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Abstract

In dynamic 3D environments, the ability to recognize a
diverse range of objects without the constraints of prede-
fined categories is indispensable for real-world applications.
In response to this need, we introduce OV3D, an innova-
tive framework designed for open-vocabulary 3D semantic
segmentation. OV3D leverages the broad open-world knowl-
edge embedded in vision and language foundation models to
establish a fine-grained correspondence between 3D points
and textual entity descriptions. These entity descriptions are
enriched with contextual information, enabling a more open
and comprehensive understanding. By seamlessly aligning
3D point features with entity text features, OV3D empow-
ers open-vocabulary recognition in the 3D domain, achiev-
ing state-of-the-art open-vocabulary semantic segmentation
performance across multiple datasets, including ScanNet,
Matterport3D, and nuScenes.

1. Introduction

For real-world applications like autonomous vehicles [14, 37,
52] and robotics [13, 19], the surrounding 3D environment
is dynamic and ever-changing. The objects in the scenes can
vary widely, and using fixed categories can limit the system’s
ability to recognize previously unseen objects. This moti-
vates us to develop open-vocabulary techniques for 3D point
cloud understanding to allow the system to handle a broader
range of data without relying on pre-defined categories.

In open-vocabulary recognition, a common strategy is
to unify visual and language features in the same feature
space, leveraging the generalization abilities of language
models trained on unbounded open text data. This strat-
egy is commonly employed in 2D open-vocabulary frame-
works [15, 28, 32, 46, 66]. To achieve such visual-language
alignment, paired image and text data is essential. However,
unlike the more plentiful (image, text) pairs available on the
Internet, acquiring (point cloud, text) pairs is more difficult
due to their relative scarcity and limited availability.

For 3D open-vocabulary semantic segmentation, current
methods [5, 12, 40, 64] employ images as intermediaries
to establish the connection between text and 3D modali-
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Figure 1. An overview of OV3D. We take multi-view 2D images as
a bridge, leveraging the open-world knowledge in vision and lan-
guage foundation models (e.g., large vision-language models and
vision foundation models) to build a fine-grained correspondence
between points and entity-level text descriptions.

ties, due to the easier acquisition of (point cloud, image)
pairs over (point cloud, text) pairs. A typical strategy in-
volves aligning point cloud features with image features that
are already aligned with text features. For instance, Open-
Scene [40] aligns point features with pixel features from
2D open-vocabulary semantic segmentation models [15, 28].
Alternatively, another effective strategy involves generating
captions for multi-view images representing the 3D scene,
as demonstrated in [12, 64]. By doing so, the extracted 3D
scene features can be directly compared and aligned with
text features, promoting a more seamless cross-modality in-
teraction. However, establishing a fine-grained point-to-text
correspondence can be challenging through this strategy.

In this work, we introduce OV3D for open-vocabulary
3D semantic segmentation. The overview of OV3D is shown
in Fig. 1. OV3D also engages in bridging the 3D point
cloud and text descriptions with images to enable seamless
point-text alignment. Different from previous works, we
put our focus on exploiting the broad knowledge of open-
world concepts encapsulated within vision and language
foundation models [25, 34, 46, 78]. Our approach achieves
two critical objectives: 1) Fine-grained Correspondence:
We establish a fine-grained correspondence between entity
text descriptions and points; 2) Context-enriched Point-
Text Alignment: We facilitate a semantic-enriched mapping
of point features to an open text feature space.
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Specifically, our method comprises three components: 1)
Mapping Image to EntityText: Instead of captioning the
entire image, we employ the Large Vision-Language Model
(LVLM) to generate entity-level text descriptions (i.e., En-
tityText) for entities in multi-view images. To enhance the
openness and contextuality of EntityText, we prompt LVLM
to generate various descriptions for the entities. 2) Associat-
ing Pixel with EntityText: To establish a more fine-grained
connection between image content and EntityText, we first
utilize a vision foundation model for segmentation [25, 78]
to produce class-agnostic segments for entities in the image.
We then leverage a vision-language model [28, 46, 78] to
associate segments with EntityText. Operating in a joint
vision-language feature space, vision-language models have
the ability to assign an EntityText to a segment (i.e. set of
pixels) in a zero-shot manner. We thus obtain a fine-grained
pixel-EntityText correspondence. 3) Connecting Point and
EntityText via Pixel: In this step, we project 3D points onto
multi-view image planes to get the corresponding 2D pixel
positions. Based on the pixel-EntityText correspondence, we
can then retrieve entity information for each point, creating
fine-grained (point, EntityText) pairs.

Integrating these components, our method achieves a
seamless and fine-grained alignment of 3D points with entity
text features, enabling context-enriched open-vocabulary
recognition in 3D. It attains state-of-the-art performance
in open-vocabulary semantic segmentation on datasets like
ScanNet [11, 48], Matterport3D [4], and nuScenes [3]. Our
major contribution is three-fold:
• We propose a framework to leverage vision and language

foundation models (e.g., LVLM [34], vision foundation
models [25, 78], and vision-language models [15, 46])
to support 3D open-vocabulary recognition, enabling im-
proved understanding of diverse concepts in 3D scenes.

