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Abstract

3D Semantic Scene Completion (SSC) has emerged as
a nascent and pivotal undertaking in autonomous driv-
ing, aiming to predict the voxel occupancy within volu-
metric scenes. However, prevailing methodologies primar-
ily focus on voxel-wise feature aggregation, while neglect-
ing instance semantics and scene context. In this paper,
we present a novel paradigm termed Symphonies (Scene-
from-Insts), that delves into the integration of instance
queries to orchestrate 2D-to-3D reconstruction and 3D
scene modeling. Leveraging our proposed Serial Instance-
Propagated Attentions, Symphonies dynamically encodes
instance-centric semantics, facilitating intricate interac-
tions between the image and volumetric domains. Simul-
taneously, Symphonies fosters holistic scene comprehen-
sion by capturing context through the efficient fusion of in-
stance queries, alleviating geometric ambiguities such as
occlusion and perspective errors through contextual scene
reasoning. Experimental results demonstrate that Sym-
phonies achieves state-of-the-art performance on the chal-
lenging SemanticKITTI and SSCBench-KITTI-360 bench-
marks, yielding remarkable mIoU scores of 15.04 and
18.58, respectively. These results showcase the promising
advancements of our paradigm. The code for our method
is available at https://github.com/hustvl/
Symphonies.

1. Introduction

The advent of autonomous driving has brought forth novel
challenges in the realm of 3D perception. In the pursuit of
safe navigation and obstacle avoidance, autonomous vehi-
cles must be equipped with the ability to accurately predict

*Equal contribution. Work done during Haoyi Jiang’s internship at
Horizon Robotics.

†Corresponding author.

the occupancy of their immediate surroundings. This task,
however, is not a facile endeavor, given the inherent com-
plexities of the real world, characterized by clutter, ambigu-
ity, and rapid evolution.

3D Semantic Scene Completion (SSC) formulates this
challenge as the reconstruction of occupancy and semantics
for every voxel grid within a 3D scene. Recent advance-
ments in vision-based solutions, such as MonoScene [3] and
OccDepth [30], adopt 3D convolutional networks to elevate
2D image features to 3D volumes. TPVFormer [16], Oc-
cFormer [46], and CTF-Occ [38] explore decomposing 3D
volumes into multiple coarse view representations and en-
hancing voxel interactions using Transformer [23, 39, 48]
architectures.

Despite these advancements, contemporary approaches
tend to prioritize voxel-wise modeling for 3D scenes resort-
ing to pixel-voxel projection [6, 23, 31, 32] for the feature
promotion from 2D to 3D. While focusing on these local-
ized representations, they inadvertently neglect higher-level
instance semantics, leading to vulnerability to geometric
ambiguities arising from occlusion and perspective errors.
Humans, in contrast, naturally perceive and comprehend
through the concept of “instance”, rather than isolated pix-
els or voxels, each imbued with semantic significance and
cohesively contributing to the contextual whole of a scene.
In light of these limitations, a fundamental question arises:
How can we leverage the notion of instances to steer 3D
scene modeling and 2D-to-3D reconstruction?

Drawing inspiration from this notion, we propose Sym-
phonies (Scene-from-Insts), a novel method that leverages
contextual instance queries derived from image inputs to
enhance scene modeling, exploiting inherent instance se-
mantics and scene context. Stemming from this basis, we
propose Serial Instance-Propagated Attentions to intricately
interact with image and voxel features, deformably aggre-
gating instance-centric semantics. This seamless interaction
bridges the gap between low-level pixel or voxel represen-
tations and high-level semantics, facilitating feature promo-
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Figure 1. Comparison between voxel-wise modeling (a) and Symphonies (b). Conventional methods primarily depend on Inverse
Perspective Mapping (IPM)-based voxel-pixel projection and voxel-wise feature aggregation, resulting in geometric ambiguities and com-
putational redundancy. In contrast, Symphonies leverages instance queries as intermediaries to engage with image and voxel features, thus
exploiting instance semantics and enhancing the contextual comprehension of the scene.

tion and scene modeling, as illustrated in Fig. 1. Further-
more, the synergistic fusion of multiple instance queries
collectively enriches broader contextual information neces-
sary for robust scene reasoning, contributing to the allevi-
ation of geometric ambiguities. In tandem, we introduce
the Depth-Rectified Voxel Proposal Layer to refine the ini-
tial geometry, elevating 2D image features to the implicit
surface of the scene.

