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Figure 1. Overview of TRUMANS dataset and our Human-Scene Interaction (HSI) framework. We introduce the most extensive motion-

captured HSI dataset, featuring diverse HSIs precisely captured in 100 scene configurations. Benefiting from TRUMANS, we propose a novel

method for real-time generation of HSIs with arbitrary length, surpassing all baselines and exhibiting superb zero-shot generalizability.

Abstract

Confronting the challenges of data scarcity and ad-
vanced motion synthesis in HSI modeling, we introduce
the TRUMANS (Tracking Human Actions in Scenes) dataset
alongside a novel HSI motion synthesis method. TRUMANS
stands as the most comprehensive motion-captured HSI
dataset currently available, encompassing over 15 hours of
human interactions across 100 indoor scenes. It intricately
captures whole-body human motions and part-level object
dynamics, focusing on the realism of contact. This dataset is
further scaled up by transforming physical environments into
exact virtual models and applying extensive augmentations
to appearance and motion for both humans and objects while
maintaining interaction fidelity. Utilizing TRUMANS, we de-

vise a diffusion-based autoregressive model that efficiently
generates Human-Scene Interaction (HSI) sequences of any
length, taking into account both scene context and intended
actions. In experiments, our approach shows remarkable
zero-shot generalizability on a range of 3D scene datasets
(e.g., PROX, Replica, ScanNet, ScanNet++), producing mo-
tions that closely mimic original motion-captured sequences,
as confirmed by quantitative experiments and human studies.

1. Introduction
The intricate interplay between humans and their environ-

ment is a focal point in Human-Scene Interaction (HSI) [12],

spanning diverse facets from object-level interaction [2, 25]

to scene-level planning and interaction [1, 15, 16, 18]. While
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significant strides have been made, the field is notably hin-

dered by a scarcity of high-quality datasets. Early datasets

like PiGraphs [39] and PROX [16] initiated the exploration

but are constrained by scalability and data quality. MoCap

datasets [14, 30] prioritize high-quality human motion cap-

ture using sophisticated equipment like VICON. However,

they often lack in capturing diverse and immersive HSIs.

Scalable datasets recorded via RGBD videos offer broader

utility but are impeded by lower quality in human pose and

object tracking. The advent of synthetic datasets [1, 3, 4, 55]

provides cost efficiency and adaptability but fails to encap-

sulate the full spectrum of realistic HSIs, particularly in

capturing dynamic 3D contacts and object tracking.

To address these challenges, this work first introduces

the TRUMANS (Tracking Human Actions in Scenes) dataset.

TRUMANS emerges as the most extensive motion-captured

HSI dataset, encompassing over 15 hours of diverse hu-
man interactions across 100 indoor scenes. It captures

whole-body human motions and part-level object dynamics

with an emphasis on the realism of contact. This dataset is

further enhanced by digitally replicating physical environ-

ments into accurate virtual models. Extensive augmentations

in appearance and motion are applied to both humans and

objects, ensuring high fidelity in interaction.

Next, we devise a computational model tackling the above

challenges by taking both scene and action as conditions.

Specifically, our model employs an autoregressive condi-

tional diffusion with scene and action embeddings as con-

ditional input, capable of generating motions of arbitrary

length. To integrate scene context, we develop an efficient lo-

cal scene perceiver by querying the global scene occupancy

on a localized basis, which demonstrates robust proficiency

in 3D-aware collision avoidance while navigating cluttered

scenes. To incorporate frame-wise action labels as condi-

tions, we integrate temporal features into action segments,

empowering the model to accept instructions anytime while

adhering to the given action labels. This dual integration of

scene and action conditions enhances the controllability of

our method, providing a nuanced interface for synthesizing

plausible long-term motions in 3D scenes.

We conducted a comprehensive cross-evaluation of both

the TRUMANS dataset and our motion synthesis method.

