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Abstract

We present a novel semi-supervised framework for breast
ultrasound (BUS) image segmentation, which is a very chal-
lenging task owing to (1) large scale and shape variations
of breast lesions and (2) extremely ambiguous boundaries
caused by massive speckle noise and artifacts in BUS im-
ages. While existing models achieved certain progress in
this task, we believe the main bottleneck nowadays for fur-
ther improvement is that we still cannot deal with hard cases
well. Our framework aims to break through this bottleneck,
which includes two innovative components: an adaptive
patch augmentation scheme and a hard-patch contrastive
learning module. We first identify hard patches by comput-
ing the average entropy of each patch and then shield hard
patches to prevent them from being cropped out while per-
forming random patch cutmix. Such a scheme is able to
prevent hard regions from being inadequately trained un-
der strong augmentation. We further develop a new hard-
patch contrastive learning algorithm to direct model at-
tention to hard regions by applying extra contrast to pix-
els in hard patches, further improving segmentation per-
formance on hard cases. We demonstrate the superior-
ity of our framework to state-of-the-art approaches on two
famous BUS datasets, achieving better performance un-
der different labeling conditions. The code is available at
https://github.com/jjjsyyy/PH-Net.

1. Introduction

Breast cancer is the most common cancer among females
worldwide. According to newly released statistics [27], one
in eight newly diagnosed cancer patients develops breast
cancer. Due to its unclear etiology and unpredictable vari-
ability, early screening of breast cancer plays a vital role in
early intervention and hence significantly reduces mortal-
ity [9]. Currently, ultrasound imaging is the most widely
used tool for breast cancer screening, owing to its non-
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Figure 1. Typical challenges in segmentation of BUS images: (a)-
(c) large variations in scale and shape of lesions, (d)-(e) lesions
with low contrast and ambiguous boundaries. Blue arrows and red
lines indicate blurring boundaries and ground truth, respectively.

invasiveness, cost-effectiveness, and real-time nature [26].
However, manual screening of breast ultrasound (BUS) im-
ages is labor-intensive, time-consuming, and error-prone. In
addition, it heavily depends on physicians’ expertise and
hence there usually exists large intra- and inter-observer
variability. To the end, automated screening tools are highly
demanded in clinical practice to improve diagnosis accu-
racy and efficacy.

One of the essential tasks in developing such an auto-
mated screening system is to automatically segment lesions
from BUS images. However, segmentation of BUS images
presents a highly challenging task, as shown in Fig. 1. First,
lesions exhibit highly ambiguous boundaries due to the low
contrast of BUS images. Second, tumors have substantial
variability in scale and shape. Third, due to heavy speckle
noise and artifacts in BUS images, some lesions are excep-
tionally challenging to recognize. In this regard, a lot of
effort has been dedicated to tackling this challenging task.

In recent years, with the rapid developments of deep
learning techniques, fully supervised methods [30, 34, 37,
46] have achieved remarkable performance in BUS im-
age segmentation. However, these fully supervised meth-
ods heavily rely on extensive annotated data, while acquir-
ing large-scale pixel-level annotations for segmentation re-
mains time-consuming and labor-intensive. To mitigate this
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Figure 2. Detailed visualization of the patches. Small patches can
capture lesions, background and border information.

limitation, many researchers have shifted their attention to
semi-supervised learning, which aims at achieving satisfac-
tory performance by utilizing limited labeled images along-
side massive unlabeled images.

Some semi-supervised models have been proposed to
address the challenges of BUS image segmentation with
limited training data. Attention-based methods [6, 45] at-
tempted to capture features from multiple receptive fields
through attention modules to more robustly determine the
location and size of lesions. However, it is difficult for them
to tackle ambiguous boundaries with limited pixel-level an-
notations. Later, generative adversarial network (GAN)-
based methods [14, 41] endeavored to reduce supervisory
signals by improving both the capability of the discrimina-
tor and the quality of the predicated map produced by the
generator. However, extensive speckle noise and artifacts
significantly affect the judgment of the discriminator, and
thus impact the stability of adversarial training as well as
the quality of segmentation. Different from the above meth-
ods, RA-UGMT [11] proposes a residual-attention-based
uncertainty-guided mean teacher framework to estimate the
certainty of all the outputs and then select the optimal out-
put. Nevertheless, this method only processes reliable sam-
ples, which results in insufficient training of difficult sam-
ples, making the model not perform well on hard cases.

