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Figure 1. Illustration of halftones generated by our proposed ink dot-oriented differentiable neural halftoning method and several previous
methods [12, 26, 35]. Images are from the DIV2K dataset [2].

Abstract

Halftoning is a time-honored printing technique that
simulates continuous tones using ink dots (halftone dots).
The resurgence of deep learning has catalyzed the emer-
gence of innovative technologies in the printing industry,
fostering the advancement of data-driven halftoning meth-
ods. Nevertheless, current deep learning-based approaches
produce halftones through image-to-image black box trans-
formations, lacking direct control over the movement of in-
dividual halftone dots. In this paper, we propose an inno-
vative halftoning method termed “neural dot-controllable
halftoning”. This method allows dot-level image dither-
ing by providing direct control over the motion of each ink
dot. We conceptualize halftoning as the process of sprin-
kling dots on a canvas. Initially, a specific quantity of dots
are randomly dispersed on the canvas and subsequently
adjusted based on the surrounding grayscale and gradi-
ent. To establish differentiable transformations between
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discrete ink dot positions and halftone matrices, we devise
a lightweight dot encoding network to spread dense gradi-
ents to sparse dots. Dot control offers several advantages
to our approach, including the capability to regulate the
quantity of halftone dots and enhance specific areas with
artifacts in the generated halftones by adjusting the place-
ment of the dots. Our proposed method exhibits superior
performance than previous approaches in extensive quanti-
tative and qualitative experiments.

1. Introduction
In the late 1800s, pioneers such as William Henry Fox Tal-
bot, Georg Meisenbach, Frederic Ives, and Max Levy [32]
made significant strides in halftone printing techniques,
enabling photographs to be printed on paper using ink.
Halftoning is a technique of replicating the color and shad-
ing of continuous tone images by employing ink dots
(halftone dots) of different sizes and frequencies. It remains
a crucial and enduring component in the modern printing
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Figure 2. Prior deep networks-based halftoning methods (top) map
an image to a halftone-like continuous-tone image before applying
a binarization operation. In contrast, our proposed method (bot-
tom) differs from previous halftoning techniques in that it achieves
dot-level halftones through direct control over the movement of
each dot.

industry. A successful halftone can closely reproduce the
original image with high quality, leveraging the low-pass
filtering characteristics of the human visual system to attain
near-optimal visual effects.

Halftone technology can be broadly divided into two cat-
egories: traditional or deep learning-based methods. The
former can be further cast into three groups based on im-
plementations of dithering process: amplitude modulation
(AM) [3, 5, 11], frequency modulation (FM) [6, 20, 22, 34],
and hybrid modulation [14, 39]. Recently, the renaissance
of deep learning as a black-box approximation for high-
dimensional functions has catalyzed the emergence of sev-
eral data-driven methods in the field of halftoning [15, 16,
18, 23, 35], demonstrating superior performance.

In this paper, we argue that current deep learning meth-
ods for halftoning, face some weaknesses that impede their
deployment in the printing industry. Notably, these meth-
ods treat halftones as binary images and heavily rely on
a black box encoder-decoder to convert between the orig-
inal continuous-tone image and the halftone-induced binary
image. However, they operate as image-level transforms
rather than directly manipulating the halftone dots, leading
to a loss of direct control over the desired properties of the
resultant halftones. As observed in Figure 1, purely image-
level transformations [12, 26, 35] tend to produce undesired
artifacts, and they struggle to directly manipulate local dot
arrangements to eliminate these artifacts. In addition, tradi-
tional methods do not allow for control over the number of
halftone dots. In practical applications, opting for halftone
techniques that utilize fewer ink dots can be advantageous
for consumable savings. For prints with low detail require-
ments, like halftone cartoon stickers, a modest quantity of
dots suffice to faithfully convey the information present in
the continuous tone image.

To address the above issues, we propose ink dot-oriented
neural image halftoning for the first time in the literature,
which directly controls the motion of each ink dot, enabling
dot-level differentiable optimization. Nonetheless, a piv-

otal challenge in achieving this lies in the discrete nature of
ink dot positions, while the objective functions piloting the
halftone generation are continuous. Directly propagating
the gradient flow from halftone pixels to ink dot positions
is unfeasible, rendering gradient back-propagation a chal-
lenging endeavor. A key contribution of this paper is the
presentation of a novel approach to integrate discrete ink
dots into continuous halftone optimization in a fully differ-
entiable manner.

