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Figure 1. We propose MultiPly, a novel framework to reconstruct multiple people in 3D from in-the-wild monocular videos. Our method
can recover the complete 3D human with high-fidelity shape and appearance, even in scenarios involving occlusions and close interactions.

Abstract

We present MultiPly, a novel framework to reconstruct
multiple people in 3D from monocular in-the-wild videos.
Reconstructing multiple individuals moving and interacting
naturally from monocular in-the-wild videos poses a chal-
lenging task. Addressing it necessitates precise pixel-level
disentanglement of individuals without any prior knowledge
about the subjects. Moreover, it requires recovering intri-
cate and complete 3D human shapes from short video se-
quences, intensifying the level of difficulty. To tackle these
challenges, we first define a layered neural representation
for the entire scene, composited by individual human and
background models. We learn the layered neural represen-
tation from videos via our layer-wise differentiable volume
rendering. This learning process is further enhanced by
our hybrid instance segmentation approach which combines
the self-supervised 3D segmentation and the promptable 2D
segmentation module, yielding reliable instance segmenta-
tion supervision even under close human interaction. A
confidence-guided optimization formulation is introduced
to optimize the human poses and shape/appearance alter-
nately. We incorporate effective objectives to refine human
poses via photometric information and impose physically
plausible constraints on human dynamics, leading to tem-
porally consistent 3D reconstructions with high fidelity. The
evaluation of our method shows the superiority over prior
art on publicly available datasets and in-the-wild videos.

*These authors contributed equally to this work

1. Introduction

Despite rapid progress in estimating the 3D shape from
monocular videos of a single performer [11, 18, 35, 42],
the analysis and reconstruction of several closely interact-
ing people is still limited. This imbalance is unsatisfy-
ing, as group activities make up a significant portion of
our lives. Although systems for multi-person reconstruc-
tion have been previously investigated, most require multi-
view setups that constrain the capture area to a fixed volume
and demand specialized equipment and expertise to oper-
ate [36, 47, 48]. Being able to reconstruct multiple people
in detailed 3D geometry and appearance from monocular
videos – which is also amenable to novice users – would
facilitate many downstream tasks in AR/VR, such as the
telepresence of groups of people, or the “replay” of so-
cial activities in 4D. Accomplishing this is fundamentally
a challenging task since it requires accurate pixel-level dis-
entanglement of individuals without a priori known geome-
tries of the subjects. To make matters worse, the task is fur-
ther complicated by depth ambiguities, complex human dy-
namics, and severe human-human occlusions – all of which
have to be resolved from a single, short video clip.

In this paper, we introduce a novel method, called Mul-
tiPly, that provides a solution to this task: It takes a sin-
gle video as input and outputs complete, high-quality, and
separated 3D human geometry and appearance for indi-
viduals appearing in the scene (see Fig. 1). By embrac-
ing the promising paradigm of neural implicit functions for
3D representations, remarkable progress has recently been
achieved in modelling detailed human geometry and ap-
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pearance. While some methods require full supervision on
3D human scans that can be prohibitively expensive to ac-
quire [35, 43], others only rely on readily available monoc-
ular videos [5, 11, 17, 20, 40] to fit articulated neural im-
plicit fields with temporally consistent results. However, all
of these methods are designed for only a single actor and
thus neglect the complexities of the reconstruction task that
arise from severe human-human occlusions. When applied
to footage where multiple people engage in natural interac-
tions, the aforementioned methods often result in corrupted
or incomplete human reconstructions.

Our method builds on the promise of neural implicit
fields, and presents a solution that overcomes the limita-
tions of prior work. In doing so, several challenges must
be addressed. First, 2D and 3D points of each subject must
be precisely associated. Second, complete human models
must be extracted and maintained from only a single video.
Third, and most critically, the problem of person associa-
tion and avatar creation are both significantly exacerbated
by strong occlusions and imperfect human pose estimates.