In this paper, we propose a novel semi-supervised BUS
image segmentation framework via patch-wise hardness,
we call it PH-Net. The proposed PH-Net is constructed
based on classical teacher-student architecture, and includes
two innovative components: an adaptive patch augmenta-
tion scheme and a hard-patch contrastive learning module.
Inspired by [29], in the teacher network, we divide the in-
put image into multiple small patches, as shown in Fig. 2,
and then compute the average entropy of each patch as a
hardness score. After that, we shield hard patches to pre-
vent them from being cropped out while performing ran-
dom patch cutmix on the remaining patches, which ensures
adequate model training on difficult regions. Moreover, to
further enhance model learning on these hard regions, we
incorporate a projector into the student branch. We ac-
quire reliable samples via rigorous sampling for additional
contrastive learning, improving intra-class compactness and
inter-class discriminability within the hard patches. We ex-
tensively evaluate our proposed method on two well-known
public datasets, UDIAT [40] and BUSI [1], demonstrating

the superiority of our proposed model to state-of-the-art ap-
proaches. Our contributions can be summarized as follows:
• We propose a novel semi-supervised breast lesion seg-

mentation framework based on patch-wise hardness,
which aims at preventing hard regions from being inad-
equately trained under strong augmentation.

• We develop a new hard-patch contrastive learning algo-
rithm to direct model attention to challenging regions by
applying extra contrast to pixels in hard patches, further
improving segmentation performance on hard cases.

• We demonstrate the superiority of our proposed method
to state-of-the-art approaches on two famous BUS
datasets, achieving better performance under different la-
beling conditions.

2. Related work
2.1. Breast ultrasound image segmentation

In recent years, convolutional neural networks (CNNs)
based BUS image segmentation has made remarkable ad-
vancements owing to rapid developments in deep learning.
Methods including RDAU-Net [46], PPU-Net [42] and SK-
U-Net [5], modifying on the classical U-Net [25] convolu-
tional neural network, have achieved promising results in
the early stage. GG-Net [37] utilizes multi-level integrated
feature maps as guiding information and incorporates ad-
ditional boundary detection to enhance segmentation qual-
ity. MCRNet [22] performs multi-level contextual refine-
ment within the encoder-decoder architecture to achieve
fully automatic semantic segmentation. Although achieving
impressive segmentation results, all of these methods rely
on fully supervised training strategies and demand a large
amount of labeled data. However, acquiring precisely anno-
tated BUS images is a time-consuming and labor-intensive
process and requires the expertise of medical profession-
als. Consequently, semi-supervised learning offers a more
promising alternative that requires limited labeled data to
achieve outstanding performance, considerably reducing
the model’s dependence on extensive labeled data.

2.2. Semi-supervised segmentation

Based on existing research, semi-supervised segmentation
methods can be divided into three categories: (1) Pseudo-
labelling based methods [18, 24, 38, 47], which generate
pseudo-labels for unlabeled images and subsequently re-
training the model. (2) Consistency regularisation based
methods [8, 12, 21, 39, 43, 44], which perturb the unlabeled
images and constrain the outputs to be consistent to train a
model resistant to these perturbations. (3) Contrastive learn-
ing based methods [2, 13, 31, 32], which minimize the fea-
ture space distances between positive pairs and maximize
distances for negative pairs. In particular, UniMatch [39]
introduces a dual-stream perturbation technique to utilize a
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Figure 3. Framework of our proposed method. In the teacher-student framework, we employ the teacher model to generate pseudo-labels
for unlabeled images, which together with the original images are subjected to adaptive patch augmentation based on the hardness maps
at the patch level. In this process, we shield the patches with high hardness, randomly cut out the remaining patches, and paste them
with another image correspondingly. The augmented images, together with the labeled images, are then fed into the student model for
supervised training. A projector is additionally installed and the output features are involved in hard-patch contrastive learning for further
training. ŷu is obtained from fθ′(x

u) via argmax(·). The dashed line indicates the loss calculation.