Our approach considers halftoning as the process of op-
timizing dot placements on a blank canvas using halftone
quality-related guidance. We commence by randomly
spreading a flexible number of dots on the canvas and then
progressively move them. To facilitate smooth gradient
backpropagation from the objective function to each dis-
crete ink dot, we introduce a dot encoding module that maps
dot coordinates to the product of sparse vectors, creating a
structure conducive to differentiable optimization. We also
develop a motion-estimating module to predict the motion
of each ink dot. Our method offers direct control over the
quantity of ink dots in the generated halftones, a feat chal-
lenging to attain in prior work, owing to the flexibility and
scalability of the proposed dot manipulations.

To sum up, this paper introduces ink dot-oriented neural
image halftoning, the first approach of its kind to achieve
dot-level image dithering by controlling the movement of
ink dots. Our proposed model showcases superior perfor-
mance over previous methods in extensive qualitative and
quantitative experiments. Furthermore, the method can be
easily extended to arbitrary scale and color images.

2. Related Work
2.1. Traditional Halftoning

Traditional halftone methods can be categorized into am-
plitude modulation (AM) [3, 5, 11], frequency modulation
(FM) [7, 8, 25, 38], and hybrid approaches [14, 39]. AM
methods use dot clusters of varying sizes and frequencies to
represent different shades of gray and reproduce the origi-
nal continuous tone image. FM is represented by the error
diffusion algorithm, which distributes the quantization error
generated by pixel thresholding to adjacent pixels, achiev-
ing superior results. For example, Ostromoukhov [26] pro-
posed an improved error-diffusion algorithm based on the
deliberately restricted choice of the distribution coefficients.
Unlike these traditional methods, which rely on some prior
or handcrafted designs, our approach is data-driven, en-
abling halftone optimization with greater fitting ability and
model capacity.

2.2. Deep Learning Based Halftoning

With the emergence of deep learning techniques, re-
searchers have explored the use of neural networks to gen-
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Figure 3. Schematic illustration of the proposed method. The proposed method takes a set of random dots as input. O-Net differentiably
transforms discrete ink dot positions into a halftone matrix, effectively spreading dense gradients over sparse dots. P-Net predicts the
motion of each halftone dot.

erate halftones [16, 17, 23, 35]. For example, Xia et al. [35]
utilized stacked convolutional networks to learn reversible
halftones capable of concealing color information. How-
ever, most of prior methods treat the entire image as a whole
and cannot achieve fine control of halftone dots. In contrast,
our approach facilitates dot-level controllable halftones, of-
fering greater interpretability and maneuverability.

3. Method

3.1. O-Net: Spreading Dense Gradients onto Sparse
Ink Dots

Halftone images consist solely of black and white pixels,
with the arrangement of black pixels determining the bright-
ness and visual structure of each area in the image. A
straightforward approach to generate halftone images is to
first learn a mapping from a continuous-tone image to an
almost binary image, which is then rounded to produce
binary halftone dots, as demonstrated in prior work [15–
18, 23, 35]. Nevertheless, this approach is subject to sev-
eral limitations. Primarily, it lacks direct control over in-
dividual halftone dots. In the event of defects in some
generated halftone areas, the entire halftone have to be
regenerated, posing escalating challenges, particularly for
larger images. Additionally, previous image-level halfton-
ing methods lack the capability to regulate the quantity of
ink dots in halftones. In scenarios where printing equip-
ment features limited or costly consumables, this lack of
flexibility hinders the generation of halftones with varying
consumable levels.

In Figure 3, we present a novel approach for dot-centric
halftoning. The process begins by initializing a set of dots
at random. Denote the dot set as Q = {q0, q1, ..., qk−1},
where k represents the number of dots. Each dot qi is
represented by its two-dimensional coordinates within the
image, i.e., qi = {xi,yi}, where i ∈ [0, k − 1],xi ∈
[0, L1 − 1],yi ∈ [0, L2 − 1], with L1 and L2 being the
height and width of the image, respectively. The coordi-
nates of these dots can be used to index their corresponding
positions on a “white canvas” H, which serves as a layout

for the ink dots. H consists solely of elements that are ei-
ther 0 or 1 (after normalization). A value of 1 in H indicates
the presence of an ink dot at the corresponding position,
while an element 0 indicates the absence of a dot. To pin
the dots in setQ onto the white canvas H, a straightforward
approach is to directly fill these halftone dots into the matrix
H:

H
[
⌊xi⌋, ⌊yi⌋

]
= 1, ∀(xi,yi) ∈ Q. (1)

Performing such an operation is challenging to optimize
in an end-to-end neural network due to the discreteness of
ink dot coordinates qi, and the continuity of H. Directly
passing the gradient flow between matrix coordinates xi,yi

and H is not feasible, and backpropagation is difficult to
conduct. While reinforcement learning ideas [10] suggest
that decision-making agents can help networks execute de-
cisions under reward functions for discrete action spaces,
these approaches are relatively complicated. Instead, we
aim to design a simple, differentiable transformation be-
tween Q and H to enable end-to-end training of the net-
work.

Our key observation is that the halftone H can be gen-
erated through the Hadamard product of multiple sparse
binary matrices, and these sparse binary matrices can be
expressed as the product of one-hot encodings of dot co-
ordinates. For a halftone H with k dots, we decompose
it into the Hadamard product of k independent matrices
H0,H1, ...,Hk−1:

H = I− (I−H0)⊙ (I−H1)⊙ ...⊙ (I−Hk−1), (2)

where ⊙ is the Hadamard product, and I stands for an
all-one matrix. H0,H1, . . . ,Hk−1 have the property that
each matrix contains only one element equal to 1, while the
rest are 0. Intuitively, H0,H1, ...,Hk−1 represent halftones
formed by printing dots q0, q1, . . . , qk−1, respectively. For
a dot qi = {xi,yi}, we can get its one-hot encoding from
xi and yi:

o(xi) = OneHotEncoding(xi),

o(yi) = OneHotEncoding(yi).
(3)
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Assuming o(xi) and o(yi) have been obtained, Hi can be
calculated according to o(xi) and o(yi) via Hi = o(xi)

⊤ ·
o(yi).

Substituting the calculated Hi into Equation 2, the
halftone H can be obtained. The only non-differentiable
step occurs in Equation 3 (i.e., OneHotEncoding). The
non-differentiable problem of converting discrete ink dots
to continuous halftone matrics is transformed into the non-
differentiable problem of one-hot encodings, resulting in a
simplified problem. We learn a model O-Net (‘O’ stands
for “one-hot encoding”) to perform the mapping from dis-
crete coordinates xi, yi to one-hot encoding o(xi), o(yi).
Denote O-Net as O for brevity, which consists of fully con-
nected layers in our implementation. ReLU activation func-
tion is used between each layer. During the optimization of
O-Net, the potential coordinate values x̃ and ỹ are fed into
O, and the gradient is computed utilizing the following loss
function LO−Net:

LO−Net =

1

max(L1, L2)/s

max(L1,L2)−1∑
l=0

|O(x̃l)−OneHotEnc(x̃l)|+

1

max(L1, L2)/s

max(L1,L2)−1∑
l=0

|O(ỹl)−OneHotEnc(ỹl)|,

(4)
where OneHotEncoding(x̃l) and OneHotEncoding(ỹl)
denote the one-hot vector determined by x̃l and ỹl, respec-
tively. s represents the sampling step. It is worth noting that
the dot coordinates xi and yi are decimal numbers. There-
fore, to ensure that the network O can accurately handle
different coordinate values, it is necessary to densely sam-
ple the interval [0,max(L1, L2) − 1]. In our experiments,
we use a sampling step of 0.01 for this interval. The archi-
tecture of O-Net is illustrated in Figure 4.

The precision P(O) is calculated as follows:

P(O) =
1

max(L1, L2)/s

max(L1,L2)−1∑
l=0

1{argmax(O(x̃l)),

argmax(OneHotEncoding(x̃l))}+

1

max(L1, L2)/s

max(L1,L2)−1∑
l=0

1{argmax(O(ỹl)),

argmax(OneHotEncoding(ỹl))},
(5)

where 1{a, b} is 1 when a and b are equal, and 0 otherwise.
In the experiments, O-Net is first trained to convergence and
its parameters are fixed during halftone generation.

Discussion. We eschew the use of embedding matrix
lookups to establish the mapping between dot coordinates
and one-hot encodings due to their non-differentiability.
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Figure 4. Illustration of O-Net for differentiable transformation
from discrete dots to continuous vector-based halftone representa-
tions.