To evaluate the effectiveness of our method, exten-
sive experiments are conducted on SemanticKITTI [1]
and SSCBench-KITTI-360 [21, 24] datasets. Symphonies
achieves a remarkable state-of-the-art performance of 15.04
and 18.58 mIoU, respectively, significantly outperforming
previous vision-based methods by a substantial margin. Ab-
lation experiments further underscore the promising ad-
vancements of our approach in the field of SSC. In sum-
mary, our contributions involve:

• We introduce Symphonies, a pioneering paradigm for 3D
Semantic Scene Completion (SSC), which delves into
modeling instance-centric semantics with our proposed
Serial Instance-Propagated Attentions, facilitating inter-
actions between image features and scene modeling.

• Symphonies captures global context of scenes through the
fusion of instance queries, thereby alleviating geometric
ambiguities. To further enhance robustness, we introduce
the Depth-Rectified Voxel Proposal Layer which explic-
itly refines the initial geometry with estimated depth in-
formation.

• Our proposed method achieves state-of-the-art perfor-
mance on the SemanticKITTI and SSCBench-KITTI-360
benchmarks, highlighting the substantial potential of this
paradigm in advancing autonomous driving and 3D scene
understanding.

2. Related Works

3D Semantic Scene Completion. 3D Semantic Scene
Completion (SSC) entails predicting occupancy and seman-
tics for each voxel within a 3D scene, which was initially
introduced by SSCNet [37]. Subsequent methods can be
broadly categorized based on their model architectures and
input modalities. Volume networks [19, 45] predominantly
utilize Truncated Signed Distance Function (TSDF) fea-
tures generated from depth data, and process them through
3D convolutional networks. On the other hand, view-
volume networks [11, 20, 25, 33, 41] extract RGB or depth
features before lifting them to 3D volumes. For a more in-
depth overview of SSC, we refer readers to the survey by
Roldão et al. [34].

Recently, camera-based SSC has garnered increasing at-
tention for its immense applications in autonomous driv-
ing. MonoScene [3] presents the first purely visual solution,
sampling RGB features along the line of sight and adapt-
ing a 3D UNet architecture. TPVFormer [16] introduces
a Tri-Perspective View (TPV) representation to decompose
voxels onto multiple view planes for efficient scene en-
coding. VoxFormer [22] proposes a two-stage framework
that diffuses the global scene from proposed voxel fea-
tures, resembling the Masked Autoencoder (MAE) [13].
OccFormer [46] applies a mask-wise prediction paradigm
akin to MaskFormer [8, 9]. OccDepth [30] and NDC-
Scene [44] improves 2D-to-3D geometric projection by
leveraging stereo depth and Normalized Device Coordi-
nates (NDC). OccNet [36] further envisions occupancy as
a general scene descriptor for a wide scope of driving tasks.

In contrast to prior works, our proposed Symphonies dif-
fers by integrating instance queries to enhance scene model-
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Figure 2. Overview of Symphonies. The Symphonies framework commences with extracting multi-scale image features through the
image backbone and Instance-Aware Image Encoder. The Depth-Rectified Voxel Proposal Layer generates initial voxel features estimating
the implicit surface. Subsequently, the Symphonies Decoder Layers, which consist of Serial Instance-Propagated Attentions, facilitate
continuous interactions among the image, instances, and the scene, iterated N times. The Segmentation Head upsamples voxel features to
the designated resolution and predicts class logits for each voxel.

ing with instance semantics and enriched contextual aware-
ness, mitigating geometric ambiguities arising from voxel-
wise modeling.

Camera-Based 3D Perception. The surge in autonomous
driving applications has rekindled interest in camera-based
3D perception, owing to its cost-effectiveness and align-
ment with human visual perception. Early 3D object de-
tection methods, such as FCOS3D [40] and DETR3D [42],
straightforwardly extend 2D detectors to predict additional
3D bounding boxes. Among subsequent Transformer-based
approaches, BEVFormer [23] and BEVDet [15] adopt
the BEV space to align multi-frame features, while Po-
larDETR [7] establishes explicit correlations between im-
age patterns. In addition, PETR [26] and PETRv2 [27] uti-
lize 3D position embeddings to encode 2D features.