To tackle these challenges, our approach is grounded in
the following core concepts: i) We design a unified, tem-
porally consistent representation of human shape and tex-
ture in canonical space that is applicable to all individuals.
This design facilitates the integration of partial observations
from the video sequence into a temporally coherent space,
inherently maintaining a complete human body. ii) We es-
tablish a layered neural representation for the entire scene,
wherein we parameterize the humans and the background
as individual neural fields. The composition of these fields
leads to a layered, interwoven representation that covers the
entire space and which can be learned from a monocular
RGB video via a proposed layer-wise differentiable volume
rendering. iii) We introduce a hybrid instance segmentation
approach that leverages the advantages of self-supervised
scene decomposition in 3D and a learning-based prompt-
able 2D segmentation module. This combination results in
a robust and accurate separation of individuals. iv) To deal
with imperfect pose estimates that might corrupt updates to
the avatar model, we present a confidence-guided optimiza-
tion formulation that alternately optimizes human poses and
shape/appearance based on per-frame confidence measures.
This way we incorporate effective objectives that refine the
human poses through photometric information and impose
physically plausible constraints on human dynamics.

In our experiments, we demonstrate that our framework
leads to robust human instance segmentation and plausible
pose estimates, achieving high-quality 3D reconstructions
of multiple people even under extremely challenging visual
complexities like severe occlusions (cf . Fig. 2). We meticu-
lously ablate our method, which uncovers its essential com-
ponents. Furthermore, we conduct comparisons with exist-
ing approaches in human reconstruction, novel view syn-

thesis, human instance segmentation, and pose estimation
tasks, showing that our method outperforms prior art across
various settings. In summary, our contributions are:

• a novel framework, MultiPly, to reconstruct multiple
detailed 3D human models solely from in-the-wild
monocular videos; and

• a robust instance segmentation approach that achieves
a clean separation between people even under close in-
teraction; and

• a confidence-guided optimization formulation that
leads to temporally and spatially coherent 3D recon-
structions of people with high fidelity.

2. Related Work
Monocular Single-Person Reconstruction Reconstruct-
ing an individual from monocular observations has emerged
as a widely explored research challenge. Template-based
approaches involve the tracking of a human template using
2D observations [12]. The assumption of a personalized
template is unsuitable for more practical use cases. Follow-
up works endeavor to remove this dependency by adding
the vertex offsets on top of SMPL [1, 10]. Nevertheless, the
explicit mesh representation is constrained by a fixed reso-
lution and topology, incapable of representing fine-grained
details. Learning-based methods that learn to regress 3D
human shape from images have shown compelling results
[2, 15, 34, 35, 42, 43, 52]. A major limitation of these
methods is the necessity of high-quality 3D data for super-
vision and they fail to produce space-time coherent recon-
structions over frames. Recent works employ neural ren-
dering to train neural fields based on videos to obtain ar-
ticulated human model [5, 6, 11, 17, 18, 20, 33, 37, 40].
Among these, Vid2Avatar [11] achieves compelling 3D re-
construction for a single subject but is not directly applica-
ble to scenes with crowded people. Actually, none of the
aforementioned methods can be directly deployed in more
complicated multi-person scenarios. In contrast, we pro-
pose a novel framework that can faithfully reconstruct mul-
tiple people in the scene from a monocular video.

Monocular Multi-Person Reconstruction In contrast to
the notable advancements in reconstructing the clothed hu-
man for an individual, limited emphasis has been placed
on multi-person scenarios, which are evidently more appli-
cable to our daily experiences. Most existing monocular
works can only estimate the coarse body shapes of multiple
people from monocular observations [4, 7, 14, 19, 21, 24,
25, 38, 39, 46]. Mustafa et al. [31] extend prior implicit
methods to multiple people and recover spatially coherent
3D human shapes from an RGB image but mainly deal
with cases where people are well-spaced and do not interact
naturally in close range. Recently, more researchers have
shifted the focus to multi-person scenarios [16, 36, 47, 51].
Even though these works achieve compelling instance-level