Comparing TRUMANS with existing ones, we demonstrate

that TRUMANS markedly improves the performance of cur-

rent state-of-the-art approaches. Moreover, our method, eval-

uated both qualitatively and quantitatively, exceeds existing

motion synthesis methods in terms of quality and zero-shot

generalizability on unseen 3D scenes, closely approximating

the quality of original motion-captured data. Beyond motion

synthesis, TRUMANS has been benchmarked for human pose

and contact estimation tasks, demonstrating its versatility

and establishing it as a valuable asset for a broad range of

future research endeavors.

Summarized in Fig. 1, our work significantly advances

HSI modeling. Our contributions are threefold: (i) The in-

troduction of TRUMANS, an extensive MoCap HSI dataset

capturing a wide array of human behaviors across 100 in-

door scenes, noted for its diversity, quality, and scalability.

(ii) The development of a diffusion-based autoregressive

method for the real-time generation of HSIs, adaptable to

any length and conditioned on 3D scenes and action labels.

(iii) Through extensive experimentation, we demonstrate the

robustness of TRUMANS and our proposed methods, capable

of generating motions that rival MoCap quality, outperform-

ing existing baselines, and exhibiting exceptional zero-shot

generalizability in novel environments.

2. Related Work

HSI Datasets Capturing human motions in 3D scenes is

pivotal, with an emphasis on the quality and scale of human

interactions. Early work focused on capturing coarse 3D hu-

man motions using 2D keypoints [33] or RGBD videos [39].

To improve quality and granularity, datasets like PROX [16]

use scene scans as constraints to estimate SMPL-X parame-

ters [36] from RGBD videos. However, these image-based

motion capture methods often result in noisy 3D poses.

Recent efforts have incorporated more sophisticated sys-

tems like IMU or optical MoCap (e.g., VICON) [14, 15,

17, 22, 30, 61], providing higher quality capture but lim-

ited in scalability. These are typically constrained to static

scenes [15, 17, 55] or single objects [2, 22, 61], not fully

representing complex real-world HSIs such as navigating

cluttered spaces or managing concurrent actions.

Synthetic datasets [1, 4, 55] have attempted to fill this gap.

Notable examples like BEDLAM [3] and CIRCLE [1] have

been acknowledged for their cost efficiency and adaptability.

These datasets integrate human motion data into synthetic

scenes but fail to fully capture the range of realistic 3D HSIs,

particularly in terms of dynamic object poses within their

simulated environments.

Addressing these shortcomings, our work achieves a

unique balance of quality and scalability. We replicate syn-

thetic 3D environments in an optical motion capture setting,

facilitating both accurate capture of humans and objects

in complex HSIs and providing photorealistic renderings.

This approach not only enhances the fidelity of the captured

interactions but also extends the range of scenarios and envi-

ronments that can be realistically simulated.

HSI Generation HSI generation involves single-frame hu-

man body [27, 60, 62] and temporal motion sequences [1, 17,

21, 26, 32, 35, 52–54, 57], utilizing models like conditional

Variational Auto-Encoder (cVAE) [43] and diffusion mod-

els [19, 42, 44]. Recent advancements focus on generat-

ing arbitrary-length human motions through autoregressive

methods [4, 7, 17, 31, 47, 59] and anchor frame genera-
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Table 1. Comparison of TRUMANS with existing HSI datasets. TRUMANS differs by providing a diverse collection of HSIs, encompassing

over 15 hours of interaction across 100 indoor scenes, along with photorealistic RGBD renderings in both multi-view and ego-view.

Datasets Hours MoCap
Human Dynamic No. of Contact

RGBD Segmentation
Multi- Ego-

Representation Object Scenes Annotations view view

GTA IM [4] 9.3 skeleton 10 � �

PiGraphs [39] 2.0 skeleton 30 �

PROX [16] 0.9 SMPL-X 12 � � �

GRAB [46] 3.8 � SMPL-X � - �

SAMP [17] 1.7 � SMPL-X - �

RICH [20] 0.8 SMPL-X 5 � � �

BEHAVE [2] 4.2 SMPL � - � � � �

CHAIRS [22] 17.3 � SMPL-X � - � � �

COUCH [61] 3.0 � SMPL � - � � � �

iReplica [15] 0.8 � SMPL � 7 � � � �

CIRCLE [1] 10.0 � SMPL-X 9 �

TRUMANS 15.0 � SMPL-X � 100 � � � � �

tion [37, 52]. Additionally, enhancing generation control-

lability has involved semantic guidance, such as action la-

bels [63] and language descriptions [55, 56].