BEV segmentation, which is beneficial for represen-
tation learning and route planning, has also been ex-
plored. Approaches such as OFT [32], Lift-Splat [31],
and FIERY [14] transform the camera plane into BEV via
Inverse Perspective Mapping (IPM). PolarBEV [28] uses
angle-specific and radius-specific embeddings to rasterize
BEV features. BEVFormer [23] and CVT [47] aggregate
BEV queries through cross-attention layers, while GKT [6]
optimizes computational efficiency by constraining local at-
tention calculations.

These developments are closely related to our work in
SSC, where techniques like Deformable Attention [48] in-
spire our methodology to enhance 3D scene completion.

3. Scene from Instances
This section presents a comprehensive elaboration of our
proposed Symphonies method, commencing with an archi-

tectural overview in Sec. 3.1. Subsequently, it proceeds to
detail the Depth-Rectified Voxel Proposal Layer in Sec. 3.2
and the Symphonies Decoder Layer in Sec. 3.3, shedding
light on their synergistic contributions. Further insights into
training losses are discussed in Sec. 3.4.

3.1. Overview

The architectural details of our proposed Symphonies are
illustrated in Fig. 2. In essence, Symphonies exclusively
takes RGB images as input and extracts multi-scale 2D fea-
tures F 2D through a ResNet-50 [12] image backbone and
an Instance-Aware Deformable Transformer [48] Encoder,
enhancing both global and instance semantics on the im-
age plane. In the Symphonies Decoder, instance queries
qins ∈ RN×C and the volumetric scene representation
qvox ∈ RC×X×Y×Z are initialized with learnable embed-
dings. Here, C signifies embedding dimensions, N denotes
the number of instance queries, while X , Y , and Z indicate
the scene grid dimensions.

The subsequent “scene-from-instances” process com-
mences with the Depth-Rectified Voxel Proposal Layer ini-
tializing voxel proposals qp with image features on the im-
plicit surface. Multi-scale image features F 2D, scene fea-
tures qvox, and instance queries qins are then passed through
our proposed Serial Instance-Propagated Attentions within
the Symphonies Decoder Layers. This iterative process
continuously propagates image features F 2D to scene fea-
tures qvox guided by instance queries qins, while simultane-
ously aggregating instance semantics from both modalities.
The Segmentation Head then upsamples the scene features
to the desired resolution, and predicts per-voxel class logits
with a single linear layer after an Atrous Spatial Pyramid
Pooling (ASPP) [5] module.

20260



Depth Estimator. The depth prediction, obtained from a
pre-trained depth estimator, is not explicitly illustrated in
the diagram for clarity. It is employed to infer the implicit
surface within the Voxel Proposal Layer and compute in-
stance reference points in the scene volume. Specifically,
we adopt the pre-trained Mobilestereonet [35] as the depth
estimator, aligning with VoxFormer [22].

Instance-Aware Image Encoder. The Instance-Aware
Image Encoder, vital for integrating instance semantics in
the absence of direct instance-level supervision, employs a
Deformable Transformer [48] adept at capturing long-range
dependencies around diverse instances by attending to de-
formable reference points. Additionally, it is augmented by
utilizing the pre-trained weight of MaskDINO [18] from
panoptic segmentation [17], to enrich its instance aware-
ness.

3.2. Depth-Rectified Voxel Proposal Layer

The Depth-Rectified Voxel Proposal Layer generates initial
scene features for voxels located on the implicit surface,
known as voxel proposals, which establishes coarse geom-
etry awareness for subsequent instance-level aggregations.
The implicit surface is computed through the conversion of
camera coordinates to world coordinates using depth esti-
mation, described as follows:

xC = K−1 · (zc ⊙ xI) (1)

xW = [R, T ]−1 · xC (2)

where xI , xC , and xW represent homogeneous coordinates
of pixels, camera frustum, and the world, respectively. ⊙
denotes the element-wise multiplication. The intrinsic ma-
trix K encompasses camera parameters, while the extrinsic
matrix is composed of the rotation matrix R and the trans-
lation vector T . zc corresponds to the z-coordinate of the
camera, i.e., the depth estimation.

Based on the camera-to-world transformation, the posi-
tions Vp of voxel proposals are determined by mapping im-
age points xI to their corresponding world coordinates xW ,
confined within the volume V :

Vp = {xW | xW = T IW (xI , zc),

∀ xI ∈ I such that xW ∈ V } (3)

Here, T IW refers to the camera-to-world transformation, I
represents image pixels, and V represents voxel grids.