wider perturbation space. However, BUS images contain-
ing substantial noise are not amenable to extensive pertur-
bations. U2PL [32] separates reliable and unreliable pixels
based on predicted entropy, using the latter as negative sam-
ples for contrastive learning. Though effectively utilizes un-
reliable pixels, it is inapplicable to medical image few-class
segmentation tasks. Moreover, AugSeg [44] performs data
augmentation by randomly and adaptively mixing labeled
and unlabeled samples to stabilize training on unlabeled
data. iMAS [43] performs model-adaptive data perturba-
tion and weighting on each unlabeled instance to enhance
model generalization during training. However, these meth-
ods perform adaptive perturbation at the image or instance
level, overlooking the inconsistent learning difficulty of the
model for pixels in different regions of the image. We argue
that pixels with varying difficulty in images should be han-
dled distinctly, with difficult regions receiving more training
from the model compared to easy regions.

2.3. Semi-supervised medical segmentation

Many researchers have made a lot of efforts in semi-
supervised medical segmentation in recent years and pro-
posed many excellent methods [3, 4, 19, 23, 33, 36]. Among
them, BCP [3] encourages unlabeled data to learn compre-
hensive public semantics from labeled data both inwardly
and outwardly by bidirectionally copy-pasting labeled and
unlabeled data. MCF [33] proposes a new mutual correc-
tion framework to rectify cognitive biases in the model.
PatchCL [4] provides additional guidance to facilitate con-
trastive learning through pseudo-labeling, using average

patch entropy to provide guidance on positive and negative
sampling. However, these methods do not consider intra-
and inter-image variability in learning difficulty. Further-
more, PDF-UNet [16] designed for BUS images, combines
data expansion, probability map generator, and U-shaped
pyramid-dilated fusion to expand the model’s receptive field
for accurate tumor detection at different scales. Although
partially addresses the multi-scale issue in BUS images, this
method does not attach importance to challenges like in-
distinct lesion boundaries and artifacts. Unlike the above
methods, our method performs adaptive perturbation and
contrastive learning by calculating the hardness scores of
patches to evaluate challenging regions such as edges.

3. Method

3.1. Motivation

Considering the ambiguous and low-contrast characteristics
of BUS images, in combination with the limited scale of
publicly available datasets, we conduct our study with semi-
supervised segmentation methods via patch-wise hardness.
Our motivation is to train a model focusing on inherently
challenging regions. Due to the considerable variation in
learning difficulty of different regions in BUS images, we
divide images into multiple small patches. As depicted
in Fig. 2, small patches can effectively capture lesion and
background details. Patches encompassing ambiguous ar-
eas typically constitute hard ones. Our method incorporates
an adaptive patch augmentation (APA) module to minimize
the exposure of challenging patches during the application
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of cutmix augmentation, allowing these regions to be ade-
quately trained. In addition, we provide additional contrast
using the hard-patch contrastive learning (HPC) module to
further train these challenging patches.

3.2. Overview

Our semi-supervised segmentation method PH-Net operates
on a limited labeled training set Dl and a large unlabeled
training set Du. The overall framework of PH-Net is il-
lustrated in Fig. 3. Based on the common teacher-student
semi-supervised framework, we incorporate a projector into
the student network. During the training process, gradient
propagation is only performed within the student network,
while the teacher weights θ′ get updated via the exponential
moving average (EMA) of the student weights θ:

θ′ ←− αθ′ + (1− α)θ (1)

where α is a momentum parameter, set to 0.999 fol-
lowed [28]. In the first few epochs of training, we only
feed labeled images to pre-train the model, establishing ba-
sic segmentation capabilities. For each subsequent training
step, labeled images Bl = {(xl

i, y
l
i)} and unlabeled images

Bu = {xu
i } are concurrently sampled. Supervised training

on labeled images employs the standard cross-entropy (CE)
loss:

Ls =
1

|Bl|

|Bl|∑
i=1

ℓce(fθ(x
l
i), y

l
i) (2)

where | · | denotes set length, fθ(x
l
i) represents the stu-

dent network’s prediction for the i-th labeled image xl
i, and

yli is the ground truth. For unsupervised learning on un-
labeled images, we perform consistency regularization by
adaptive patch augmentation and further train through hard-
patch contrastive learning, which will be described in detail
in Sec. 3.3 and Sec. 3.4 respectively. The total loss is calcu-
lated as follows:

L = Ls + λuLu + λcLc (3)

where λu and λc are the weights of unsupervised loss Lu

and contrastive loss Lc respectively.

3.3. Adaptive patch augmentation

Traditional cutmix [12] augmentation method has shown its
effectiveness in semi-supervised segmentation tasks, with a
proliferation of existing cutmix-based improvement meth-
ods [17, 43, 44]. However, these methods all ignore the
discrepancy in learning difficulty between challenging and
simple regions in the image. To mitigate this, we propose
adaptive patch augmentation (APA) to identify and shield
hard regions. Specifically, we calculate the hardness score
of each patch and shield high-hardness patches, while per-
forming random patch cutmix on the remaining patches.

Hardness metrics. As shown in Fig. 3, our image augmen-
tation is performed in the teacher branch. By default, xu

has already undergone weak augmentation (flipping, scal-
ing, and cropping). The probabilistic prediction fθ′(xu) is
divided into N × N patches of size h × w. The hardness
score of the patch is calculated as follows:

rm = − 1

logC

1

h× w

h×w∑
k=1

C−1∑
c=0

pm,k(c) log(pm,k(c)) (4)

where pm,k ∈ RC represents the activation probability dis-
tribution on pixel k in the m-th patch. C represents the total
number of categories, and pm,k(c) represents the probabil-
ity value for class c. Obviously, the hardness score is patch-
specific and reflects the model’s confidence of pixels within
the patch. It increases with greater prediction ambiguity
within a patch and decreases as predictions become more
certain.
Patch cutmix augmentation. Further training of the model
relies on patches with higher hardness scores, as these
patches cannot be predicted with high confidence. To pre-
vent patches with high hardness scores from being cut out
during cutmix augmentation, we shield them first. The
patches are sorted by descending hardness score, and the
shielded patch number is set dynamically as follows:

k = β
t

T
·N2 (5)

where t and T represent the current training epoch and the
total epoch respectively, β is a hyperparameter used to con-
trol the patch shielding ratio. While applying cutmix aug-
mentation on the image in patch units, we shield the top k
patches (i.e., keeping them unmasked) and randomly cut the
remaining (N2 − k) patches. We then fill with the image
arranged in the following position to create the augmented
image. Besides, the pseudo-labels are modified accordingly.
The adaptive patch cutmix can be expressed as:

A(xu
i )←−M ⊙ xu

i + (1−M)⊙ xu
i+1 (6)

yui ←−M ⊙ ŷui + (1−M)⊙ ŷui+1 (7)

where xu
i and xu

i+1 represent the i-th and (i + 1)-th unla-
beled images in a batch, ŷui and ŷui+1 denote their pseudo-
labels respectively. M is the randomly selected patch mask
used for cutmix.
Unsupervised loss calculation. For consistency, the output
prediction of the augmented images should be consistent
with the original images. However, considering that unreli-
able pseudo-labels are not suitable for supervision, we input
the augmented image A(xu

i ) into the teacher model to filter
the pseudo-labels during the calculation of the unsupervised
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Figure 4. Conceptual explanation of hard-patch contrastive learn-
ing (HPC). yu and Y u represent the pseudo-labels produced twice
by the teacher model. The dashed line indicates that the samples
converge towards the center. Features generate multiple feature
patches based on the patch-level hardness map, the top-k are taken
for rigorous sampling, forming two groups: target samples and
other samples. The memory bank stores the target sample in each
iteration, and sample centers are generated through clustering.

loss:

Lu =
1

|Bu|

|Bu|∑
i=1

H×W∑
j=1

Mf
ij · ℓce(fθ(A(x

u
ij)), y

u
ij) (8)

where
Mf

ij = 1
[
max(fθ′(A(xu

ij))) ≥ γ
]

(9)

where H and W represent the height and width of the pre-
diction respectively, γ is a pre-set confidence threshold to
filter unreliable pixels. fθ(A(xu

ij)) and fθ′(A(xu
ij)) are the

output predictions for the A(xu
i ) at the j-th pixel from the

student network and the teacher network, respectively.