In comparison, our work contributes a conditional gener-

ative model with an autoregressive mechanism to generate

arbitrary-length motions, combining diffusion model capa-

bilities with improved controllability in HSI generation.

3. TRUMANS Dataset
This section introduces TRUMANS, the most comprehensive

MoCap dataset dedicated to 3D HSIs thus far. TRUMANS
offers not only accurate 3D ground truths but also photoreal-

istic renderings accompanied by various 2D ground truths,

suitable for various perceptual tasks in HSI. This section

details the dataset’s statistics, data capture process, post-

processing method, and our augmentation pipeline.

3.1. Dataset Statistics

TRUMANS encompasses 15 hours of high-quality motion-

captured data, featuring complex HSIs within 3D scenes,

where humans interact with clustered environments and dy-

namic objects. Captured at a rate of 30 Hz using the state-of-

the-art VICON MoCap system, the dataset comprises a total

of 1.6 million frames. The HSI interactions in TRUMANS
include 20 different types of common objects, ensuring a

minimum of 5 distinct instances per type. The object cate-

gories encompass a range from static items like sofas and

beds to dynamic objects such as bottles, and even articulated

items including laptops and cabinets. TRUMANS incorpo-

rates performances from 7 participants (4 male and 3 fe-

male), who enacted various actions across 100 indoor scenes.

These scenes span a variety of settings, such as dining rooms,

living rooms, bedrooms, and kitchens, among others. For a

comprehensive comparison of the TRUMANS dataset with

existing HSI datasets, please refer to Tab. 1.

3.2. Scene-aware Motion Capture

Aiming to capture realistic and diverse Human-Scene Interac-

tion (HSI) within 3D scenes, our approach emphasizes both

data quality and diversity. We initiate this process by replicat-

ing 3D scenes and objects sourced from the 3D-FRONT [10]

dataset and BlenderKit [6] within the physical environment

housing our MoCap devices. To ensure the naturalness of

human interactions during motion capture, we meticulously

create real-world placeholders that correspond to the affor-

dances of the objects in the synthetic environment. All mov-

able objects are tagged with markers compatible with the

VICON system, enabling precise tracking of their poses. Ac-

tors undergo training to familiarize themselves with interact-

ing with these placeholders. During the capturing sessions,

actors are prompted to perform actions randomly selected

from a pre-defined pool, ensuring a variety of interactions.

Post-capture, the human poses are converted into the

SMPL-X format [36], employing a vertex-to-vertex opti-

mization technique. This method is instrumental in calculat-

ing vertex-to-vertex distances between the human meshes

and object meshes, facilitating accurate per-vertex contact

annotations. We utilize Blender [5] to render multi-view

photorealistic RGBD videos, segmentation masks, and ego-

centric videos. To further diversify the renderings, we in-

corporate over 200 digital human models from Character

Creator 4 [38], ensuring that objects strategically placed in

scene backgrounds enhance the scene’s realism without im-

peding human movement. For a detailed exposition of our

capture and processing pipeline, refer to Appendix B.4.

3.3. MoCap Data Augmentation

Our data augmentation pipeline is designed to adapt human

motions to changes in 3D scene objects, ensuring physical

plausibility and accuracy in HSI. This process is vital in com-

plex scenarios with concurrent or successive interactions;

1739



Increased 
Chair’s Height

Decreased 
Bed’s Height

(b) Augmented motion sequence(a) Original motion sequence
Figure 2. Data augmentation for motion generation. This example highlights how human motion is adjusted to accommodate variations

in object sizes. Specifically, the chair’s height is increased, and the bed’s height is decreased, each by 15cm. Our augmentation method

proficiently modifies human motion to maintain consistent interactions despite these changes in object dimensions.

see Fig. 2. The pipeline consists of three main steps for

integrating altered human motions into diverse 3D settings.