As illustrated in Fig. 3, the determined voxel features are
initialized by aggregating multi-scale image features using
Deformable Attention [48]. This process involves select-
ing the proposed voxels qp associated with the positions Vp

from scene volume qvox, along with corresponding pixel
positions pI and 2D image features F 2D. This process is
expressed as qp = DeformAttn(qp, pI , F 2D).

Learnable Initial
Voxels 𝒒𝒗𝒐𝒙

Multi-Scale Image
Features 𝑭𝟐𝑫

Depth Prediction 𝒛𝒄

Proposed Voxels 𝒒𝒑

Deformable
Cross-Attention

Voxel Proposal Layer

KV

Q

Figure 3. Illustration of the Depth-Rectified Voxel Proposal
Layer.

The Deformable Attention operation, denoted as
DeformAttn, dynamically aggregates query features q
from features x with deformable reference points pq . The
mathematical expression is given by:

DeformAttn(q, pq, x) =
K∑

k=1

AqkWx(pq +∆pqk) (4)

Here, K represents the number of sampling points, and Aqk

stands for the learnable attention weight at sampling point k
deformable based on queries q. The term ∆pqk denotes the
offset applied to pq , and W denotes the projection weight.
The computation of multi-heads is omitted for brevity.

In contrast to the Query Proposal in VoxFormer [22],
which employs an extra occupancy network [33] for gen-
erating coarse occupancy features, we refrain from it as it
introduces additional geometric ambiguities in occlusion re-
gions.

3.3. Symphonies Decoder Layer

The Symphonies Decoder Layer seamlessly integrates im-
age features, instance queries, and voxel proposals, as de-
picted in Fig. 2. It orchestrates a dynamic flow of infor-
mation, where instance queries serve as intermediaries to
propagate extracted instance semantics to the broader scene
representations. The process initiates with deformable
cross-attention modules, which attend to the correspond-
ing instance positions within image and scene features
to extract instance-centric semantics. Subsequently, the
instance self-attention and scene-instance cross-attention
modules strengthen the internal cohesion of instances and
aggregate scene context from instance queries. The scene
self-attention mechanism further diffuses voxel features
throughout the scene, especially for the occluded regions,
as only visible surfaces are initially proposed.

The following paragraphs present a detailed explanation
of the computations involved in their exact order of oper-
ation. To streamline the explanation, detailed discussions
on certain components, including Feed-Forward Networks
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(FFN), Layer Norms (LN), and identity connections, have
been omitted.

Deformable Instance-Image Cross-Attention. For each
instance query qins, deformable attention extracts surround-
ing features from multi-scale image features F 2D using
learnable 2D reference points p2Dins, denoted as qins =
DeformAttn(qins, p2Dins, F

2D).

Scene-Instance Cross-Attention. This attention mecha-
nism aggregates scene features qvox from instance queries,
formulated as q∈FOV

vox = CrossAttn(q∈FOV
vox , qins, qins),

where FOV refers to the “field of view” which is pre-
computed based on world-to-camera transformation exclud-
ing invisible voxels, reducing computational redundancy.

Deformable Scene Self-Attention. The scene self-
attention enables feature propagation across the scene,
where voxels attend to their neighbors: q∈FOV

vox =
DeformAttn(q∈FOV

vox , pV , qvox). Here, pV represents vox-
els’ relative coordinates in the scene.

Deformable Instance-Scene Cross-Attention. Instance
semantics are enhanced by integrating refined information
from the reconstructed voxel features qvox. Through co-
ordinate transformation applied to 2D reference points, 3D
reference points are derived as p3Dins = T IW (p2Dins). The
instance-scene cross-attention is then formulated as qins =
DeformAttn(qins, p3Dins, qvox).

Instance Self-Attention. The instance self-attention cap-
tures internal relations and global context within instance
queries, expressed as qins = SelfAttn(qins).

3.4. Losses

In the Symphonies framework, we adopt the Scene-Class
Affinity Loss Lscal from MonoScene [3] to optimize preci-
sion, recall, and specificity concurrently. The Scene-Class
Affinity Loss is applied to semantic and geometric predic-
tions, in conjunction with the cross-entropy loss weighted
by class frequencies. The overall loss function is formu-
lated as follows:

L = Lgeo
scal + Lsem

scal + Lce (5)

Following the DETR series [4], auxiliary losses are ap-
plied after each Symphonies Decoder Layer for enhanced
supervision, following the same formulation as L but scaled
by a factor of 0.5.