• We introduce a fine-grained point-to-EntityText alignment
strategy, enabling a more detailed correspondence between
text descriptions and points, which facilitates a more accu-
rate point-level 3D open-world understanding.

• Our work achieves superior zero-shot semantic segmenta-
tion performance on several datasets and shows excellent
qualitative results on open-world recognition.

2. Related Work
3D Point Cloud Understanding has made great progress
in recent years, covering a range of tasks including seg-
mentation [17, 21–23, 26, 43, 56, 60, 65, 72, 73], de-
tection [24, 35, 44, 49–51, 71, 74, 75], and classifica-
tion [42, 55, 58, 61]. For point cloud feature extraction,
existing approaches operate on raw points [42, 73] or sparse
voxels [10, 16]. Though high performance is achieved, tradi-
tional methods typically reply on predefined categories.
Foundation Models that are trained on vast data have sig-
nificantly impacted the fields of vision [25, 78] and lan-

guage [9, 54]. Large language models [9, 54] have shown
strong ability in open-world comprehension and reasoning.
Recent large vision-language models [29, 34, 41, 70] further
bridge the domains of image and language understanding.
Vision-language models like CLIP [46] and ALIGN [20]
align image and text features, excelling in zero-shot tasks
due to extensive paired training data. Vision foundation
models [25, 78] demonstrate robust zero-shot performance
in segmentation. Our method leverages these foundation
models to enable open-world 3D scene understanding.
2D Open-Vocabulary Learning has gained attention for its
capacity to recognize objects beyond a constrained set of cat-
egories. Vision-language foundation models like CLIP [46]
and ALIGN [20], trained on Internet-scale (image, text)
pairs, excel in open-world scenarios, especially in novel
class recognition. As these foundation models focus on
image-level recognition, recent research has increasingly
concentrated on establishing fine-grained object-level or
pixel-level alignment between visual and language features,
enabling open-vocabulary detection [30, 67] and segmen-
tation [15, 28, 32, 45]. The availability of paired (image,
text) data is crucial for training these models, ensuring their
ability to interpret a wide range of concepts.
3D Open-Vocabulary Learning. Developing open-
vocabulary techniques for 3D presents more challenges than
in 2D, primarily due to the scarcity of (point cloud, text)
pairs. Early zero-shot approaches [7, 8, 38] lack the connec-
tion between 3D data and open text descriptions, limiting
openness. Recent methods typically bridge 3D and text
modalities using images, given that 3D point clouds are
commonly paired with multi-view 2D images. In this con-
text, one stream of works [5, 18, 19, 40, 53, 57, 68] align
point cloud features with image features extracted by vision-
language models [15, 28, 46], using their inherent image-
text feature alignment to implicitly align point clouds with
text. For example, OpenScene [40] introduces point-pixel
alignment, using pixel features from 2D open-vocabulary
semantic segmentation models [15, 28]. Another stream
of works [12, 64] uses image caption models [47, 57, 63]
to generate text descriptions for images, thus enabling an
alignment of point cloud features with open text features.
However, this alignment is at the scene or region level, lack-
ing the fine-grained guidance required for dense prediction
tasks like segmentation. In our work, we leverage the ex-
tensive open-world knowledge embedded within vision and
language foundation models [25, 34, 46, 78] to build a dense
correspondence between individual points and entity text de-
scriptions, effectively boosting the open-vocabulary ability
of the 3D semantic segmentation model.

3. Method
In this work, we propose OV3D, a novel approach that en-
ables open-vocabulary 3D point cloud semantic segmenta-

21285



bed,	guitar,	handbag,	
helmet,	rug,	wall,	floor

door,	trash	can,	recycling	
bin,	refrigerator,	brown	
cabinet,	mat,	door	frame,	
floor,	wall

guitar,	wall,	cabinet,	
doorway,	sink,	floor,	rug

Multi-view	2D	Images !"

Mapping	Image	
to	EntityText
with LVLM
(Sec.	3.1)

couch:	blue	couch,	cozy	
seating	area,	comfortable	
sofa
ottoman:	blue	footstool,	
seating	option,	cozy	chair
television:	flat	screen	TV,	
entertainment	device,	
electronic	screen
…

EntityText ""

Associating	Pixel	
with	EntityText

(Sec.	3.2)

Pixel-EntityText	
Correspondence

couchfloor

television
bicycle

backpack

bookshelf
book

ottoman

bed

wall

cabinet

floor

rug

door

2D	Pixel	Positions	of	of	3D	Points	{#"()}

3D	Point	Cloud	#

Point-Pixel
Association

Connecting	Point	and	EntityText	via	Pixel	(Sec.	3.3)

Point-EntityText	
Association

via
Pixel

trash	can
cabinet (view2)	,	cabinet (view3)	
backpack
ottoman
helmet
guitar	(view2)	,	guitar (view4)

rug (view2)	,	mat (view3)	