3.4. Hard-patch contrastive learning

Previous semi-supervised segmentation methods [2, 31, 32]
have applied contrastive learning by sampling all image fea-
tures or filtering unreliable ones. However, they have not
emphasized the model’s learning of challenging pixels or
regions. Recent work [32] explores the utilization of unre-
liable pixels, but is inapplicable to two-class segmentation
tasks. Therefore, we propose a hard-patch contrastive learn-
ing (HPC) module, conducting additional contrastive learn-
ing on hard patches identified by our adaptive patch aug-
mentation. Specifically, we select the top k hardest patches,
rigorously sample features, and categorize them into target
and other (non-target) classes for contrastive learning.
Rigorous sampling. As the pseudo-labels generated di-
rectly by the model cannot guarantee their accuracy, to ob-
tain more reliable samples, we use fθ′(A(xu

ij)) to rigor-
ously filter the pseudo-labels:

M inter
ij = 1{yuij = Y u

ij} (10)

where
Y u
ij = argmax(fθ′(A(xu

ij))) (11)

Under the rigorous supervision of dual pseudo-labels, the
pixel is considered reliable only when its outputs remain
consistent. Notably, we only sample anchor features from
the hardest k patches. We categorize the sampled features
into two sets as follows:

Zc = {zij |M inter
ij = 1, yuij = c, zij ∈ Zk} (12)

Z−
c = {zij |M inter

ij = 1, yuij ̸= c, zij ∈ Zk} (13)

where z represents the output feature from the projector in
the student model,Zk is the feature set of patches with hard-
ness values in the top k. Specifically, we divide the reliable
features in Zk into two feature sets Zc and Z−

c based on
yuij . Fig. 4 provides a conceptual explanation.

To prevent limited anchors leading to an overly localized
and unstable sample center, we store the anchor feature set
Zc by using a memory bank. The calculation of positive
samples can be expressed as:

z+c =
1

|Rc|
∑
z∈Rc

z (14)

where Rc represents the feature set of class c stored in the
memory bank. Note that when the memory bank is satu-
rated, we remove old features to leave enough space to store
the latest features.
Contrastive loss calculation. For each anchor feature, we
assign one positive sample and multiple negative samples,
aiming to encourage anchor features to converge towards
the same-class cluster center z+ while diverging from fea-
tures of different classes. The contrastive loss is calculated
as follows:

Lc =−
1

C × |Zc|

C−1∑
c=0

∑
zci∈Zc

log

[
e(⟨zci,z

+
c ⟩/τ)

e(⟨zci,z
+
c ⟩/τ) +

∑
z−∈Z−

c
e(⟨zci,z−⟩/τ)

] (15)

where ⟨·, ·⟩ is the cosine similarity between the two features,
τ is a temperature coefficient, set to 0.5 followed [20].

4. Experiments
4.1. Experimental setup

Datasets. We validate our method on two public breast ul-
trasound image datasets:
• UDIAT dataset [40] collected from the UDIAT Diagnos-

tic Center of the Parc Tauli Corporation, Sabadell, Spain.
The dataset contains 163 breast ultrasound images, com-
prising 110 benign and 53 malignant cases.
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Method Backbone
UDIAT BUSI

1/2 1/4 1/8 1/2 1/4 1/8
Dice±std(%) P-value Dice±std(%) P-value Dice±std(%) P-value Dice±std(%) P-value Dice±std(%) P-value Dice±std(%) P-value

SupOnly ResNet-50 84.62±0.56 0.019 83.45±0.47 0.022 81.10±0.85 0.024 74.36±0.89 0.021 73.69±1.02 0.031 70.99±1.21 0.030