4. Experiments
In this section, we present the evaluation results of our pro-
posed Symphonies on SemanticKITTI [1] and SSCBench-
KITTI-360 [21] datasets. The comparative analysis posi-
tioning Symphonies against existing approaches is detailed
in Sec. 4.3. Additionally, comprehensive ablation studies
are conducted in Sec. 4.4 to shed light on the thorough un-
derstanding of Symphonies.

4.1. Dataset and Metric

The evaluation is performed on SemanticKITTI [1]
and SSCBench-KITTI-360 [21] datasets, both providing
densely annotated urban driving scene sequences, 22 and
9 respectively, from the KITTI Odometry Benchmark [10].
These datasets voxelize point clouds and label scenes mea-
suring 51.2m × 51.2m × 64m, with voxel grids of 256 ×
256 × 32 and a voxel size of 0.2m. SemanticKITTI com-
prises 10 sequences for training, 1 sequence for validation,
and 11 sequences for testing. It furnishes RGB images with
shapes of 1226×370 as inputs and encompasses 20 seman-
tic classes. SSCBench-KITTI-360 provides 7 sequences
for training, 1 sequence for validation, and 1 sequence for
testing, with 19 semantic classes and RGB images of size
1408 × 376. For our camera-based approach, we exclu-
sively adopt RGB images as input, and report the intersec-
tion over union (IoU) and mean IoU (mIoU) metrics aligned
with standard practices. The IoU metric assesses the binary
classification of empty versus occupied voxels, reflecting
the performance of geometric reconstruction. Conversely,
the mIoU metric provides a comprehensive assessment of
semantic understanding, making it the primary metric in
most benchmarks.

4.2. Implementation Details

In line with prior studies [3, 16, 22], we train Symphonies
for 30 epochs on 4 NVIDIA 3090 GPUs, with a batch size
of 4 images. We apply random horizontal flip augmentation
and employ the AdamW [29] optimizer with an initial learn-
ing rate of 2e-4 and a weight decay of 1e-4. Learning rate
reduction occurs by a factor of 0.1 at the 25th epoch. The
ResNet-50 [12] backbone and Image Encoder are initialized
with pre-trained MaskDINO [18] weights.

4.3. Main Results

We conduct a comprehensive comparison of Symphonies
with the latest state-of-the-art camera-based methodologies
on the SemanticKITTI and SSCBench-KITTI-360 datasets.
The results, outlined in Tab. 1 and Tab. 2, establish the
superior performance of Symphonies with substantial im-
provements of 2.72 and 4.77 mIoU on SemanticKITTI and
SSCBench-KITTI-360, respectively. Specifically, Sym-
phonies showcases particular excellence in instance classes,

20262



Method IoU mIoU ■
ro

ad
(1

5.
30

%
)

■
si

de
w

al
k

(1
1.

13
%

)

■
pa

rk
in

g
(1

.1
2%

)

■
ot

he
r-

gr
nd

.
(0

.5
6%

)

■
bu

ild
in

g
(1

4.
1%

)

■
ca

r
(3

.9
2%

)

■
tr

uc
k

(0
.1

6%
)

■
bi

cy
cl

e
(0

.0
3%

)

■
m

ot
or

cy
cl

e
(0

.0
3%

)

■
ot

he
r-

ve
h.

(0
.2

0%
)

■
ve

ge
ta

tio
n

(3
9.

3%
)

■
tr

un
k

(0
.5

1%
)

■
te

rr
ai

n
(9

.1
7%

)

■
pe

rs
on

(0
.0

7%
)

■
bi

cy
cl

is
t

(0
.0

7%
)

■
m

ot
or

cy
cl

is
t

(0
.0

5%
)

■
fe

nc
e

(3
.9

0%
)

■
po

le
(0

.2
9%

)

■
tr

af
.-s

ig
n

(0
.0

8%
)