(Point,	EntityText)	Pairs

cabinet

… …

door

rug

mat
floor

wall

guitar

guitar helmet

Scene	Data

3D	Network … CLIP	Text	Encoder
(fixed)

3D	Point	Features

…

Textual	Features

Alignment	Loss

Point-EntityText	Alignment	(Sec.	3.4)

wallsink

trash	can

bag
pillow

Figure 2. Illustration of our OV3D framework. OV3D leverages multi-view 2D images {Ii} to connect 3D point cloud P with language
descriptions. Initially, entity-level text descriptions (i.e., EntityText) are extracted from the images using a Large Vision-Language Model
(LVLM) (Sec. 3.1). These EntityText are then assigned to pixels to form a fine-grained pixel-EntityText correspondence (Sec. 3.2).
Subsequently, 3D points are associated with EntityText based on the point-pixel correspondence (Sec. 3.3), which are then utilized to train
the 3D network in an open-vocabulary setting, aligning point features with textual features (Sec. 3.4).

tion. The overall architecture of OV3D is shown in Fig. 2.
For each scene, we denote the 3D point cloud as P and the
corresponding set of multi-view 2D images as {Ii}i=1,...,M .
Our initial step involves extracting names and descriptions
for entities (i.e., EntityText) within the images, with the assis-
tance of a Large Vision-Language Model (LVLM) (Sec. 3.1).
Subsequently, we employ a vision foundation model to gen-
erate segments for entities present in each image. These
segments are matched with the EntityText set based on their
embedding distance within a shared image-language feature
space, establishing fine-grained correspondence between
pixel and EntityText. (Sec. 3.2). We then connect each point
with the corresponding EntityText via point-pixel association
(Sec. 3.3). The established (point, EntityText) pairs are then
used to facilitate the 3D open-vocabulary training process,
aligning the distribution of point features with that of open
text features (Sec. 3.4). This alignment empowers the 3D
model with open-vocabulary abilities, enhancing its capacity
to handle diverse semantic concepts.

3.1. Mapping Image to EntityText

In this section, our objective is to map the visual content
of images to linguistic semantics, identifying the entities
depicted within the images. Recent advancements in the
domain of Large Language Model (LLM) [54] have show-
cased their remarkable capacity for open-world understand-
ing and reasoning. Additionally, the advent of LLM-powered

LVLMs [34, 41] has empowered us to decode the visual in-
formation contained in images through textual descriptions.
We employ LVLM in our framework to build a mapping from
image contents to context-enriched entity-level text represen-
tations. Instead of directly requesting the LVLM to describe
and list all the entities, we empirically find that adopting a
conversation mode based on the chain-of-thought [59] pro-
cess leads to enhanced and more stable outputs.

Fig. 3 shows an example of the conversation process using
an up-to-date open-source LVLM, LLaVA-1.5 [33, 34]. We
initiate the process by requesting the LVLM to provide an
overall language description of the concrete entities present
in the image. After that, we engage in a conversation with
LVLM, asking it to list the names of all these entities. Specif-
ically, we denote the name of the j-th entity in image Ii as
tni,j . To obtain more open and context-enriched descriptions
for each entity, we further interact with LVLM to elicit di-
verse nouns or phrases depicting these entities. This yields
an entity description set tdi,j = {tdi,j,k}k=1,...,K for each en-
tity, with K being the number of descriptions for a given
entity. In this conversation manner, we step-by-step guide
the LVLM to generate textual semantics for each entity in a
desired format. It is noted that the conversation process is
automated by using the same prompts for all images.

We use the term EntityText to represent the textual se-
mantics, including both the name and diverse descriptions,
for each entity. For the j-th entity in the i-th image, we
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Please look carefully at the image and describe the
concrete objects and background in the image.

Please list these concrete objects and background classes by a set of nouns.

Couch, ottoman, television, bookshelf, bicycle, backpack, remote control, floor.

Please describe each of the above things that appear in the image with three
different nouns or phrases.

1.	Couch:	Blue	couch,	cozy	seating	area,	comfortable	sofa.
2.	Ottoman:	Blue	footstool,	seating	option,	cozy	chair.
3.	Television:	Flat	screen	TV,	entertainment	device,	electronic	screen.
4.	Bookshelf:	Bookcase,	storage	for	books,	display	of	reading	materials.
5.	Bicycle:	Bike,	two-wheeled	vehicle,	mode	of	transportation.
6.	Backpack:	Carry-on	bag,	personal	belongings,	storage	for	items.
7.	Remote	control:	Wireless	controller,	device	for	operating	television,	TV	remote.
8.	Books:	Reading	material,	paperbacks,	collection	of	literature.
9.	Floor:	tiled	floor,	ground,	surface	for	walking.