CPS [8] ResNet-50 84.87±0.84 0.043 83.76±0.64 0.024 81.29±0.40 0.028 74.83±0.91 0.037 74.02±1.31 0.028 71.31±1.34 0.040
PS-MT [21] ResNet-50 85.45±1.18 0.035 84.20±0.48 0.041 82.21±0.87 0.030 75.76±0.54 0.036 74.21±1.05 0.033 71.88±1.27 0.045
U2PL [32] ResNet-50 86.42±0.46 0.037 84.97±0.83 0.028 83.04±0.67 0.039 76.34±0.24 0.036 75.73±0.87 0.040 72.49±0.46 0.042

iMAS [43] ResNet-50 86.53±0.84 0.027 85.31±0.61 0.043 83.48±1.20 0.041 76.24±1.35 0.038 75.81±0.79 0.029 72.74±1.17 0.036
AugSeg [44] ResNet-50 86.98±0.56 0.036 85.47±0.94 0.034 84.01±0.73 0.037 76.93±0.67 0.029 76.16±1.13 0.023 72.85±1.06 0.036

BCP [3] U-Net 86.28±0.88 0.038 84.93±0.97 0.041 83.52±0.75 0.037 76.47±1.06 0.042 75.35±0.84 0.038 72.56±1.10 0.030

PDF-UNet [16] U-Net 85.70±0.41 0.029 84.32±0.45 0.035 82.65±0.83 0.033 75.51±0.73 0.040 74.47±0.96 0.044 72.05±0.42 0.034
RA-UGMT [11] U-Net 86.54±0.60 0.039 85.16±0.38 0.027 83.71±0.52 0.025 76.57±0.94 0.026 75.79±0.57 0.039 72.41±0.76 0.045

Ours
U-Net 86.83±0.32 0.027 85.40±0.49 0.034 83.91±0.62 0.027 77.05±0.37 0.030 76.26±0.55 0.028 72.79±0.53 0.033

ResNet-50 87.76±0.47 - 86.23±0.50 - 84.99±0.33 - 78.19±0.28 - 76.84±0.52 - 73.61±0.48 -

Table 1. Quantitative comparison using different state-of-the-art methods on the UDIAT and BUSI datasets.

• BUSI dataset [1] gathered from 600 females aged 25 to
75 at Baheya Hospital in Cairo, Egypt, with a total of 780
images (133 normal, 437 benign and 210 malignant). We
perform the experiment using only 647 abnormal images.

Both datasets are randomly divided into training, validation
and test sets at a ratio of 8:1:1. The training sets are further
partitioned into labeled and unlabeled subsets according to
the 1/2, 1/4, and 1/8 partitioning protocols.
Evaluation metrics. We use ResNet-50 [15] and U-
Net [25] as the backbone and evaluate the segmentation
performance using dice coefficients (Dice) and intersection
over union (IoU). We also perform standard deviation (std)
and Wilcoxon signed-rank tests on Dice. All evaluations are
based on the output of the teacher network.
Implementation details. Following most of the previous
work [21, 32, 35, 44], we use ResNet [15] pre-trained on
ImageNet [10] as the backbone and DeepLabv3+ [7] as the
decoder. Both our classifier and projector consist of two
Conv-BN-ReLU blocks, with the difference being the out-
put feature dimensions of 2 and 256, respectively. We adopt
identical training configurations for both datasets. The stu-
dent model is trained using a stochastic gradient descent
(SGD) optimizer with 0.9 momentum and 0.0001 weight
decay. The initial learning rate is set to 0.003, which is
decayed by a polynomial strategy: lr = lrinit · (1 −

iter
itertotal

)0.9. The image resolution is uniformly 500× 500,
and training lasted for 200 epochs (first 10 for pre-training)
with a batch size of 8. In a batch, labeled and unlabeled im-
ages count equally and both introduce weak data augmenta-
tion, including random horizontal flipping, random scaling,
and random cropping. The strong data augmentation of cut-
mix is only applied to the unlabeled images. For hyperpa-
rameters, both λu and λc are set to 1 in Eq. (3).