110



human reconstructions, they require expensive multi-view
imaging systems. Concurrently, Cha et al. [3] propose to re-
construct multiple people from a single image. Such image-
based methods usually fail to produce space-time coher-
ent reconstructions over frames. Overall, monocular multi-
person reconstruction is still an extremely under-explored
problem. We propose MultiPly to take a significant stride
towards addressing this formidable task.
Human Instance Segmentation Most works solve hu-
man or general object segmentation at the image level (i.e.
2D) [13, 22, 26, 41]. They are trained on images with hu-
man annotations to directly regress the segmentation masks
during inference. More recently, a promptable segmenta-
tion model SAM has been developed to support flexible
prompting along with input images [23]. However, SAM is
a semantic segmentation method, which does not inherently
support instance-level segmentation for humans. There-
fore, meticulous prompts need to be designed for human
instance segmentation tasks. Besides, these approaches are
not able to produce sharp boundaries between individuals,
especially for closely interacting people. More importantly,
they do not always predict temporally coherent segmenta-
tion masks, as they focus on image-level segmentation only
and incorporate no 3D knowledge. In this work, we opti-
mize the instance segmentation masks on the fly by leverag-
ing the promptability of SAM [23] and the self-supervised
decomposition in 3D [11, 36].

3. Method

We present MultiPly, a novel framework for detailed geom-
etry and appearance reconstruction of multiple people from
in-the-wild monocular videos. The overview of our method
is schematically illustrated in Fig. 2. Reconstructing multi-
ple people in 3D from a short video without a priori known
geometries is a challenging task due to complex human
articulation, and strong occlusions. To tackle these chal-
lenges, we first define a unified, temporally consistent rep-
resentation for humans and a layered neural representation
for the entire scene (Sec. 3.1). The layered neural represen-
tation is then learned from images by performing our layer-
wise differentiable volume rendering (Sec. 3.2). Given the
self-supervised instance segmentation via occlusion-aware
volume rendering, we further enhance the instance segmen-
tation supervision by leveraging our evolving human sur-
faces in deformed space as progressively updated prompts
for SAM which builds closed-loop refinement of instance
segmentation in both 2D and 3D (Sec. 3.3). Finally, we
formulate a confidence-guided optimization to alternately
optimize human pose and shape/appearance (Sec. 3.4). We
incorporate photometric information, robust instance seg-
mentation supervision, and the inter-person objectives for
pose refinement to achieve temporally and spatially coher-
ent 3D reconstructions of people in high quality (Sec. 3.5).

3.1. Layered Neural Representation

Neural Avatars. For each human in the scene, we repre-
sent the 3D shape as an implicit signed-distance field (SDF)
and the appearance as a texture field in canonical space,
covering the entire space. When multiple people are present
in the scene, it leads to a layered representation where the
contributing SDFs are potentially interwoven. More specif-
ically, we model the geometry and appearance of each per-
son p in canonical space by a neural network fp, which
predicts the signed distance value sp and the radiance value
cp at the query point xp

c in this space:

cp, sp = fp(xp
c ,θ

p), (1)

where θp denotes the person’s pose parameters, which we
concatenate to xp

c to model pose-dependent surface defor-
mations. For simplicity, we use fp

c (·) and fp
s (·) to query cp

and sp from the network outputs.

Deformation Module. We follow a standard skeletal de-
formation based on SMPL [28] to find correspondences in
canonical and deformed space. A canonical point xp

c is
mapped to the deformed point xp

d via linear-blend skinning
(LBS) based on SMPL transformation: xp

d = Tsmpl(x
p
c ,θ

p).
Here, Tsmpl(·) denotes the SMPL-based transformation de-
rived from the body pose θp, which corresponds to LBS
and is described in more detail in the Supp. Mat. Inversely,
the canonical correspondence xp

c for point xp
d in deformed

space is defined as xp
c = T−1

smpl(x
p
d,θ

p). To invert LBS we
use the SMPL skinning weight of the vertex closest to xp

d.

3.2. Layer-Wise Volume Rendering

We seek to reconstruct all human subjects in the scene. This
requires different treatment compared to vanilla differen-
tiable volume rendering that only works on a single static
scene [30]. In contrast, on the basis of our layered neu-
ral avatar representation (Sec. 3.1), we introduce layer-wise
volume rendering to handle dynamic scenes with multiple
subjects and inter-occlusions. This is achieved by com-
bining surface-based volume rendering [45] with the re-
assembly of multiple human neural layers [16]. It is es-
sential to note that the layer-wise volume rendering is in-
herently occlusion-aware.