The image features a living room with a blue couch
and a blue ottoman. The couch is situated in the
center of the room, while the ottoman is placed
nearby. There is a television mounted on the wall,
and a bookshelf filled with various books can be
seen in the background. In addition to the main furniture, there is a bicycle
parked in the room, and a backpack is placed on the floor. A remote control is also
visible, likely for controlling the television. The room appears to be a cozy and
comfortable space for relaxation and entertainment.

Figure 3. An example of the conversation process with LLaVA [34]
for mapping image content to entity-level text descriptions.

represent EntityText as ei,j = (tni,j , t
d
i,j). The EntityText

set for image Ii is Ei = {ei,j}j=1,...,NEi
, with NEi

being
the entity number in image Ii. We thus build an open and
comprehensive mapping from image Ii to EntityText Ei.
Discussion: Image-level vs. Entity-level Text Descrip-
tion. In PLA [12] and RegionPLC [64], caption mod-
els [31, 57, 77] are employed to generate language descrip-
tions for entire images or image crops. However, this strat-
egy can pose challenges in achieving robust vision-semantic
alignments, particularly when multiple objects coexist in
the same image or crop. Relying on such a coarse (image,
text) correspondence for vision and language alignment can
hinder the model’s ability to distinguish objects. Rather than
generating captions at the image or crop level, we employ
LVLM to generate entity-specific descriptions for individ-
ual entities in the image, which enables a finer alignment
between vision and text in our subsequent steps.
Discussion: Concrete Entity Identification. Entity names
can be generated by extracting nouns from image descrip-
tions, as applied in [12]. However, direct noun extraction can
introduce noise by inadvertently including abstract nouns
like “relaxation”, or location indicators like “center”. In
contrast, our approach employs LVLM to selectively extract
only the concrete entities, thereby providing a more accurate
set of entities. Table 6 shows a quantitative comparison of
different entity identification strategies.

3.2. Associating Pixel with EntityText

In point cloud segmentation, a dense prediction task, the
goal is to produce a point-level semantic map correlating
each point to its class. Achieving such dense recognition
necessitates fine-grained guidance. Therefore, in this section,
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Figure 4. Process of associating pixel with EntityText. The Vi-
sion Foundation Model (VFM) is used to produce class-agnostic
segments of the input image. The vision-language model is then
applied to map the image segments and EntityTexts to a joint vision-
language feature space. EntityTexts are assigned to segments (i.e.,
pixel sets) based on the feature similarity.

we focus on establishing a finer-grained correspondence
between image contents and EntityText at the pixel level.

To achieve this goal, we begin by exploiting the capabili-
ties of the vision foundation models, such as SAM [25] and
SEEM [78]. These models provide a universal interface for
segmentation, allowing the generation of class-agnostic en-
tity segments. As shown in Fig. 4, for each 2D image Ii, we
feed it into the vision foundation model to generate segments
for the entities in the image. We denote these entity segments
as Si = {si,j}j=1,...,NSi

, with NSi signifying the number
of segments identified. Each entity segment represents a set
of pixels belonging to this entity.

The next step is to assign each segment an EntityText
to establish a detailed pixel-EntityText correspondence. To
achieve this, we employ vision-language models [28, 46, 78].
These models consist of text and image encoders that map
language and vision data into a unified embedding space,
where corresponding text and image features are well aligned.
Taking advantage of this property of vision-language models,
we use the text encoder to encode the EntityText Ei and ob-
tain textual embeddings FE

i = {fe
i,j}j=1,..,NEi

. Meanwhile,
we use the corresponding image encoder to extract visual
embeddings FS

i = {f s
i,j}j=1,...,NSi

for the entity segments.
We then compute cosine similarity between the segment vi-
sual embeddings FS

i and the textual embeddings FE
i . Using

these similarity scores, we assign to each segment the Enti-
tyText with the highest correspondence. Formally, for the
j-th segment in the i-th image, the index of the assigned
EntityText is calculated as

A(i, j) = argmax
k

(cos(f s
i,j , f

e
i,k)), (1)

where cos represents cosine similarity and A is the assign-
ment function. The resulting correspondence between seg-
ment (set of pixels) and EntityText is (si,j , ei,A(i,j)), which
associates the pixels with entity text descriptions.
Context-enriched Text Embedding Generation. As in-
troduced in Sec. 3.1, we produce multiple descriptions
for each entity within the image. In order to generate
more open and context-enriched textual embeddings for
these entities and thus enhance their ability to be accurately
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matched with the corresponding visual embeddings, we inte-
grate both entity names tni,j and diverse entity descriptions
tdi,j = {tdi,j,k}k=1,...,K in text embedding generation as

fe
i,j =

1

1 +K

(
TE(tni,j) +

K∑
k=1

TE(tdi,j,k)

)
, (2)

where TE represents the text encoder.
Visual Embedding Generation. We use different ways to
extract segment visual embeddings f s, depending on the
specific vision-language model [15, 28, 46, 78] utilized in
our framework. For instance, in the case of CLIP [46], which
offers image-level vision-text alignment, we crop the seg-
ment area and input it to the CLIP image encoder to obtain
f s. For models like OpenSeg [15] or LSeg [28], which
are open-vocabulary segmentation models achieving pixel-
level vision-text alignment, we utilize average pooling on the
pixel features within each segment to create f s. When us-
ing SEEM [78], a Mask2Former [6]-style vision foundation
model that provides a joint representation space where mask
embeddings and text embeddings are aligned, we employ
the mask embeddings as f s. In Table 8, we show the effects
of different vision-language models in our framework.