Calculate Target Joint We identify contact points be-

tween human joints and object meshes, and locate corre-

sponding points on transformed or replaced objects. This

step crucially adjusts the target joint’s position to maintain

the original interaction’s contact relationship, ensuring re-

alistic human-object interactions despite changes in object

dimensions or positions.

Refine Trajectory To smooth out abrupt trajectory

changes from the first step or Inverse Kinematic (IK) compu-

tations, we apply temporal smoothing to joint offsets, itera-

tively adjusting weights in adjacent frames. This refinement

is critical for maintaining seamless motion, particularly in

scenarios with multiple object interactions. Further details

and theoretical background are discussed in Appendix B.5.

Recompute Motion with IK In the final step, we recom-

pute human motion using the smoothed trajectories with an

enhanced CCD-based [24] IK solver. This solver applies

clipping and regularizations to bone movements, ensuring

natural motion fluidity. Bones further from the root joint

have increased rotational limits, reducing jitteriness and en-

hancing motion realism. For a complete description of these

methods, refer to Appendix B.5.

4. Method
Utilizing the comprehensive TRUMANS dataset, we develop

an autoregressive motion diffusion model. This model gener-

ates HSIs that are not only physically plausible in 3D scenes

but also highly controllable through frame-wise action la-

bels, capable of producing sequences of arbitrary length in

real-time.

4.1. Problem Formulation and Notations

Given a 3D scene S, a goal location G, and action labels

A, our objective is to synthesize a human motion sequence

tHiuLi“1 of arbitrary length L. When interacting with dy-

namic objects P, we also estimate the corresponding object

pose sequence tOiuLi“1.

Human Human motion is represented as a sequence of

parameterized human meshes tHiu using the SMPL-X

model [36]. The motion is initially generated as body joints

locations tXiuLi“1, where Xi P RJˆ3 represents J “ 24 se-

lected joints. These are fitted into the SMPL-X pose parame-

ters θ, global orientation φ, hand poses h, and root translation

r, resulting in the posed human mesh H P R10475ˆ3.

Conditions We formalize three types of conditions in

our motion synthesis: 3D scene, goal location, and ac-

tion labels. The 3D scene is represented by a voxel grid

S P t0, 1uNxˆNyˆNz , with 1 indicating reachable locations.

Goal locations are 2D positions G P R2 for navigation, or

3D R3 for joint-specific control. Action labels are multi-hot

vectors A P t0, 1uLˆNA , indicating distinct actions.

Object When dynamic objects are involved, the object is

represented by its point cloud P in canonical coordinates

and its global rotation R and translation T . The dynamic

object sequence tOiuLi“1 is then represented by sequences

of rotations and translations tRi, TiuLi“1.

4.2. Autoregressive Motion Diffusion

Our model architecture is illustrated in Fig. 3. Our goal

is to generate human motions that are not only physically

plausible in 3D scenes but also highly controllable by frame-

wise action labels, achieving arbitrary length in real time.

We employ an autoregressive diffusion strategy where a long

motion sequence is progressively generated by episodes,

each defined as a motion segment of Lepi frames. Based on

the approach by Shafir et al. [40], successive episodes are

generated by extending from the final k frames of the prior

episode. For each new episode, the first k frames are set

based on the previous episode’s last k frames, with the noise

on these transition frames zeroed out using a mask Mtrans.

Our model aims to inpaint the remainder of each episode by

filling in the unmasked frames.