4.2. Comparison with state-of-the-art methods

We compare our method with eight recent semi-supervised
segmentation methods, where iMAS [43], AugSeg [44] and
BCP [3] are primarily image augmentation-based methods,

PDF-UNet [16] and RA-UGMT [11] are methods for BUS
images. To ensure a fair comparison, our method experi-
ments with both ResNet-50 and U-Net backbones, and all
methods are under the same experimental setup.

As shown in Tab. 1, we evaluate our method on two
datasets using Dice metrics. Under all partitioning proto-
cols, our method shows a statistical improvement on Dice
at the 5% level (all P-values are less than 0.05). Notably,
under the 1/2, 1/4, and 1/8 partition protocols of the UDIAT
dataset, our method (with ResNet-50 as the backbone) out-
performs the baseline (SupOnly) by +3.14%, +2.78%, and
+3.89% in Dice, respectively. Particularly, in the 1/8 par-
tition (with only 15 labeled images), our method outper-
forms the previous state-of-the-art method, AugSeg [44],
by +0.98% in Dice. Meanwhile, on the BUSI dataset, our
method (with U-Net as the backbone) achieves superior
Dice performance compared to the latest semi-supervised
BUS image segmentation method, RA-UGMT [11], by
margins of +0.48%, +0.47%, and +0.38% under the 1/2,
1/4, and 1/8 partition protocols, respectively.

Furthermore, for a more intuitive demonstration of our
method’s superiority, we present the output predictions of
several breast ultrasound images across all compared meth-
ods in Fig. 5. Regardless of the target’s scale or boundary
clarity, our method consistently produces superior segmen-
tations, especially with ResNet-50 as the backbone. Addi-
tionally, in Fig. 6, we provide an additional evaluation of
our method against three recent image-augmented methods
(iMAS [43], AugSeg [44], BCP [3]) in terms of prediction
accuracy on unlabeled image sets. Obviously, our method
consistently provides more accurate segmentation for unla-
beled images under all partitions in both the UDIAT and
BUSI datasets, which illustrates the ability of our PH-Net
to make the model better trained for unlabeled images.

4.3. Ablation studies

To validate the effectiveness of our method, we perform
extensive ablation experiments on the 1/4 partition of the
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Figure 5. Visual comparison of different state-of-the-art methods on the UDIAT and BUSI datasets. All models are trained in a 1/4 partition
protocol. Red, green and yellow regions represent ground truth, prediction and overlapping regions, respectively.

Figure 6. Comparison of prediction for unlabeled images using
different image-augmented methods under all partition protocols.

UDIAT dataset using ResNet-50 as the backbone.
Effectiveness of components. We perform a stepwise
ablation study on each component of PH-Net in Tab. 2.
The model trained with only supervised learning (SupOnly)
serves as our baseline, achieving a Dice of 83.45%. Adding
adaptive patch augmentation (APA) improves the baseline
by +1.89% in Dice, validating the APA module can provide
promising information for the model’s consistency regular-
ization. Further incorporating hard-patch contrastive learn-
ing (HPC) without a memory bank (MB) increases the base-
line by +2.48% in Dice. The full model achieves 86.23%
in Dice and 75.80% in IoU, which fully demonstrates the
effectiveness of our proposed PH-Net for semi-supervised
breast lesion segmentation.

To better visualize the advantages of each component,
Fig. 7 illustrates visualizations of our model’s output pre-
dictions. We represent the prediction probability as the heat
map. It is clear that with the progressive application of the
enhancement components, the predicted lesion boundaries
become increasingly fine-grained, indicating increasingly
accurate predictions for challenging regions. It illustrates
the effectiveness of our method for processing ambiguous
regions in breast ultrasound images.

Method APA HPC MB Dice(%) IoU(%)

SupOnly 83.45 71.59
I ✓ 85.34 74.43
II ✓ ✓ 85.93 75.33
III ✓ ✓ ✓ 86.23 75.80

Table 2. Ablation study of different components on UDIAT dataset
under 1/4 partition protocol. APA: Adaptive Patch Augmentation.
HPC: Hard-Patch Contrastive Learning. MB: Memory Bank.