3.3. Connecting Point and EntityText via Pixel

Given the fine-grained correspondence between pixels and
EntityText, our next step is to connect the points and Enti-
tyText using pixels as a bridge. For this purpose, we first
associate 3D points with 2D pixels by projecting the 3D
points P ∈ RN×3 onto multi-view image planes. Formally,
the 2D pixel positions of 3D points in the i-th view, denoted
as P2D

i ∈ RN×2, are calculated as

[ P2D
i | 1 ] =

1

PC
i [:, 2]

KPC
i , PC

i = [Ri | ti ] P, (3)

where [·|·] denotes the block matrix, and PC
i ∈ RN×3 rep-

resents the point positions in the camera coordinate system.
The camera intrinsic matrix is denoted as K ∈ R3×3, and
[Ri | ti ] is the extrinsic matrix, which combines the rotation
matrix R ∈ R3×3 and the translation vector t ∈ R3.

To verify the validity of points P in the i-th view, we first
ensure their 2D pixel positions P2D

i are within the image
bounds. In cases where depth data is accessible, we also
check whether the points are occluded in the i-th view by
assessing the consistency between the Z-coordinate of PC

i

and the depth values at corresponding pixel positions P2D
i ,

as applied in [17, 40]. A point is valid if it is in the image
bounds and remains unoccluded in the view. We denote the
2D pixel positions of valid points in the i-th view as P̂2D

i .
Subsequently, by examining whether 2D pixel positions

P̂2D
i fall within a segment, we identify valid 3D points for

that segment. We denote the valid points for segment si,j
as P̂s

i,j . Leveraging the pre-established segment-EntityText

relation (si,j , ei,A(i,j)), we then associate P̂s
i,j with the En-

tityText ei,A(i,j), where the pixel segment si,j serves as a
bridge. Considering that each point may be valid in multiple
views, it will be accordingly linked to a variety of Entity-
Text. For each point, we aggregate the EntityText from all
applicable views and denote the obtained (point, EntityText)
pairs as (p,Ep), where p ∈ P and Ep represents the set of
EntityText describing the entity to which point p belongs.

By connecting points to EntityText, our method enables a
fine-grained and seamless alignment of point features with
textual features, which directly leverages text models trained
on unbounded open text data, thus offering improved open-
ness and robustness compared to methods that rely on inter-
mediary image features [40, 68].

3.4. Training and Inference
Training: Point-EntityText Alignment. We use (point,
EntityText) pairs (p,Ep) to guide the open-vocabulary 3D
network training. For each point p, we align its feature fp

from the 3D network with textual features {fe}e∈Ep
of the

corresponding entity descriptions. We use CLIP [46] text en-
coder for textual feature extraction, selected for its extensive
training on large-scale, open-world data and its exceptional
zero-shot capabilities with novel objects. Mathematically,
the alignment is formulated as

Lp =
1

|Ep|
∑
e∈Ep

(1− cos (fp, fe)). (4)

The total point-EntityText alignment loss is then calculated
as the mean loss across all points, i.e., L =

∑
p∈P Lp

/|P|.
Note that less-confident pairs are removed in the alignment.

By this means, we embed the point features into the CLIP
text embedding space, formulating a joint point-text space
with aligned point and text features, thus empowering the
point network with the ability to generalize to novel classes.
Zero-shot Inference. During training, our model uses 2D
images to link 3D points with language. However, at infer-
ence, it operates exclusively on 3D point clouds, without
needing extra data compared to a standard 3D point cloud
semantic segmentation network. Specifically, we employ
the CLIP text encoder to extract textual features for an arbi-
trary open set of classes and compute the cosine similarities
between point and class text features. Each point is then
assigned to the class with the highest similarity.

4. Experiments
4.1. Experimental Setup
Datasets. We conduct experiments across four widely recog-
nized 3D semantic segmentation benchmarks: ScanNet [11],
Matterport3D [4], nuScenes [3], and ScanNet200 [48]. Scan-
Net includes 1,613 indoor 3D scenes from 2.5 million
RGB-D video views, with evaluations on standard 20 and
more challenging 200 class sets. Matterport3D provides
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ScanNet [11] Matterport3D [4]Method Training
Overhead