Volume Rendering for Human Layers. For each sam-
pled camera ray r, we sample the points in the observa-
tion space along the ray based on the intersection between
the oriented bounding box of the deformed SMPL model
and the camera ray. Specifically, we sample N points
{xp

d,1, ...,x
p
d,N} inside the p-th intersected bounding box

based on the two-stage sampling strategy proposed in [45].
Then, the occupancy opi for the p-th person and the i-th sam-
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Figure 2. Method overview. Given an image and SMPL estimation, we sample human points along the camera ray based on the bounding
boxes of SMPL bodies and the background points based on NeRF++. We warp sampled human points into canonical space via inverse
warping and evaluate the person-specific implicit network to obtain the SDF and radiance values (Sec. 3.1). The layer-wise volume render-
ing is then applied to learn the implicit networks from images (Sec. 3.2). We build a closed-loop refinement for instance segmentation by
dynamically updating prompts for SAM using evolving human models (Sec. 3.3). Finally, we formulate a confidence-guided optimization
that only optimizes pose parameters for unreliable frames and jointly optimizes pose and implicit networks for reliable frames (Sec. 3.4).

pled point is calculated as follows:

opi = (1− exp (−σp
i ∆xi)) ,

σp
i = σ

(
fp
s

(
T−1

smpl

(
xp
d,i,θ

p
)
,θp

))
, (2)

where ∆xi is the distance between two adjacent sample
points, and σ(·) is the scaled Laplace distribution’s Cumula-
tive Distribution Function (CDF) defined in [45] to convert
the signed distance spi to volume density σp

i . Then we ac-
cumulate the radiance by performing numerical quadrature
among the layered density field for multiple persons to ob-
tain the color value:

ĈH =

N∑
i=1

P∑
p=1

opi cpi P∏
q=1

∏
j∈Zq,p

i

(
1− oqj

) , (3)

where P is the total number of subjects, ĈH is the ren-
dered color of humans, and Zq,p

i contains all indices of
points (belonging to person q) whose depth value is lower
than the depth value of the i-th point of person p, i.e.
Zq,p

i = {j ∈ [1, N ] | z(xq
d,j) < z(xp

d,i)}, where z(·) de-
notes the distance between the sampled point and the cam-
era origin along the z-axis.

Scene Composition. We model the background in the
same formulation as NeRF++ [49], denoted as f b. We
thus obtain a color value ĈB representing the background’s
color, which is composited with ĈH via self-supervised de-
composition following [11] to compute the final pixel color
value Ĉ. More details are shown in the Supp. Mat.

3.3. Progressive Prompt for SAM

Learning to disentangle and reconstruct multiple subjects
by simply relying on the automatic separation through

layer-wise volume rendering is still a severely ill-posed
problem. This is due to dynamically changing lighting ef-
fects (e.g., shadows) and potentially severe human-human
occlusions and close contact. To this end, we propose to
leverage the promptable segmentation model SAM [23] and
design a progressive prompting strategy based on the evolv-
ing human models to provide robust instance segmentation
supervision. In this section we describe how we design the
prompt to get an updated SAM mask which we later use in
the optimization (Sec. 3.4 and Sec. 3.5).

We define the p-th human shape to be the zero-level set
of the signed distance function fp

s and apply the Multires-
olution IsoSurface Extraction (MISE) [29] to extract the
mesh in canonical space, denoted as Sp

c = ⟨Vp
c ,Fp⟩ =

MISE(fp
s ,θ

p). Here, Vp
c represents the extracted vertex set

in canonical space, and Fp denotes the corresponding faces.
Then, the deformed vertex set in the observation space is:

Vp
d = {Tsmpl(v

p
c ,θ

p) | vp
c ∈ Vp

c } . (4)

Similarly, the deformed mesh for the p-th person in the ob-
servation space is defined as Sp

d = ⟨Vp
d ,Fp⟩. Thus, we can

obtain an instance mask Mp
mesh by differentiably rendering

the deformed mesh. To improve efficiency, we opt for a
differentiable rasterizer R rather than volume rendering:

Mp
mesh = R(Sp

d ). (5)