Impact of different augmentation settings. As shown in
Tab. 3a, we compare the performance effects of our hard
patch cutmix augmentation with normal cutmix augmenta-
tion, and our method is significantly superior. While cut-
mix improves the weakly augmented baseline by +0.60%
in Dice, our method achieves a remarkable improvement of
+2.38% in Dice. In addition, different shielding strategies
also impact performance. Random patch shielding with-
out considering hardness (rand-patch) improves +0.46%
in Dice over the baseline, and choosing easy patches for
shielding (easy-patch) leads to +0.32% in Dice. Demon-
strating that our hard-patch augmentation effectively alle-
viates the issue of inadequate training in challenging areas
induced by standard cutmix.
Ablation of hyper-parameters. Tab. 3b illustrates the
performance impact of the patch shielding parameter β in
Eq. (5). The patch shielding ratio is affected by β and in-
creases from 0 to β with the training epochs. We find that
the best performance is achieved at β = 30%. A larger β
indicates that more challenging patches in the images are
shielded, preventing them from being randomly cropped
and allowing them to undergo additional contrastive learn-
ing. While a smaller β results in the undesired possibility
of difficult patches being cropped out at the later training
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Method Mode Dice(%) IoU(%)

w - 83.85 72.19
w+cutmix - 84.45 73.08

w+patch cutmix
rand 84.31 72.87
easy 84.17 72.66
hard 86.23 75.80

(a) Different augmentation methods.

β Dice(%) IoU(%)

0 84.31 72.87
10% 84.69 73.44
20% 85.35 74.44
30% 86.23 75.80
40% 85.96 75.37

(b) Patch shielding parameter β.

γ Dice(%) IoU(%)

0.70 85.03 73.96
0.80 85.61 74.84
0.85 86.07 75.55
0.90 86.23 75.80
0.95 86.11 75.61

(c) Confidence threshold γ.

Table 3. A set of ablation studies on UDIAT dataset under 1/4 partition protocol.

Figure 7. Visual comparison of component ablation studies. (a)
Input image. (b) Ground truth. (c) SupOnly. (d)-(f) Method I-III in
Tab. 2. Predicted probability is represented by the heat map, green
indicates low confidence while red and blue denote high ones.

stages. Tab. 3c shows the ablation study of the confidence
threshold γ for filtering pseudo-labels in Eq. (9). We set
γ = 0.9. Using an appropriate threshold can effectively
prevent the model from learning incorrect pseudo-labels. A
smaller γ may cause erroneous predictions to disturb loss
calculations, while too high a threshold makes it difficult for
the model to acquire learning information. In addition, as
shown in Fig. 8, we ablate different patch sizes. Our method
achieves the best performance on both datasets with a patch
size of 25×25, substantiating that oversized or undersized
patches insufficiently capture local information.

4.4. Limitations

Although our method achieved state-of-the-art perfor-
mance, some limitations still exist. As shown in Fig. 9, our
method struggles to yield well-segmented results when the
lesions with extremely ambiguous contours or minimal dis-
tinction from the background.

5. Conclusion
In this paper, we propose a novel semi-supervised breast le-
sion segmentation framework via patch-wise hardness (PH-
Net). Considering the challenging boundaries in the BUS
image, we evaluate region-wise hardness from a patch per-

Figure 8. Ablation study of different patch sizes h×w on UDIAT
and BUSI datasets under 1/4 partition protocol.

Figure 9. Failure cases. Red and green contours represent ground
truth and prediction, respectively.

spective. We employ adaptive patch augmentation (APA)
to ensure that challenging regions receive sufficient train-
ing without excessive perturbation during strong augmenta-
tion. Furthermore, to emphasize the model’s focus on chal-
lenging regions, we introduce hard-patch contrastive learn-
ing (HPC) to provide additional training, enhancing intra-
class compactness and inter-class discriminability of pixels
within hard patches. Extensive experiments on two public
datasets demonstrate the superiority of our method over the
state-of-the-art semi-supervised segmentation methods.
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