Testing requires
Images mIoU mAcc f-mIoU f-mAcc mIoU mAcc f-mIoU f-mAcc

MSeg Voting [27] - ✓ 45.6 54.4 - - 33.4 39.0 - -
PointCLIP-Seg† [69] - ✓ - - 2.1 5.5 - - - -
MaskCLIP† [76] - ✓ - - 23.1 40.9 - - - -
OpenScene-2D [40] - ✓ 50.0 62.7 - - 32.4 45.0 - -
OpenScene-3D [40] High 52.9 63.2 - - 41.3 55.1 - -
OpenScene [40] High ✓ 54.2 66.6 - - 42.6 59.2 - -
PLA† [12] Low - - 17.7 33.5 - - - -
RegionPLC [64] Low - - 43.8 65.6 - - - -
RegionPLC w/ OpenScene-3D [64] High - - 60.0 75.8 - - - -
OpenScene-3D‡ [40] High 53.9 65.2 59.1 71.8 42.0 59.4 49.7 64.0
OV3D (Ours) Low 57.3 72.9 64.0 76.3 45.8 62.4 50.4 65.7
OV3D w/ OpenScene-3D (Ours) High 59.6 74.5 67.6 79.1 48.2 64.0 53.8 68.0
Fully-Sup.‡ - 72.0 80.7 79.5 86.8 55.7 67.4 60.9 72.2

Table 1. Performance comparison for annotation-free 3D semantic segmentation on ScanNet and Matterport3D. “†” denotes results
reproduced by RegionPLC [64], while “‡” indicates results reproduced by us. The “High” training overhead implies that the approaches
require extensive high-dimensional image feature processing during training. This demands considerable latency for online image model
inferencing during training or substantial additional storage for offline image feature storage.

detailed 3D building environments from 194k RGB-D im-
ages. NuScenes focuses on urban driving scenarios with 34k
LiDAR point clouds.
Evaluation Settings and Metrics. Our approach’s effective-
ness and flexibility in 3D open-world scenarios are demon-
strated through a two-tiered experiment. Initially, we test
in an annotation-free environment, without category anno-
tations (Sec. 4.2). Then, we extend the analysis to a base-
annotated context with predefined base and novel categories,
as used in previous studies [12, 64] (Sec. 4.3). We primar-
ily use mean intersection over union (mIoU) for evaluating
3D semantic segmentation. For indoor scenes, foreground
mIoU (f-mIoU), excluding walls, floors, and ceilings, as well
as mean accuracy (mAcc) and foreground mean accuracy
(f-mAcc), are also measured. In base-annotated scenarios,
mIoU is calculated separately for base and novel classes,
with harmonic mean IoU (hIoU) included for comprehensive
analysis, as in [12, 62, 64].
Implementation Details. Our framework utilizes SparseC-
onvNet [10, 16] as the 3D backbone for point-wise feature
extraction, coupled with the frozen CLIP [46] text encoder
for text embeddings used in point-wise semantic classifica-
tion. LLaVA-1.5 [33] is adopted as the LVLM in OV3D
for EntityText generation. SEEM [78] serves as both the
vision foundation model and vision-language model for the
pixel-EntityText association. Training is conducted using
the AdamW optimizer [36], with a batch size of 8.

4.2. Understanding Annotation-Free 3D Worlds

In this section, we present an evaluation of our proposed
OV3D within the context of annotation-free, open-world
3D semantic segmentation. This setting involves train-
ing all models without any annotations and employing a
zero-shot approach during testing. We follow [40] to test
all approaches on the ScanNet [11] validation set, Matter-
port3D [4] test set, and nuScenes [3] validation set.

Method mIoU
OpenScene-LSeg [40] 36.7
OpenScene-OpenSeg [40] 42.1
OpenScene-3D‡ [40] 41.3
OV3D (Ours) 44.6
OV3D w/ OpenScene-3D (Ours) 45.5
Fully-Sup.‡ 76.4

Table 2. Performance comparison for annotation-free 3D semantic
segmentation on nuScenes [3] dataset with outdoor driving scenar-
ios. “‡” indicates results reproduced by us.

Method mIoU
PLA [12] 1.8
OpenScene-3D‡ [40] 7.3
RegionPLC [64] 6.5
OV3D (Ours) 8.7
OV3D w/ OpenScene-3D (Ours) 9.8
Fully-Sup.‡ 21.3

Table 3. Performance comparison for annotation-free 3D semantic
segmentation on ScanNet200 [48] dataset with 200 categories. “‡”
indicates results reproduced by us.

Comparative Analysis with Zero-Shot Methods. Our ap-
proach OV3D showcases superior performance in zero-shot
3D semantic segmentation, as shown in Table 1. Remark-
ably, OV3D outperforms all previous methods, including the
advanced OpenScene [40] and the recent RegionPLC [64].
On the ScanNet dataset, OV3D shows a +3.1% improvement
in mIoU and +6.3% in mAcc. Similarly, on Matterport3D, it
achieves +3.2% mIoU and +3.0% mAcc increases.