For the sake of clarity, we define M = 1 to represent the
inside and M = 0 to indicate either the outside or oc-
clusion by other meshes. The instance mask of deformed
meshes Mp

mesh serves as one of the prompts for SAM re-
finement. We further provide points as input prompts. We
begin by projecting the 3D keypoint candidates onto the im-
age to obtain 2D keypoints Kp

2d = {Π(J (θp,βp))}, where
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J (θp,βp) is the 3D SMPL keypoints given the pose θp and
body shape βp parameters for subject p, and Π is the camera
projection function. The point prompts for the p-th subject
are then defined by:

Pp
+ = {k ∈ Kp

2d | Mp
mesh(k) = 1} ,

Pp
− = {k ∈

⋃
q ̸=pK

q
2d | Mp

mesh(k) = 0}.
(6)

In other words, the positive point prompts Pp
+ include the

2D keypoints that are inside of the instance mask obtained
from the deformed mesh and are outside of the instance
masks of all other meshes. The negative point prompts are
the union of all 2D keypoints of all other subjects that are
outside of the projected mesh mask Mp

mesh. The SAM in-
stance mask Mp

sam is finally updated based on the combina-
tion of the mask and point prompts:

Mp
sam = SAM(Mp

mesh,P
p
+,P

p
−), (7)

Note that Mp
sam are progressively updated during training.

3.4. Confidence-Guided Alternating Optimization

Human-human occlusions often lead to inaccurate pose and
wrong depth order estimation. A naı̈ve joint optimization
for both the pose and shape parameters may end up with
a suboptimal solution. To mitigate this, we introduce a
confidence-guided optimization strategy to alternately op-
timize the human poses and shapes.

To avoid damaging shape updates that are due to wrong
poses, we only optimize pose parameters for unreliable
frames and jointly optimize pose and shape parameters for
reliable frames. We treat the IoU between the projected
mesh mask Mp,i

mesh and the refined SAM mask Mp,i
sam as our

confidence measure for the p-th subject in frame i. We de-
fine reliable frames Ir to be those frames with reliable poses
based on the average IoU over all subjects:

Ir =

{
Ii ∈ I | 1

P

P∑
p=1

IoU(Mp,i
mesh,M

p,i
sam) ≥ α

}
, (8)

where I are all frames, and I \ Ir are unreliable frames.
α is a confidence threshold which is set to be the median
of all IoU values over the entire sequence. It’s important to
note that the confidence threshold α is dynamically updated
during training and eventually inaccurate pose estimates are
corrected and all frames will be used for joint optimization.

3.5. Objectives

Reconstruction Loss. We calculate the L1-distance be-
tween the rendered color Ĉ(r) and the image pixel’s RGB
value C(r) over all sampled rays R:

Lrgb =
1

|R|
∑
r∈R

|C(r)− Ĉ(r)|. (9)

Instance Mask Loss. We first modify Eq. 3 to differen-
tiably render the opacity Ôp(r) per person per pixel:

Ôp(r) =

N∑
i=1

opi P∏
q=1

∏
j∈Zq,p

i

(
1− oqj

) . (10)

Then the instance mask loss is calculated between the re-
fined instance mask and the rendered pixel-wise opacity:

Lmask =
1

|R|
∑
r∈R

P∑
p=1

|Mp
sam(r)− Ôp(r)|. (11)

Eikonal Loss. Following [9], we sample points in the
canonical space for each subject and enforce the Eikonal
constraint to ensure fp

s is a valid SDF:

Le =

P∑
p=1

Exc
(∥∇fp

s (xp
c ,θ

p)∥ − 1)
2
. (12)

We further introduce two inter-person objectives for pose
refinement to ensure spatially coherent and physically plau-
sible reconstructions. We apply these constraints explicitly
on the deformed mesh to refine human poses while the de-
formed meshes Sp

d are updated on the fly during training.
To be specific, the following two additional losses are used
periodically during training to optimize pose only:
Depth Order Loss. The effect of wrong depth order on the
reconstruction quality can be severe, resulting in reversed
geometry and texture. Similar to [19], we apply a depth
order loss as follows:

Ldepth =
∑

(u,p,q)∈D

log(1 + exp(Dp(u)−Dq(u))), (13)

where D = {(u, p, q) | p ̸= q,Mp
sam(u) = Mq

mesh(u) = 1}
represents the set of pixels u where we have depth ordering
mistakes between the p-th and q-th persons. Dp(k) denotes
the depth of the p-th mesh for pixel u.
Interpenetration Loss. We shoot a ray for the sampled ver-
tex in Vp

d in Eq. 4 to check the number of intersection with
other meshes. Then, we use the parity of the number of in-
tersections to determine whether that point is inside other
meshes. Following [8], the interpenetration loss is calcu-
lated as follows:

Linter =

P∑
p=1

P∑
q=1,q ̸=p

∥Vp,q
in −NN(Vp,q

in , Sq
d)∥2 , (14)

where Vp,q
in denotes the p-th person’s vertex which is inside

the q-th person’s mesh, and NN(V,S) finds the nearest ver-
tex in S for each point in V . Different from [8, 19] where
they deploy the depth order and interpenetration loss on the
naked parametric human model, we apply those two losses
on our learned pixel-wise aligned clothed human meshes,
leading to a more fine-grained optimization.

See Supp. Mat for more details about the final loss.
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Metrics
Pose Estimation Human Reconstruction

MPJPE ↓ MVE ↓ CD ↓ PCDR ↑ V-IoU ↑ C− ℓ2 ↓ P2S ↓ NC ↑

Initial pose 75.3 90.8 235.6 0.566 - - - -

Layer-wise volume rendering 71.5 86.2 245.6 0.608 0.773 3.14 2.87 0.752
+ Progressive SAM 71.2 85.9 246.2 0.609 0.786 2.68 2.42 0.784
+ Confidence-guided OPT 69.4 83.6 218.4 0.709 0.816 2.53 2.34 0.789

Table 1. Quantitative ablation studies on Hi4D. We demonstrate the importance of the proposed progressive prompt for SAM and
confidence-guided alternating optimization. Both key components effectively contribute to the final reconstruction quality (cf . Fig. 3).

Input Volume rendering + Prog. SAM + Conf.-guided OPT

Figure 3. Qualitative ablation studies. Our progressive prompt-
ing strategy provides robust instance segmentation supervision and
eliminates the noises caused by the environmental dynamic ef-
fects. The confidence-guided optimization further improves the
reconstruction results and maintains complete human bodies.

4. Experiments
We first introduce the datasets and metrics used for evalu-
ation. Next, ablation studies are conducted to demonstrate
the effectiveness of our design choices. We then compare
our proposed method with state-of-the-art approaches in
four tasks, including human reconstruction, novel view syn-
thesis, human instance segmentation, and pose estimation.

4.1. Datasets and Metrics

Hi4D [47]. This dataset contains challenging human inter-
actions between pairs of people with ground truth meshes,
human poses, and instance segmentation masks. We use
Hi4D to evaluate our approach to all tasks.
Monocular Multi-huMan (MMM). Since the Hi4D
dataset only contains two-person interactions with the static
camera in the stage. In order to evaluate the generalization
of our method, we collect a dataset called Monocular Multi-
huMan (MMM) by using a hand-held smartphone, which
contains six sequences with two to four persons in each se-
quence. Half of the sequences are captured in the stage with

ground truth annotations for quantitative evaluation and the
others are captured in the wild for qualitative evaluation.
Metrics. We consider the following metrics for human
mesh reconstruction evaluation: volumetric IoU (V-IoU),
Chamfer distance (C − ℓ2) [cm], point-to-surface dis-
tance (P2S) [cm], and normal consistency (NC). Render-
ing quality is measured via three metrics: PSNR, SSIM,
and LPIPS. We assess human pose estimation using four
metrics: MPJPE [mm], MVE [mm], Contact Distance (CD)
[mm], and Percentage of Correct Depth Relations (PCDR)
with a threshold of 0.15m. Lastly, we report IoU, Recall,
and F1 score for human instance segmentation.

4.2. Ablation study

As depicted in Tab. 1, ablation studies are conducted to
demonstrate the effectiveness of the proposed progressive
SAM prompt and confidence-guided optimization strategy.
Both pose estimation and human reconstruction tasks are
evaluated here. The initial human poses are obtained from
TRACE [39] and ViTPose [44], more details are provided
in the Supp. Mat. We initiate ablation studies based on our
layer-wise volume rendering by naively optimizing the hu-
man pose and shape/appearance jointly without using SAM.