This characteristic disrupts gradients and impedes the pro-
cess of backpropagation.

3.2. P-Net: Ink Dot Motion Prediction

A primary contribution of this work is the achievement of
dot controllable halftones, with the prediction of the ink dot
motion playing a crucial role in this realization. While some
deep learning methods have introduced techniques for point
motion control and prediction, exemplified in point cloud
generation [1, 4, 24, 28, 33, 36], applying these methods
directly to halftoning is not feasible for the following rea-
sons: (1) Point clouds typically consist of a small number
of points, for instance, the 2, 048 points utilized in [24]
to generate point clouds of various shapes. In contrast,
halftones comprise a substantial number of ink dots, with
20, 000 ∼ 30, 000 ink dots in a 256×256 resolution image.
As the dot count escalates, optimizing the model becomes
progressively more challenging. (2) Point cloud genera-
tion methods are primarily employed to create point cloud
shapes with a coarse level of detail. In contrast, halftones
incorporate intricate details and textures, demanding pre-
cise and meticulous control over the movement of each ink
dot to achieve a fine-grained result.

To tackle the aforementioned challenges, we propose P-
Net, a network that employs image gray levels as guidance
to achieve ink dot motion prediction, as shown in Figure 5.
Inspired by recent diffusion generative models [9, 29–31],
we explore the efficacy of simple and lightweight convo-
lutional blocks for dot motion prediction. P-Net takes the
halftone H formed by ink dots (Equation 2) and the con-
tinuous tone image C as input. Each element in the matrix
C represents the gray level of the image at the correspond-
ing position. The approach employed by P-Net to integrate
information from H and C is relatively straightforward, in-
volving concatenation of the two matrices along the channel
dimension:

Pin = Conv2D(H ||C), (6)

where Conv2D means two-dimensional convolution, ||
means the concatenation operation. While alternative ap-
proaches, including post-smooth concatenation and density-
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Algorithm 1 Algorithm for Dot Controllable Halftoning

Input:
The set of random dots, Q = {q0, q1, ..., qk−1};
The number of dots in the set Q, k;
Continuous tone image, C;
The number of iterations, τ ;

Output:
Generated halftone, Hout;

1: Transform the dots in the setQ into halftone H(0) using
O-Net; /∗ Equation 2 ∗/

2: for i = 0 to τ − 1 do
3: Feed H(i) and C into P-Net as input; /∗ Equa-

tion 6 ∗/
4: Obtain motion predictions of each dot inQ: P(i)

out ←
P-Net(H(i),C); /∗ Equation 8 ∗/

5: Update the position of ink dot ∀qi ∈ Q, and update
the set Q; /∗ Equation 9 ∗/

6: Transform the dots in the set Q into halftone H(i+1)

using O-Net; /∗ Equation 2 ∗/
7: Calculate LP and update the model parameters of

P-Net; /∗ Equation 13 ∗/
8: end for
9: return Hout ← Hτ ;

integral map-based methods, have been explored in the ex-
periments, they demand greater computation and do not
yield substantial performance enhancements. P-Net utilizes
a sequence of convolution modules to acquire the fusion
representation of matrices H and C, followed by several
downsampling modules to reduce the image resolution:

P̃ = DownSample(StackedConv2D(Pin)), (7)

where P̃ represents the feature matrix of high-level gray
scale information, which coarsely expresses the overall
movement trend of the ink dots within adjacent image
blocks. Next, a prediction head composed of convolutions
is used on the upsampled P̃ matrix to make the output dot
motion Pout consistent with the resolutions of the halftone
matrix H:

Pout = StackedConv2D(UpSample(P̃)). (8)

Each element in Pout represents the displacement vector
of the ink dot at the corresponding position, and it has two
channels representing the motion prediction along x and y
directions, respectively. For ∀qi ∈ Q, qi = {xi,yi}, its
new position can be derived as:

(x̂i, ŷi) = (xi,yi) +Pout

[
⌊xi⌋, ⌊yi⌋

]
. (9)

The ink dot coordinates q̂i = {x̂i, ŷi} after the mo-
tion can be differentiated to form a new halftone matrix Ĥ
through O-Net, and the iteration is completed.
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Figure 5. Schematic diagram of the proposed P-Net, which is used
to predict the motion of each ink dot.