To ensure precise control over character navigation and

detailed interactions in each episode, we segment the over-

all goal G into discrete subgoals, represented as tGiuNepi

i“1 ,

where Nepi denotes the number of episodes. For navigation,

each subgoal Gi P R2 dictates the desired xy-coordinates of
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Figure 3. Model architecture. (a) Our model employs an autoregressive diffusion sampling approach to generate arbitrary long-sequence

motions. (b) Within each episode, we synthesize motion using DDPM integrated with a transformer architecture, taking the human joint

locations as input. (c)(d) Action and scene conditions are encoded and forwarded to the first token, guiding the motion synthesis process.

the character’s pelvis at an episode’s conclusion. Mirroring

the masking approach used in Mtrans, we align the pelvis’s

xy-coordinate in the episode’s final frame to the respective

subgoal, simultaneously masking the corresponding diffu-

sion noise. As the z-coordinate is unspecified, the model is

trained to infer the appropriate pelvis height based on the

scene setup, such as making the character sit when the sub-

goal indicates a chair’s location. This principle also governs

fine-grained interactions, like grasping or pushing, where the

subgoal Gi P R3 is set to the precise 3D location, aligning the

relevant hand joint to Gi and masking joint noise accordingly.

This specific masking on the subgoals is denoted as Mgoal.

We devise a conditional diffusion model for generating

motions within each episode. This process involves sampling

from a Markov noising process tXtuTt“0. Starting with the

original human joint data X0 drawn from the data distribu-

tion, Gaussian noise is added to the components of X0 not

masked by M“Mtrans YMgoal. The unmasked compo-

nents, represented as p1´MqdXt or X̃t (where d is the

Hadamard product), undergo a forward noising process

qpX̃t|X̃t´1q “N pX̃t;
?
αtX̃t´1, p1´αtqIq, (1)

with αt P p0, 1q denoting hyper-parameters related to the

variance schedule.

Motion data generation within our model employs a re-

versed diffusion process to gradually denoise X̃T . Consis-

tent with established diffusion model training methodolo-

gies, noise εt is applied to obtain X̃t, and a neural network

εθpX̃t, t,S,Aq is constructed to approximate this noise. The

learning objective for εθ follows a simple objective [19]

L“EX̃0„qpX̃0|Cq,t„r1,T s
›
›
›ε´εθpX̃t, t,S,Aq

›
›
›

2

2
. (2)

We adopt the Transformer model architecture [48],

wherein the first token encodes information about the diffu-

sion step, scene, and action, and subsequent tokens repre-

sent the noisy joint locations for each frame in the current

episode. Throughout the sampling process, the model pre-

dicts the noise applied to each joint element. Once this sam-

pling phase concludes, the joint locations are translated into

SMPL-X parameters via a lightweight MLP. This translation

is further refined through an optimization process, ensuring

accurate alignment with the human joint data.

Upon generating the human motion sequence tHiuLi“0,

we optimize the trajectory of the interacting object tOiuLi“0

to ensure natural Human-Object Interactions (HOIs). To

enhance the realism of the interaction, we further fine-tune

the object’s pose in each frame to minimize the variance in

distance between the object and the interacting hand [11].

4.3. Local Scene Perceiver

As illustrated in Fig. 3(d), the local scene perceiver is essen-

tial for embedding the local scene context, serving as a con-

dition for motion generation. This component analyzes the

scene using a local occupancy grid centered around the sub-

goal location for the current episode. Starting with the global

occupancy grid S of the scene, where each cell’s boolean

value indicates reachability (1 for reachable, 0 otherwise), we

focus on the i-th episode’s subgoal Gi “ px, y, zq or px, yq. A

local occupancy grid is constructed around px, yq, extending

vertically from 0 to 1.8m. The grid’s orientation aligns with

the yaw of the agent’s pelvis at the episode’s start, and cell

values are derived by querying the global occupancy grid.

The voxel grid is encoded using a Vision Transformer

(ViT) [9]. We prepare the tokens by dividing the local occu-
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pancy grid into patches along the xy-plane, considering the

z-axis as feature channels. These patches are then fed into

the ViT model. The resulting scene embedding from this

process is utilized as the condition for the diffusion model.

Discretizing the scene into a grid format is a necessary

trade-off to boost training efficiency and practicality in our

HSI method. Although directly generating the local occu-

pancy grid from the scene mesh in real-time is technically

feasible, it substantially prolongs training time. For instance,

employing the checksign function from Kaolin results in a

training process that is approximately 300 times slower, ren-

dering it impractical. Despite this simplification, our empiri-

cal results demonstrate that the quality of motion generation

is not significantly impacted by this approximation.

