by decoupling the de-
formation field from canonical 3D Gaussians. They employ
a consistent set of Gaussians across dynamic sequences,
which substantially diminishes view-dependent effects and
sacrifices rendering quality. To mitigate temporal jitters
while maintaining rendering quality, we introduce tempo-
ral and smooth regularization to delicately balance the dual
graph prior and the updating of Gaussian attributes, thereby
enforcing 4D consistency. First, we introduce the tempo-
ral regularization term E'y,p,. This term promotes coherent
appearances by constraining the 4D Gaussian appearance
attributes(C; +, 05 ¢, s;+) to be consistent with the previous
frame:

Etemp =

Z Wi Aallais — ais-1ll3, (4)
a€{C,o,s}

Elemp helps to reduce jitteriness. However, it may be not
sufficient, especially when motion parameters change sig-
nificantly, particularly in feature-less areas. Moreover, ap-
plying this regularization directly to motion attributes can
also result in unnatural artifacts. Inspired by works [40, 44,
62] on non-rigid registration, we introduce a smooth term
targeted at the motion attributes (p; ¢, g; ¢) within the fine-
grained Gaussian graph. We define this term as follows:

Esmooth = Z Z wi,t“SOS(qi,t * qi_,tl—l)
i JEN() (5)
(pj,t—1 - pi,t—l) - (Pj,t —Pi,t)”%a
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SO3(-) converts a quaternion into a rotation matrix. Kernel
7 and j are neighbors on the Gaussian graph. The smooth
term produces locally as-rigid-as-possible deformations to
constrain the consistent 4D Gaussian motion on the spatial-
temporal domain. Furthermore, it’s observed that the Hu-
man Visual System is more sensitive to detail changes in
static regions as opposed to dynamic ones [6]. Thus, we
incorporate an adaptive weight that takes into account the
displacement of positions between adjacent frames:

Wit = exp(—aHpg’t - p;,tfl ||2)a (0)

This adaptive weight indicates the degree of motion change
in a corresponding local region. It penalizes the flicking ar-
tifacts in regions with slight non-rigid motions and reduces
penalties in areas with large movements. This significantly
improves the visual quality. Additionally, we employ the
photometric loss during the training process:

Eeotor = ||C — CJJ1, 7

C is the blended color after rasterization and C is the
ground truth. The complete energy is as follows:

E= )\tempEtemp + AsmoothEsmooth + AcolorEcolor' (8)
3.3. Compact 4D Gaussians

After optimization, we obtain spatial-temporally compact
4D Gaussians, resulting in high-fidelity rendering results.
However, each frame requires the same amount of storage
as the keyframe. This leads to significant memory con-
sumption and presents challenges when handling lengthy
sequences. To address this problem, we introduce a com-
panion compression scheme on top of our compact 4D
Gaussians. This scheme adheres to the traditional method
of residual compensation, quantization, and entropy encod-
ing, as depicted in Fig. 3.

Residual Compensation. In contrast to the broad distri-
bution range of the original attributes, we opt to retain the
keyframe attributes and calculate residuals for the following
frames within the segment, effectively narrowing the range.
In terms of appearance attributes(C; ¢, 0; ¢, S;,+), the impact
of Ejemp results in minimal variations. Therefore, we can
directly derive the residual appearance through subtraction.
However, for position p and rotation g, simple subtraction is
not sufficient as large motions still exist within a segment.
To address this, we employ motion compensation as out-
lined in Eq. 1 and Eq. 3. We subtract the warped key Gaus-
sians p; .., q; ;, from p; ;, ¢; ¢, ensuring a narrower range.
Quantization. We scale and round attribute values based
on their range and quantization bits ()p;;, making the data
ready for entropy encoding.

Entropy Encoding. Residual computation combined with
motion compensation yields a residual distribution for at-
tributes that cluster around zero. To leverage this dis-
tribution for real-time encoding and decoding, we apply
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the Ranged Arithmetic Numerical System (RANS) [11].
RANS enhances compression by taking advantage of the
distribution ’s skewness, a key factor for meeting the high-
performance demands of HiFi4G. We compress our data
by calculating the frequency of each quantized attribute
and constructing a frequency distribution. This distribution
helps to encode each attribute efficiently using the RANS
algorithm, where each attribute and the current state of the
encoder are processed to update the state, representing the
encoded data sequence. The final state is stored as an in-
teger stream for subsequent decoding. This compression
scheme achieves a substantial compression rate of approx-
imately 25 times, reducing the storage requirement to less
than 2 MB per frame. This capability facilitates the immer-
sive viewing of high-fidelity human performances on vari-
ous platforms, including VR/AR HMDs.