Besides that, OV3D is significantly more efficient than
OpenScene setup, requiring far less storage and training I/O
costs. OpenScene needs over 300GB for image feature gen-
eration [64], while OV3D only requires about 6GB for Scan-
Net and 4GB for Matterport3D to store (point, EntityText)
pairs. This efficiency allows OV3D to be easily integrated
with OpenScene-3D by simply applying the complementary
alignment objectives from the two methods concurrently.
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As shown in Table 1, combining OV3D with OpenScene-
3D yields notable performance boosts over OpenScene-3D:
+5.7% mIoU and +9.3% mAcc on ScanNet, and +6.2% mIoU
and +4.6% mAcc on Matterport3D.

Moreover, OV3D notably reduces the performance gap
between zero-shot methods and fully-supervised perfor-
mance, especially in complex environments like Matter-
port3D. It reduces the gap in mIoU and mAcc to just -7.5%
and -3.4%, showcasing its robustness in complex scenarios
where fully supervised methods may be less effective.

Table 2 shows that OV3D also excels in outdoor driving
scenarios, highlighting its universality and versatility.
Assessment in Long-Tail Scenarios. We further evalu-
ate OV3D’s open-vocabulary capability and generalizability
on the ScanNet200 benchmark, which presents a signifi-
cant challenge with its 200 categories - ten times more than
previous benchmarks. According to Table 3, OV3D out-
performs the best existing model with a +2.5% increase in
mIoU across these categories. This success is attributed to
OV3D’s approach of learning directly from language foun-
dation models [46], unlike OpenScene’s [40] reliance on
knowledge distillation from more limited 2D segmentation
models. In contrast to methods like PLA [12] and Region-
PLC [64], which align 3D features with text on an image or
regional basis, OV3D leverages vision foundation models to
establish a more precise link between 3D points and entity
texts, leading to its enhanced performance.
Qualitative Results. To illustrate the effectiveness of our
OV3D in understanding open-vocabulary 3D scenes, we
present a series of detailed qualitative results in Fig. 5 and
Fig. 6. It includes a variety of examples that show OV3D’s
robust performance in diverse open-world scenarios.

4.3. Interpreting Base-Annotated 3D Worlds

In this section, we evaluate our method on base-annotated
open-world 3D semantic segmentation. Following [12, 64],
we perform experiments on ScanNet [11], categorizing it
into three settings: B15/N4, B12/N7, and B10/N9, where “B”
and “N” represent base (annotated) and novel (unannotated)
categories, respectively. All models are trained on the official
training split and assessed on the validation split.
Extending OV3D to Base-Annotated Setting. Our OV3D
model, originally designed for training without annotations,
can be seamlessly adapted to base-annotated settings. As
described in Sec. 3.4, OV3D uses generated (point, Enti-
tyText) pairs for training. For base categories, we replace
the EntityText with the actual category names in these pairs,
while pairs for novel categories remain unchanged. This
allows OV3D to be effectively trained using a combination
of accurate point annotations for base categories and unsu-
pervised (point, EntityText) pairs, enhancing its applicability
and performance in varied scenarios.
Comparative Performance Analysis. OV3D excels in all

Pool Table Bistro Table

Play	Billiards Bar	Stool

Photocopier

Paper	Printing

Table	Top

Cabinet

High

Low

Figure 5. Qualitative results of our OV3D on open-vocabulary 3D
scene understanding without using any annotations. We explore 3D
scenes by using different query texts (e.g., “pool table” and “photo-
copier”) and color 3D points based on their feature similarity, with
brighter yellow color indicating higher similarity. Key findings
include: 1) OV3D is able to accurately locate 3D regions relevant
to a broad spectrum of query texts. (2) OV3D has the ability to
recognize the same object described by different texts, exemplified
by identifying a “pool table” both as an object and by its function
(“play billiards”) (Note: similar concepts are marked with yellow
rectangles in the middle part). (3) OV3D is proficient in distinguish-
ing subcategories within a concept, such as differentiating between
a “pool table” and a “bistro table”.
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Figure 6. More qualitative results (zoom in for better viewing).

metrics across three different settings, as shown in Table 4.
It surpasses the state-of-the-art model RegionPLC [64] in
harmonic mIoU, recording increases of +2.5%, +3.4%, and
+6.0% in the B15/N4, B12/N7, and B10/N9 settings, respec-
tively. Notably, OV3D’s performance enhancement grows
with the increase in the number of novel categories. For
example, in the B10/N9 setting, it improves mIoU for novel
categories by +7.9% over RegionPLC, demonstrating its
strong adaptability and effectiveness in recognizing and clas-
sifying unseen categories.