4.4. Frame-wise Action Embedding

Our method distinguishes itself from prior approaches by

incorporating frame-wise action labels into the long-term

motion synthesis process, rather than generating a complete

motion sequence from a singular action description. In our

framework, a particular action can span multiple episodes,

necessitating the model’s capability to comprehend the evo-

lution and progression of an action over time.

To enhance our model’s understanding of action progres-

sion, we incorporate a progress indicator Aind P RLepiˆNA

into the frame-wise action labels, as depicted in Fig. 3(c).

This indicator is realized by appending a real number n P
r0, 1s to the original action labels, representing the action’s

advancement from start to finish. As a result, action labels

take on values in 0Yr1, 2s post-addition. For instance, dur-

ing a drinking action from frame i to j, we modify the p0, 1q
label by adding a value that linearly progresses from 0 to

1 across this interval. Thus, at the onset of drinking (frame

i), the label is augmented to 1, gradually increasing to 2

by frame j, the action’s conclusion. This nuanced labeling

enables our model to seamlessly handle actions that span

multiple episodes, significantly enhancing the realism and

fluidity of the synthesized motion sequences.

The final action embedding is obtained by processing the

progress-augmented action label A P RLepiˆNA through a

Transformer encoder. Each frame’s action label Ai P RNA

is treated as an individual token in the Transformer’s input.

The feature output from the last token is then passed through

an MLP to generate the final action embedding.

5. Experiments

This section presents our evaluation of both TRUMANS and

our proposed motion synthesis method, focusing on action-

conditioned HSI generation. Additionally, we demonstrate

how TRUMANS contributes to advancements in state-of-the-

art motion synthesis methods.

5.1. Experiment Settings

Our experimental evaluation of HSI generation quality is con-

ducted under two distinct settings: static and dynamic. The

static setting assesses synthesized motions in environments

without dynamic interactable objects, concentrating on lo-

comotion and interactions with static objects. Conversely,

the dynamic setting evaluates motion synthesis involving

interactions with dynamic objects. In both scenarios, we

compare the performance of methods trained on TRUMANS
with those trained on existing datasets [46, 62], offering

a thorough insight into both the model’s efficacy and the

dataset’s impact.

5.2. Baselines and Ablations

Baselines–static setting We compare TRUMANS with

PROX [62], a dataset featuring human activities in indoor

scenes. To ensure a fair comparison, we retain only the loco-

motion and scene interaction of static objects in TRUMANS,

such as sitting and lying down. Baseline methods for this

setting include cVAE [52], SceneDiff [21], and GMD [23].

Baselines–dynamic setting We compare TRUMANS with

GRAB [46], known for capturing full-body grasping actions

with human and object pose sequences. Here, the focus is on

motions of interaction with dynamic objects, like drinking

water and making phone calls, present in both datasets. We

compare our method against IMoS [11] and GOAL [47],

reproduced using their original implementations.

Ablations In our ablative studies, we examine the impact

of disabling the action progress indicator Aind in our model.

Additionally, to assess the significance of our data aug-

mentation technique, we perform experiments using a non-

augmented version of TRUMANS. For reference, our standard

experiments employ the augmented TRUMANS, where each

object is transformed into two different variations.

Our evaluation encompasses 10 unseen indoor scenes

sourced from PROX [16], Replica [45], Scannet [8], and

Scannet++ [58]. These scenes are adapted to the require-

ments of different methods, with modifications including

conversion to point cloud format, voxelization, or maintain-

ing their original mesh format. To evaluate the diversity of

the synthesized motions, each method is tasked with gener-

ating five unique variations for each trajectory.

Furthermore, we conduct a qualitative comparison of our

method with other recent approaches, such as SAMP [17],

DIMOS [64], LAMA [25], and Wang et al. [54], based on the

feasibility of reproducing these methods. Detailed findings

from this comparison are discussed in Appendix A.4.