4. Implementation Details

First, we use the background matting [37] to extract the
foreground masks from all captured frames. For global ini-
tialization, we use openpose [5] to estimate the hand and
face regions for importance sampling. The sampling ratio
across the body, hands, and face regions is approximately
8:1:1. We perform 30000 training iterations with densifi-
cation and pruning on the keyframes, followed by resetting
the tracking and reconstructing the dual-graph. For non-
key frames, training iterations are reduced to 9000. In the
optimization stage, we use the following empirically deter-
mined parameters: = 50, ¢ = 1,A, = 0.05,\; =
0.05, Asmooth = 0.002, A¢emp = 0.0005, Acolor = 1.0.
During compression, we first quantize the appearance at-
tributes, then fix these parameters and fine-tune motion
p and ¢ of 4D Gaussians over an additional 1000 itera-
tions. Afterward, we quantize the motion. We apply dif-
ferent precision levels for various attributes to balance stor-
age and quality. For the keyframes, we keep the motion
uncompressed(0-bit) and apply 9-bit quantization for ap-
pearance. For non-key frames, we use 11-bit quantization
for motion and 7-bit quantization for appearance due to their
more compact range.
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Figure 4. Gallery of our results. HiFi4G delivers real-time high-fidelity rendering of human performance across challenging motions, such

as “playing instruments”, “dancing” and “changing clothes”.

5. Experimental Results

To demonstrate the capabilities of HiFi4G, we deploy 81
pre-calibrated Z-CAM cinema cameras to capture complex
human performances with a resolution of 3840 x 2160 at
30 fps, and then evaluate our method. The dataset covers
a variety of costumes, from traditional Chinese attire to ca-
sual clothes and cosplay. It also includes a wide range of
activities such as dance, fitness, and interaction with vari-
ous objects. As shown in Fig. 4, HiFi4G enables real-time,
high-fidelity rendering of human performance in high reso-
lution. It effectively handles complex motions like playing
instruments, dancing, and changing clothes.

5.1. Comparison

We compare HiFi4G with the SOTA methods including
Instant-NSR [81], NeuS2 [69], HumanRF [22] and con-

current work Dynamic 3D Gaussians [40] on our cap-
tured dataset and ActorsHQ [22]. As depicted in Fig. 5,
Instant-NSR [81] suffers from severe artifacts due to the
heavy reliance on geometry. Volume rendering methods
such as NeuS2 [69] and HumanRF [22] produce blurry
results, over-smoothing on high-frequency details. Mean-
while, Dynamic 3D Gaussians [40] loses the advantages of
3DGS [26] due to fixed appearance attributes, failing to re-
cover detailed appearance and view-dependency. In con-
trast, HiFi4G surpasses these existing methods by merging
3D Gaussian representation with keyframe-update-based
non-rigid tracking, providing detailed and high-quality hu-
man performance rendering. For quantitative comparison,
we evaluate each method on three 200-frame sequences
from our dataset and ActorsHQ separately. We use var-
ious metrics, including PSNR, SSIM, LPIPS, the tempo-
ral metric VMAF [31], and per-frame storage. As seen
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Figure 5. Qualitative comparison of our method against Instant-NSR [81], NeuS2 [69], HumanRF [22] and Dynamic 3D Gaussians [40]
on both our dataset and ActorsHQ [22]. Our method achieves the highest rendering quality.

Table 1. Quantitative comparison on our dataset. Green and
yellow cell colors indicate the best and the second-best results.

Method PSNRT SSIMT LPIPS| VMAFT Per-frame Storage(MB) |
Instant-NSR [81] 29.385 0958  0.0370  68.309 11.63
NeusS2 [69] 32952 0.961 0.0682  79.102 24.16
HumanRF [22] 31.174 0977  0.0298  80.942 11.38
Dynamic 3D Gaussians [40] | 30.244  0.965 0.0847  52.224 4.523
Ours(Before Compression) 36.205 0.989 0.0184 85.127 43.42
Ours(After Compression) 35.788 0.986 0.0214 84.312 1.648

Table 2. Quantitative comparison on ActorsHQ dataset.

Method PSNRT SSIMt LPIPS| VMAF! Per-frame Storage(MB) |
Instant-NSR [81] 27.145 0932 0.0949 55635 1372
NeuS2 [69] 32124 0939  0.1579  81.374 29.09
HumanRF [22] 34.106 0963  0.0549  85.198 10.95
Dynamic 3D Gaussians [40] | 22.413 0911 0.2191  41.374 2.325
Ours(Before Compression) 35.029 0.969 0.0909 88.427 50.91
Ours(After Compression) 34.704 0.967 0.1013 87.543 2.143

in Tab. | and Tab. 2, HiFi4G surpasses other methods in
both quality and storage. Note that our compression strat-
egy significantly reduces per-frame storage requirements
without compromising quality. Remarkably, even on the
VMAF metric [31], which evaluates the perceptual quality
and temporal consistency, our explicit method outperforms
HumanRF which benefits from the inherent smoothness of
the MLP.

5.2. Ablation Study

Compact 4D Gaussians. We conduct a qualitative ablation
on the dual-graph and the regularization term to assess their
impact on post-compression rendering results. As shown in
Fig. 6, the removal of the coarse ED-graph prior typically
causes severe artifacts. Excluding the Gaussian graph of-
ten results in significant precision loss and unnatural render-
ing. Regarding regularizers, the omission of E}cy,p, usually

triggers unrealistic artifacts post-compression. Meanwhile,
the absence of Egpootn produces blurry results, with both
leading to flickering in the video. Additionally, to evalu-
ate the impact of the adaptive weight w;;, we replace it
with a fixed weight of 0.1. This adjustment generally leads
to noticeable blurriness, especially in areas with significant
movement. In contrast, our full pipeline generates spatially
and temporally compact 4D Gaussians, maintaining high-
fidelity rendering even after compression. The quantitative
results are as demonstrated in Tab. 3, in which our full ap-
proach achieves the highest accuracy.