4.4. Ablation Study

In this section, we conduct ablation studies on ScanNet
validation set in an annotation-free setting.
Entity Identification Strategy. We investigate various en-
tity identification strategies, as presented in Table 6. For
“Noun Extraction”, we use the Natural Language Toolkit
(NLTK) [2] library to extract nouns from the image descrip-
tions generated by LVLM, as in [12]. In an enhanced ver-
sion, “Noun Extraction†”, we further verify whether the
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B15/N4 B12/N7 B10/N9
Method

hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN

3DGenZ [38] 20.6 56.0 12.6 19.8 35.5 13.3 12.0 63.6 06.6
3DTZSL [7] 10.5 36.7 06.1 03.8 36.6 02.0 07.8 55.5 04.2
LSeg-3D [28] 00.0 64.4 00.0 00.9 55.7 00.1 01.8 68.4 00.9
PLA [12] 65.3 68.3 62.4 55.3 69.5 45.9 53.1 76.2 40.8
RegionPLC [64] 69.9 68.4 71.5 65.1 69.6 61.1 58.8 76.6 47.7
OV3D (Ours) 72.4 70.2 74.7 68.5 74.1 63.7 64.8 77.6 55.6
Fully-Sup. 74.6 70.2 79.6 72.1 72.2 72.0 71.5 77.0 66.7

Table 4. Performance comparison for base-annotated 3D semantic segmentation on ScanNet [11]. mIoUB indicates the mIoU of base
categories while mIoUN indicates the mIoU of novel categories.

LSeg-3D [12] PLA [12] RegionPLC [64] OV3D (Ours)
1.7 (11.2) 13.4 (25.1) 36.9 (53.6) 41.3 (64.4)

Table 5. Performance comparison for zero-shot domain transfer
from ScanNet [11] to S3DIS [1]. The model is trained on ScanNet
(annotation-free) and evaluated on S3DIS using f-mIoU (f-mAcc).

extracted nouns correspond to concrete entities by leverag-
ing the WordNet [39] database for concreteness information
retrieval. In our primary method, “Instruct LVLM”, we
directly harness the LVLM’s ability to identify concrete enti-
ties. Specifically, we instruct LLaVA-1.5 [33] to enumerate
all the concrete entities based on a given image. As indicated
by our results in Table 6, LVLM’s performance in recogniz-
ing concrete entities, informed by visual context, is superior
to traditional methods like NLTK noun extraction in our task.
Context-enriched Text Embedding. We experiment with
different strategies for generating the entity text embedding,
as detailed in Table 7. We find that integrating both entity
names and diverse entity descriptions as in Eq. (2) effec-
tively enriches the contextuality and openness of the text
embeddings. This approach achieves better performance in
open-vocabulary semantic segmentation compared to using
solely entity names for text embedding generation.
Vision Foundation Model & Vision-Language Model for
Associating Pixel with EntityText. Table 8 compares differ-
ent strategies for associating pixels with EntityText. When
using SAM as the vision foundation model to generate entity
segments, we experiment with three vision-language models:
CLIP [46], LSeg [28], and OpenSeg [15], to assign Entity-
Text to these segments. With CLIP, the entity segment area is
cropped and processed through the CLIP image encoder, but
this might result in misalignment between the entity’s visual
and textual features due to insufficient context or multiple
objects in the crop, potentially reducing the accuracy of the
pixel-EntityText association. With LSeg or OpenSeg, both
2D open-vocabulary semantic segmentation models, we ag-
gregate the pixel features within the segment region to derive
the segment’s visual feature. This method ensures a better
alignment of visual features with the segment region, leading
to improved performance compared to using CLIP. When
SEEM [78], a universal segmentation interface that enables
both visual and text prompts, serves as the vision foundation

Generated EntitiesApproach for
Entity Identification Concrete Context-Aware mIoU(%)

Caption + Noun Extraction 55.3
Caption + Noun Extraction† ✓ 57.2

Instruct LVLM ✓ ✓ 59.6

Table 6. Effects of different strategies for entity identification.
“Noun Extraction†” indicates that concreteness check using Word-
Net [39] is conducted after extracting nouns. “Context-Aware”
refers to the process of identifying concrete entities by conditioning
on input images, rather than relying solely on noun analysis.

Entity Name-only Context-Enriched
mIoU(%) 57.6 59.6

Table 7. Effects of various text embedding generation strategies.

VFM VLM mIoU(%)
SAM [25] CLIP [46] 51.0
SAM [25] LSeg [28] 54.5
SAM [25] OpenSeg [15] 55.1

SEEM [78] SEEM [78] 59.6

Table 8. Effects of different strategies for associating pixels with
EntityText. “VFM” denotes the vision foundation model used to
generate entity segments. “VLM” denotes the vision-language
model for assigning EntityText to segments.

model, we directly utilize its joint vision-language feature
space for assigning EntityText to segments. SEEM allows us
to directly leverage the mask embeddings as the segment’s vi-
sual feature, ensuring precise segment depiction. As shown
in Table 8, using SEEM for pixel-EntityText association
performs best in our experiments.

5. Conclusion

We present OV3D, advancing the development of 3D open-
vocabulary semantic segmentation. By utilizing vision
and language foundation models, OV3D establishes a fine-
grained correspondence between individual points and entity
text descriptions, achieving a seamless and dense alignment
of point features with open and context-enriched text features.
OV3D’s excellent performance on both indoor and outdoor
datasets attests to its effectiveness and adaptability. With
the advancement of foundation models, we believe OV3D’s
performance will be further unleashed, serving as a powerful
3D open-vocabulary solution in real-world applications.
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