Human Reconstruction. Applying instance mask super-
vision based on progressively refined SAM outputs sig-
nificantly improves the output quality and drastically re-
duces the reconstruction error (Chamfer distance) as quan-
titatively shown in Tab. 1. This is also confirmed by the
qualitative results within the orange bounding boxes high-
lighted in Fig. 3, where layer-wise volume rendering purely
relying on self-supervised segmentation fails to separate the
dynamic shadows from the human, leading to noisy recon-
structions. The reconstruction quality is further improved
with the proposed confidence-guided optimization, as quan-
titatively indicated by the last row of Tab. 1. The red bound-
ing boxes in Fig. 3 serve as visual evidence for the impor-
tance of our confidence-guided optimization. The presence
of incomplete human bodies, such as the broken leg, dis-
appeared back, and shrunken neck, is attributed to the in-
correct depth order and pose estimation error. By temporar-
ily freezing the implicit network for frames with unreliable
poses, we circumvent such detrimental shape updates, lead-
ing to a complete human reconstruction.
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Dataset Method V-IoU ↑ C− ℓ2 ↓ P2S ↓ NC ↑

Hi4D
ECON [43] 0.787 3.72 3.59 0.746
V2A [11] 0.783 3.02 2.46 0.775
Ours 0.816 2.53 2.34 0.789

MMM
ECON [43] 0.760 4.17 3.71 0.705
V2A [11] 0.812 3.34 2.68 0.735
Ours 0.826 2.89 2.40 0.757

Table 2. Quantitative reconstruction evaluation. Our method
consistently outperforms all baselines on both datasets and all
evaluation metrics (cf . Fig. 4).

Pose Estimation. We observe that this performance
aligns with geometric reconstruction. Compared with the
initial pose, we achieve not only more accurate individual
poses (MPJPE and MVE) but also a better spatial arrange-
ment between people, reflected on CD and PCDR.

4.3. Reconstruction Comparisons

To the best of our knowledge, there are few video-based
reconstruction methods designed for clothed multiple peo-
ple. Hence, we adapt two state-of-the-art reconstruction ap-
proaches to our setting for comparison. ECON [43] is an
image-based 3D human reconstruction method capable of
handling multi-person scenarios. While evaluating ECON,
we discard frames with incorrect bounding-box detections
for a fair comparison. Vid2Avatar (V2A) [11] is a video-
based human reconstruction method designed for a single
person. We extend V2A to multi-person scenarios by train-
ing a distinct model for each subject individually. Our
method outperforms [11, 43] by a substantial margin on
both datasets and all metrics (cf . Tab. 2). This disparity
becomes more visible in qualitative comparisons shown in
Fig. 4. When people closely interact, both ECON and V2A
fail to recover complete human bodies but only output cor-
rupted reconstructions (e.g., missing legs/heads). Further-
more, they struggle with the initial depth order/pose error
and produce spatially incorrect reconstructions in 3D. V2A
tends to model environmental dynamic effects (e.g., shad-
ows) as the human body, resulting in noisy reconstructions.
These artifacts are highlighted within the colored bounding
boxes of Fig. 4. In contrast, our method generates complete
human shapes with sharp boundaries and spatially coher-
ent 3D reconstructions. We attribute this superiority to our
proposed representation design and learning schemes.

4.4. Novel View Synthesis Comparisons

To the best of our knowledge, there are few novel view syn-
thesis approaches particularly designed for clothed multiple
people from monocular video. Hence, we adapt Shuai et
al. [36], which is a state-of-the-art multi-person novel view
synthesis approach from multi-view videos, to the monocu-
lar setting for a fair comparison. We share the same human
pose initialization for training. Then, we use the ground

Method SSIM ↑ PSNR ↑ LPIPS ↓

Shuai et al. [36] 0.898 19.6 0.1099
Ours 0.915 20.7 0.0798

Table 3. Quantitative rendering evaluation on Hi4D. Our
method achieves better rendering quality (cf . Fig. 5).