Residual Compensation. As illustrated in Fig. 7 (b), we
allocate 48.24MB of storage for the 4D Gaussians of each
frame before compression. Applying high-bit quantization
(0-bit for motion and 9-bit for appearance) without residual
compensation results in a storage requirement of 7.41MB,
as shown in Fig. 7 (c). Using low-bit quantization (11-bit
for motion and 7-bit for appearance), again without residual
compensation, reduces storage to 3.67MB but compromises
rendering quality, as illustrated in Fig. 7 (d). In contrast, ap-
plying the same low-bit quantization but with residual com-
pensation significantly reduces storage needs to under 2MB
per frame while maintaining the same level of rendering
quality, as shown in Fig. 7 (e).

The Number of 4D Gaussians. We assess the impact of
changing the number of 4D Gaussians on the quality of
results across three sequences. As depicted in Fig. 8, us-
ing 200,000 4D Gaussians is adequate for generating high-
quality results. This amount enables effective compression
to less than 2MB, supporting immersive viewing on diverse
platforms, including VR and AR.
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Table 3. Quantitative evaluation of compact 4D Gaussians.

PSNR 1 SSIM 1 LPIPS | VMAF 1
w/o ED graph 29.142 0.9534 0.0662 69.724
w/o Gaussian graph| 31.185 0.9541 0.0586 76.873
w/o Eemp 33.555 0.9661 0.0496 76.308
W/0 Egmooth 33.889 0.9657 0.0518 81.944
w/o w; 4 33.577 0.9678 0.0425 81.236
Ours 35.085 0.9828 0.0219 83.133

w/o ED graph w/o Gaussian graph  W/0 Epy

Reference W/ Egpootn w/o w;, Ours

Figure 6. Qualitative evaluation of compact 4D Gaussians.

48.24MB 7.41MB 3.67TMB 1.78MB

(2) (b) © @ ©

Figure 7. Qualitative evaluation of our residual strategy. (a) Ref-
erence image; (b) 4D Gaussians results before compression; (c)
Per-frame encoding using high-bit quantization without residual;
(d) Per-frame encoding using low-bit quantization without resid-
ual; (e) Ours results using low-bit quantization with residual.

Table 4. Run-time evaluation of each step.

Procedure Time
Background matting ~ 1 min
Meshing ~ 1 min
non-rigid tracking ~ 100 ms
4D Gaussians Optimization ~ 4 mins
4D Gaussians Compression ~ 100 ms

Run-time Evaluation of Each Step. As shown in Tab. 4,
we also provide the runtime for each step on a PC with an
Nvidia GeForce RTX3090 GPU, which includes both the
preprocessing and training stages. Our method can generate
4D assets efficiently, taking less than 7 minutes per frame.

5.3. Limitation

Although HiFi4G achieves high-fidelity 4D human perfor-
mance rendering via compact Gaussian Splatting, it still has
some limitations. First, HiFi4G heavily relies on segmen-
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Figure 8. Evaluation of 4D Gaussians number. With ~200,000
4D Gaussians, HiFi4G achieves high-fidelity human performance
rendering, suitable for integration in VR applications.

tation, poor segmentation can lead to significant artifacts,
especially in scenes with human-object interactions. More-
over, our method necessitates per-frame reconstruction and
mesh tracking, which presents an interesting direction in
exploring a more synergistic relationship between tracking
and rendering. Even though HiFi4G is efficient in gener-
ating 4D assets, the Gaussian optimization process still re-
quires several minutes, forming a major bottleneck. Accel-
erating this training process is vital for future research. Ad-
ditionally, the current dependence of 4D Gaussian on fast
GPU sorting limits the deployment of HiFi4G on web view-
ers and mobile devices.

6. Conclusion

We have presented an explicit and compact Gaussian-based
approach for 4D human performance rendering from RGB
inputs. By bridging 3D Gaussian Splatting with non-rigid
tracking, our approach achieves high-fidelity rendering re-
sults, outperforming previous methods in terms of quality,
efficiency, and storage. Our dual-graph mechanism pro-
vides sufficient non-rigid motion priors in a keyframe-based
manner, while our Gaussian optimization scheme with
novel regularization designs effectively ensures spatial-
temporal consistency of the 4D Gaussian Splatting. We also
demonstrate the compactness of our representation with
a companion compression scheme which substantially re-
duces storage requirements. Our experimental results fur-
ther demonstrate the effectiveness of our approach for de-
livering lifelike human performances. With its explicit and
compact characteristics, we believe our approach makes
a solid step forward to faithfully recording and providing
immersive experiences of human performances on various
platforms like VR headsets.
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