3.3. Training Scheduling and Optimization

To optimize our model, following [27, 35], we use the tone
loss LT , which computes the dissimilarity between halftone
predictions Hout and continuous tone images C:

LT = EH ∥GauSmooth (Hout)−GauSmooth (C)∥2 ,
(10)

where ∥·∥2 represents the L2 norm. To improve the struc-
tural similarity of the generated halftones, the structural loss
LS is employed:

LS = EH ∥Struc Measure (Hout,C)∥1 . (11)

Additionally, the pixel loss LR is adopted to measure
the difference between the generated halftone after inverse
halftoning transformation and the continuous tone image:

LR = EH ∥R (Hout)−C∥2 , (12)

where R represents the frozen inverse halftoning net-
work [35]. The total loss LP is as follows:

LP = LT + γSLS + γRLR, (13)

where γS and γR are hyperparameters to trade-off each loss
term. We detail the training process in Algorithm 1.

4. Experiments
4.1. Datasets, Baselines, and Evaluation Protocols

Datasets and Baselines. Following previous research [13,
35], we curate a halftoning dataset by selecting images from
UTKFace [37] and DIV2K [2]. The dataset comprises 4000,
1000, and 400 images in the training, validation, and test
sets, respectively. We select baseline models from two cate-
gories: traditional halftoning methods [12, 21, 26] and deep
learning-based halftoning methods [35]. The traditional
methods include amplitude modulation techniques (such
as Ordered Dithering), frequency modulation techniques
(such as Floyd-Steinberg Error Diffusion, Simpler Floyd-
Steinberg Error Diffusion, Jarvis, Judice, and Ninke Dither-
ing, Stucki Dithering, Atkinson Dithering, Burkes Dither-
ing, Sierra Dithering, Two Row Sierra Dithering, and Sierra
Lite Dithering), and improvements of Floyd-Steinberg er-
ror diffusion algorithm (such as Ostromoukhov’s Method).
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(c) training iteration=6000
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(d) training iteration=9000

Figure 6. O-Net robustness test experiment. The figure shows the variation trend of the halftone quality obtained by O-Net with the noise
intensity. a, b, c, and d represent 1000, 3000, 6000, and 9000 model iterations (×104), respectively.

Table 1. Performance comparison of different halftoning methods
on test images in terms of peak signal to noise ratio.

Method Min. Max. Std. Dev. Avg.

Ordered Dithering [21] 29.69 36.49 1.14 33.04
Floyd-S. [12] 35.31 44.40 1.72 39.52
Simpler Floyd-S. [21] 32.52 41.61 1.64 36.81
Jarvis, J., and N. [21] 27.70 38.29 1.85 32.67
Stucki [21] 28.57 39.10 1.85 33.40
Atkinson [21] 21.78 31.77 1.82 26.36
Burkes [21] 31.74 41.58 1.75 35.62
Sierra [21] 28.23 38.51 1.87 33.25
Two Row Sierra [21] 30.82 41.21 1.73 34.86
Sierra Lite [21] 35.95 45.58 1.65 40.90
Ostromoukhov [26] 36.04 45.90 1.76 41.18
Xia’s Method [35] 29.89 35.94 0.81 33.83
Our Proposed Method 34.74 46.64 2.18 43.04

Regarding deep learning methods, we select [35] as the
baseline, which is a recently proposed deep learning-based
halftoning approach.

Evaluation Protocols and Implementation Details.
Following previous work [35], we use Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) to measure
the quality of the generated halftones. Before computing
PSNR, we first smooth both the halftone and continuous
tone image with an 11×11 Gaussian filter, and then use
the smoothed images to calculate the metrics. In addition,
we also use qualitative experiments to evaluate the perfor-
mance of different methods. The quantity of initial dots k
is determined through a linear transformation based on the
grayscale of the continuous tone. In P-Net, the number of
channels is 64, the convolution kernel size is set to 3×3.
O-Net consists of 4 fully connected layers, and the activa-
tion function between layers is ReLU. γS and γR are set to
0.04 and 0.08 respectively. Adam optimizer [19] is used to
optimize the model, and the learning rate is set to 0.0001.