5.3. Evaluation Metrics

In the static setting, we employ Contact and Penetration met-

rics, as recommended by Zhao et al. [64], to evaluate foot

slide and object penetration issues in synthesized motions.
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(a) Start from anywhere in any pose

(d) Long term motion with multiple milestones

(b) Interact dynamically with the objects.

(c) Avoid colliding with objects in the scene

Read a book Open a cabinet

Pick up the phone
from the table and
make a phone call

Pick up the bottle
from the table and
drink

Figure 4. Visualization of motion generation. Leveraging local scene context and action instructions as conditions, our method demonstrates

its proficiency in (a) initiating motion given the surrounding environment, (b) dynamically interacting with objects, (c) avoiding collisions

during motion progression, and (d) robustly synthesizing long-term motion. The depicted scenes are selected from PROX, Replica, and

FRONT3D-test datasets, none of which were included in the training phase. For qualitative results, please refer to the Supplementary Video.

These metrics measure the degree to which the synthesized

motions conform to the specified scene. For the dynamic set-

ting, we utilize FID and Diversity metrics, commonly used in

language and action-guided motion generation tasks [11, 48].

These metrics measure the quality and diversity of HOI mo-

tion generation involving various small objects.

Additionally, we introduce a novel MoCap-differentiating

human study for evaluation. Participants are presented with

five sequences, one of which is motion-captured, and are

asked to identify the MoCap sequence. The likelihood of

correctly identifying the MoCap sequence serves as an indi-

cator of the synthesized motion’s realism. We quantify this

aspect through the Success Rate of Discrimination (SucRate-

Dis), reflecting the percentage of participants who accurately

identify the MoCap sequence.

5.4. Results and Analysis

Fig. 4 showcases our method’s qualitative strengths. It

adeptly manages complex scene configurations, including

initiating context-aware motion, avoiding collisions during

movement, and generating extended motions, especially in

HOI scenarios involving dynamic object interaction.

In the static setting (Tab. 2), our method, trained on

TRUMANS, surpasses baselines across most metrics. Notably,

disabling data augmentation leads to increased penetration,

suggesting the efficacy of augmented data in producing phys-

ically plausible motions. Compared to models trained on

PROX, ours shows significant improvements, highlighting

TRUMANS as a high-quality resource for HSI research.

Table 2. Evaluation of locomotion and scene-level interaction.

We compare performances on TRUMANS and PROX [16].

Method Cont.Ò Penemean Ó Penemax Ó Dis. suc.Ó
Wang et al. [52] 0.969 1.935 14.33 0.581

SceneDiff [21] 0.912 1.691 17.48 0.645

GMD [23] 0.931 2.867 21.30 0.871

Ours 0.992 1.820 11.74 0.258
Ours w/o aug. 0.991 2.010 15.52 -

Wang et al. [52] 0.688 4.935 34.10 0.903

SceneDiff [21] 0.712 3.267 27.48 0.935

GMD [23] 0.702 4.867 38.30 0.968

Ours 0.723 4.820 31.74 0.903

Tab. 3 illustrates results in the dynamic setting, where

our approach excels in 3D HOI generation. High penetration

rates with GRAB-trained methods indicate its limitations

in scene-adherent HOI motions, while TRUMANS captures

more detailed interactions. The absence of the progress in-

dicator Aind leads to method failure, as evidenced by the

ablation study.
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Table 3. Evaluation of object-level interaction. We compare per-

formances on TRUMANS and GRAB [46]. The definition of “Real”

follows the one defined in Tevet et al. [48]

Method FIDÓ DiversityÑ Penescene Ó Dis. suc.Ó
Real-TRUMANS - 2.734 - -

GOAL [47] 0.512 2.493 34.10 0.801

IMoS [11] 0.711 2.667 37.48 0.774

Ours 0.313 2.693 11.74 0.226
Ours - Aind 2.104 1.318 10.62 1.000

Real-GRAB [46] - 2.155 - -

GOAL [47] 0.429 2.180 44.09 0.801

IMoS [11] 0.410 2.114 41.50 0.774

Ours 0.362 2.150 34.41 0.516

Human studies further affirm the quality of our method.