Method IoU ↑ Recall ↑ F1 ↑

SCHP [26] 0.937 0.983 0.982

Ours (Init.) 0.943 0.975 0.984
Ours (Progressive) 0.963 0.985 0.990

Table 4. Quantitative instance segmentation evaluation on
Hi4D. Our method achieves the best segmentation accuracy.

truth human poses and camera parameters to render the
novel view. As shown in Tab. 3 our method outperforms
[36] on all metrics. Fig. 5 shows that the rendered image
from [36] is more blurry and has noisy artifacts compared
to ours. The reasons are twofold: 1) it lacks a reliable pose
correction mechanism, leading to large inconsistency be-
tween human pose and image information during training,
and 2) weekly-supervised decomposition cannot ensure ro-
bust instance segmentation under close human interaction.
Our framework generates more plausible renderings with
clearly sharp boundaries.

4.5. Instance Segmentation Comparisons

We compare our instance segmentation result from SAM
after convergence with pretrained human instance segmen-
tation network SCHP [26]. Tab. 4 reveals that our initial
SAM outputs achieve comparable results with SCHP. How-
ever, the initial SAM masks are unsatisfactory due to the
noisy prompt from the inaccurate SMPL estimation, lead-
ing to an incomplete and implausible reconstruction result
(e.g., the missing body part and self-interpenetration in the
red bounding boxes) as shown in Fig. 6. Finally, our pro-
gressive prompting strategy based on our evolving human
models helps to achieve temporally consistent and complete
segmentation masks and high-quality reconstructions, sur-
passing the baseline methods.

4.6. Pose Estimation Comparisons

We conduct a comparison of our method with state-of-the-
art bottom-up (TRACE [39]) and top-down (CLIFF [27])
multi-person pose estimation approaches. To adapt CLIFF
for close human interaction, we employ ByteTrack [50]
and linear interpolation to estimate missing persons caused
by detector errors. Our approach consistently outperforms
other baseline methods on all metrics as shown in Tab. 5.
Specifically, our method shows its superiority in pose es-
timation accuracy of individuals (MPJPE and MVE) and
more reasonable spatial arrangement between pairs of peo-
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Input ECON V2A Ours

Figure 4. Qualitative reconstruction comparison. We show both the overlaid and separated reconstruction results for each method. Red
bounding boxes: the incomplete reconstruction of the occluded part. Orange bounding boxes: incorrect instance segmentation results
caused by the surrounding visual complexities. Black bounding boxes: inaccurate spatial arrangement due to pose error.

Input Reference Shuai et al. Ours

Figure 5. Qualitative rendering comparison. Our method
achieves more plausible renderings with sharp boundaries.

Init. SAM Init. Recon Prog. SAM Prog. Recon.

Figure 6. Qualitative instance segmentation comparison. Pro-
gressive prompting strategy provides more robust and fine-grained
instance segmentation supervision compared to the initial SAM
outputs, leading to higher quality of reconstructions.

ple (CD and PCDR). This is also confirmed by qualitative
results. Please refer to the Supp. Mat.

Method MPJPE ↓ MVE ↓ CD ↓ PCDR ↑

CLIFF [27] 85.7 102.1 351.7 0.606
TRACE [39] 95.6 115.7 249.4 0.603
Ours 69.4 83.6 218.4 0.709

Table 5. Quantitative pose estimation evaluation on Hi4D. Our
method outperforms state-of-the-art multi-person pose estimation
methods on all evaluation metrics.

5. Conclusion
In this paper, we present MultiPly, which for the first time
produces temporally and spatially coherent 3D reconstruc-
tions of multiple people with high fidelity from monocular
in-the-wild videos. We utilize carefully designed layered
neural representation and dynamically refined instance seg-
mentation supervision. We further introduce a confidence-
guided optimization to learn human neural layers via layer-
wise volume rendering. Our method is able to reconstruct
multiple high-quality 3D human models in challenging sce-
narios involving close human interactions and strong inter-
person occlusions.
Limitations: The complexity of our model increases lin-
early with the number of involved persons, making it inef-
ficient for crowds. Our method does not explicitly model
hands and we see the integration of an expressive human
model [32] as a future direction. We discuss more limita-
tions and potential negative societal impact in Supp. Mat.
Acknowledgement: This work was partially supported by
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