4.2. Performance Comparison

We conduct quantitative experiments on images with
64×64 resolutions, and the experimental results are shown
in Table 1. It can be observed that our proposed method
achieves superior performance than previous methods. Tra-
ditional methods (e.g., Ordered Dithering, Floyd-Steinberg

Error Diffusion, Ostromoukhov’s Method) usually prede-
fine some dithering matrices or diffusion coefficients, which
achieve relatively good results. However, these traditional
methods apply a hand-crafted halftoning criterion to all im-
ages indiscriminately, and thus have limited flexibility com-
pared to data-driven approaches like [35]. Besides, previ-
ous methods perform halftone generation on the global im-
age and cannot adaptively control the motion of each ink
dot, which makes it difficult to flexibly remove some unde-
sired artifacts in the generated halftones. In contrast, our
method can flexibly control the motion of each ink dot on
the halftone, thus achieving better experimental results.

4.3. Study on the Effectiveness of O-Net

A well-performing O-Net should be able to handle various
coordinate values produced by model predictions. Although
we sample the [0,max(L1, L2) − 1] interval as densely as
possible during training, it is still not enough to cover vari-
ous float coordinate values that may be encountered during
model training. In light of this, we design some experi-
ments to verify the robustness of O-Net to numerical noise
of float numbers, as shown in Figure 6. The main process of
the experiment is that we randomly add noises of different
intensities to the correct coordinates of ink dots, and ob-
serve the prediction precision of O-Net after adding noises.
The magnitude of the noise is constrained between [0, 1],
which is to ensure that the original position of the ink dot
will not be changed when the noise is added to the coordi-
nates. The intensity of the noise is defined by its coverage
percentage of the coordinate value. As illustrated in Fig-
ure 6, during the initial stages of training, noise interference
adversely impacts the quality of the halftones generated by
the model. However, as training advances towards conver-
gence, the model becomes less sensitive to noise interfer-
ence, affirming the robustness of O-Net.

In addition, we visualize the heat maps of O-Net pre-
diction results at different stages of training, as shown in
Figure 7. We first randomly initialize 64 ink dot coordinates
on a 64×64 resolution image, then feed these 64 dot coordi-
nates into O-Net, and visualize the model prediction results.
As depicted in Figure 7, prior to the convergence of O-Net,
the predicted image exhibits numerous non-binarized gray
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(a) random initialized (b) training iteration=10 (c) training iteration=6000 (d) training iteration=9000

Figure 7. Visualization of model predictions at different stages of O-Net training. a, b, c, and d represent 0, 10, 6000, and 9000 model
iterations (×104), respectively. The effectiveness of O-Net increases as the image transitions towards a binary representation.

(a) continuous tone (b) iteration #1 (c) iteration #2 (d) iteration #3 (e) iteration #4

Figure 8. Visualization of ink dot motion predictions over several iterations. Here we visualize the motions on x-axis, normalized to 0 to 1.

(a) quantity level 1 (b) quantity level 2 (c) quantity level 3

Figure 9. Illustration of the resulting halftones with different num-
bers of ink dots. Number of ink dots: (a): 10K; (b): 14K; (c): 18K.
More ink dots enrich the texture details of the image.

pixels, indicating that the one-hot encoding at this stage is
not fully optimized. In contrast, upon O-Net convergence,
the generated halftone comprises solely black and white
pixels, affirming the capability of O-Net in producing bi-
nary halftones.

4.4. Comparison of Structural Quality

The structural quality of halftones is also an important in-
dicator for evaluating the performance of an algorithm. We
compare the structural similarity with methods that gener-
ate halftones with higher PSNR, as shown in Table 2. It
can be observed that our proposed method achieves better
structural similarity than the baseline methods.

4.5. Visualization of Motion Predictions

We depict the dot motion predictions generated by P-Net
across multiple iterations, as illustrated in Figure 8. No-
tably, the model rapidly shifts the ink dots from regions with

Table 2. Performance comparison of different halftoning methods
on test images in terms of structural similarity.

Method Min. Max. Std. Dev. Avg.

Ordered Dithering [21] 0.0254 0.3070 0.0486 0.1384
Floyd-S. [12] 0.0296 0.4335 0.0604 0.1687
Simpler Floyd.-S. [21] 0.0295 0.4610 0.0629 0.1664
Sierra Lite [21] 0.0284 0.4110 0.0596 0.1660
Ostromoukhov [26] 0.0265 0.4185 0.0590 0.1628
Our Proposed Method 0.0305 0.4159 0.0628 0.1709

elevated grayscale to those with lower grayscale in the ini-
tial stage. This observation substantiates that the motion
predictions of P-Net are grounded in a keen awareness of
image grayscale. With the progression of iterations, the
motions converge towards zero across the majority of the
image, leading the model to confine ink dot movements to
a limited local area.