Only about a quarter of participants could distinguish our

synthesized motions from real MoCap data, nearly aligning

with the 1/5 SucRateDis of random guessing. This suggests

that our synthesized motions are nearly indistinguishable

from high-quality MoCap data. Comparative evaluations

with recent methods [17, 25, 54, 64] show our model’s supe-

riority, outperforming the second-best model by over 30%

in support rate. For more detailed results, please refer to the

Supplementary Video.

Real-time Control Our method can sample an episode

of motion (1.6 seconds at 10 FPS) in 0.7 seconds on an

A800 GPU. This efficiency enables uninterrupted long-term

motion generation with a consistent control signal. For new

control signals, to minimize the 0.7-second delay, we imple-

ment an incremental sampling strategy: initially, 2 frames are

sampled immediately, followed by sampling 4 frames during

their execution, increasing exponentially until 16 frames are

sampled. This approach ensures a balance between real-time

control and smooth motion continuity. Please refer to our

Supplementary Video for a visual demonstration.

5.5. Additional Image-based Tasks

TRUMANS, with its photo-realistic renderings and per-vertex

3D contact annotations, is also suited for various image-

based tasks. We focus on its application in 3D human mesh

estimation and contact estimation.

3D Human Mesh Estimation For reconstructing 3D hu-

man body meshes from input images, we utilize the state-of-

the-art method [29] as a baseline. We evaluate if including

TRUMANS in training enhances performance on the 3DPW

dataset [50]. Following Ma et al. [29], we report MPJPE,

PA-MPJPE, and MPVE for the estimated poses and meshes.

3D Contact Estimation This task involves predicting per-

vertex 3D contact on the SMPL mesh [28] from an input

image. We compare TRUMANS against RICH [20] and DA-

MON [49], both featuring vertex-level 3D contact labels

with RGB images. Utilizing BSTRO [20] for RICH and

DECO [49] for DAMON, we measure precision, recall, F1

score, and geodesic error following the literature [20, 49].

Results and Analysis Quantitative results in Tab. 4 re-

veal that integrating TRUMANS with 3DPW significantly

improves human mesh estimation. Contact estimation out-

comes, presented in Tab. 5, show enhanced performance with

TRUMANS, particularly in reducing geodesic error. These re-

sults suggest that combining synthetic data from TRUMANS
with real-world data substantially benefits image-based tasks.

For detailed experimental insights, see Appendix A.5.

Table 4. Performance of Ma et al. [29] trained on 3DPW [50]
combined with TRUMANS in different ratios.

Training Data MPVEÓ MPJPEÓ PA-MPJPEÓ
3DPW [50] 101.3 88.2 54.4

3DPW+T (2:1) 88.8 77.2 46.4
3DPW+T (1:1) 78.5 78.5 46.4

Table 5. Performance of BSTRO [20] and DECO [49] trained
on RICH [20] and DAMON [49] combined with TRUMANS,
respectively.

Training Data PrecÒ RecÒ F1Ò geo errÓ
RICH [20] 0.6823 0.7427 0.6823 10.27

R+T (2:1) 0.7087 0.7370 0.6927 9.593

R+T (1:1) 0.7137 0.7286 0.6923 9.459

DAMON [49] 0.6388 0.5232 0.5115 25.06

D+T (2:1) 0.6472 0.5237 0.5148 21.54

D+T (1:1) 0.6701 0.4806 0.4972 18.87

6. Conclusion

We introduce TRUMANS, a large-scale mocap dataset, along-

side a novel motion synthesis method, addressing scalability,

data quality, and advanced motion synthesis challenges in

HSI modeling. As the most comprehensive dataset in its

category, TRUMANS encompasses diverse human interac-

tions with dynamic and articulated objects within 100 indoor

scenes. Our diffusion-based autoregressive motion synthesis

method, leveraging TRUMANS, is capable of real-time gen-

eration of HSI sequences of arbitrary length. Experimental

results indicate that the motions generated by our method

closely mirror the quality of the original MoCap data.
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