4.6. Qualitative Experiments

Figure 10 presents qualitative experimental results of differ-
ent halftone methods, which focus on generating halftones
on flat textures with subtle variations in image tone (e.g.,
light and shadow on clouds). Earlier efforts yield halftones
with either undesirable white holes or repetitive streaks of
ink dots, compromising the overall quality of the output.
Additionally, deep learning methods (Figure 10m) intro-
duce visual artifacts and struggle to faithfully reproduce
subtle variations in light and shade. In contrast, our method
better preserves tonal details in flat regions and achieves su-
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(a) Contone (b) Simpler F.-S. (c) J. J., and Ninke (d) Stucki (e) Atkinson (f) Burkes (g) Sierra

(h) Two Row Sierra (i) Sierra Lite (j) Ordered Dither (k) Floyd-Steinberg (l) Ostromoukhov (m) Xia (n) Ours

Figure 10. Qualitative experimental results. Baseline methods yields halftones with some imperfections, including holes (e, m), striped dot
distribution (b, f, g, h, l), or other regular visual artifacts (c, d, i, j, k). Images are from the DIV2K dataset [2].

(a) continuous tone

(b) zoom in

(c) init. pred.

(d) 1st. refine

(e) 2nd. refine

Figure 11. Experimental results of refining areas with artifacts in
generated halftones by manipulating local ink dots. PSNR: (c):
37.24; (d): 44.10; (e): 44.43. SSIM: (c): 0.00756; (d): 0.00772;
(e): 0.00776.

Table 3. Statistical results of collisions during ink dot movement.

Iteration (τ ) 4 8 12 16 20

Reduction Ratio 0.0314 0.0249 0.0296 0.0316 0.0287

perior visual results. Additional qualitative experimental re-
sults, encompassing high-resolution and color images, are
presented in the supplementary material.

4.7. Study on the Collision Rate of Ink Dots

Ink dots may experience collisions during their movement.
We compute the reduction ratio in the number of ink dots
resulting from these collisions and overlaps, as outlined in
Table 3. It can be observed that the reduction in the num-
ber of ink dots due to collisions is minimal, constituting
approximately 2% to 3% of the total ink dot count. This ob-
servation suggests that collisions have a negligible impact
on both the overall quantity of ink dots and the dithering
process in halftones. We will investigate methods to fur-
ther minimize ink dot collisions and develop strategies for
managing colliding ink dots in our future work.

4.8. Dot Control Helps Remove Local Artifacts

We explore an advantage of controllable ink dots: the capa-
bility to enhance specific areas within generated halftones
through precise manipulation of the ink dots. As illus-
trated in Figure 11, the initially generated halftone may
exhibit artifacts in local regions (Figure 11c). To address
this, we refine the halftone by readjusting the ink dots in
these areas, resulting in a further enhancement of the gener-
ated halftone’s quality and the elimination of artifacts (Fig-
ure 11d, 11e). This process serves as validation for the effi-
cacy of our proposed concept of controllable ink dots.

4.9. Study on Ink Dot Quantity Control

We investigate another advantage of dot control: the capac-
ity to regulate the quantity of ink dots. In Figure 9, we
present some examples of halftones with a gradual increase
in the quantity of ink dots, from level 1 (Figure 9a) to level
3 (Figure 9c). Notably, even with a smaller number of ink
dots, the halftones still maintain visually pleasing levels of
detail. The experimental results verify that the proposed
method can control the number of ink dots and generate vi-
sually pleasing halftones, making it more flexibly applica-
ble to halftone prints of different consumable levels.

5. Conclusion

We introduce ink dot-oriented neural halftoning in this
work. O-Net propagates dense gradients to sparse halftone
dots, and completes the differentiable transformation be-
tween dot coordinates and halftone matrices. P-Net
achieves direct control of halftone dots through dot motion
predictions. Extensive quantitative and qualitative experi-
ments verify the effectiveness of our proposed method.
Acknowledgement: This work is supported by National
Key R&D Program of China (2022ZD0160300).
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