LMSCNet† [33] 31.38 7.07 46.70 19.50 13.50 3.10 10.30 14.30 0.30 0.00 0.00 0.00 10.80 0.00 10.40 0.00 0.00 0.00 5.40 0.00 0.00
AICNet† [20] 23.93 7.09 39.30 18.30 19.80 1.60 9.60 15.30 0.70 0.00 0.00 0.00 9.60 1.90 13.50 0.00 0.00 0.00 5.00 0.10 0.00
JS3C-Net† [43] 34.00 8.97 47.30 21.70 19.90 2.80 12.70 20.10 0.80 0.00 0.00 4.10 14.20 3.10 12.40 0.00 0.20 0.20 8.70 1.90 0.30
MonoScene∗ [3] 34.16 11.08 54.70 27.10 24.80 5.70 14.40 18.80 3.30 0.50 0.70 4.40 14.90 2.40 19.50 1.00 1.40 0.40 11.10 3.30 2.10
TPVFormer [16] 34.25 11.26 55.10 27.20 27.40 6.50 14.80 19.20 3.70 1.00 0.50 2.30 13.90 2.60 20.40 1.10 2.40 0.30 11.00 2.90 1.50
VoxFormer [22] 42.95 12.20 53.90 25.30 21.10 5.60 19.80 20.80 3.50 1.00 0.70 3.70 22.40 7.50 21.30 1.40 2.60 0.20 11.10 5.10 4.90
OccFormer [46] 34.53 12.32 55.90 30.30 31.50 6.50 15.70 21.60 1.20 1.50 1.70 3.20 16.80 3.90 21.30 2.20 1.10 0.20 11.90 3.80 3.70
Symphonies 42.19 15.04 58.40 29.30 26.90 11.70 24.70 23.60 3.20 3.60 2.60 5.60 24.20 10.00 23.10 3.20 1.90 2.00 16.10 7.70 8.00

Table 1. Quantitative results on SemanticKITTI test. † denotes the results provided by [3]. ∗ represents the reproduced results in
[16, 46]. The best results are in bold.
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LiDAR-based methods
SSCNet [37] 53.58 69.63 69.92 16.95 31.95 0.00 0.17 10.29 0.00 0.07 65.70 17.33 41.24 3.22 44.41 6.77 43.72 28.87 0.78 0.75 8.69 0.67
LMSCNet [33] 47.53 72.77 57.55 13.65 20.91 0.00 0.00 0.26 0.58 0.00 62.95 13.51 33.51 0.20 43.67 0.33 40.01 26.80 0.00 0.00 3.63 0.00

Camera-based methods
MonoScene [3] 37.87 56.73 53.26 12.31 19.34 0.43 0.58 8.02 2.03 0.86 48.35 11.38 28.13 3.32 32.89 3.53 26.15 16.75 6.92 5.67 4.20 3.09
TPVFormer [16] 40.22 59.32 55.54 13.64 21.56 1.09 1.37 8.06 2.57 2.38 52.99 11.99 31.07 3.78 34.83 4.80 30.08 17.52 7.46 5.86 5.48 2.70
VoxFormer [22] 38.76 58.52 53.44 11.91 17.84 1.16 0.89 4.56 2.06 1.63 47.01 9.67 27.21 2.89 31.18 4.97 28.99 14.69 6.51 6.92 3.79 2.43
OccFormer [46] 40.27 59.70 55.31 13.81 22.58 0.66 0.26 9.89 3.82 2.77 54.30 13.44 31.53 3.55 36.42 4.80 31.00 19.51 7.77 8.51 6.95 4.60
Symphonies 44.12 69.24 54.88 18.58 30.02 1.85 5.90 25.07 12.06 8.20 54.94 13.83 32.76 6.93 35.11 8.58 38.33 11.52 14.01 9.57 14.44 11.28

Table 2. Quantitative results on SSCBench-KITTI-360 test. The results for counterparts are provided in [21]. The best results among
all methods are in bold, and the best results for camera-based methods are underlined.

e.g., buildings, cars, etc. This underscores its prowess
in capturing and modeling intricate instance semantics.
While VoxFormer attains a marginally higher IoU on Se-
manticKITTI, its adoption of two-stage training and extra
occupancy prediction network disrupts end-to-end training
and introduces additional geometric ambiguities. This com-
plexity hampers its robustness, especially on KITTI-360.

The superiority of Symphonies becomes more pro-
nounced on SSCBench-KITTI-360, which can be attributed
to the ample data samples and high-quality annotations.
Moreover, Symphonies even outperforms LiDAR-based
methods in terms of mIoU, despite LiDAR’s inherent ad-
vantage in IoU owing to its more precise position aware-
ness, particularly at a distance.

4.4. Ablation Studies

The ablation analysis is conducted on the SemanticKITTI
validation set from four key perspectives: overall architec-

tural components, the Symphonies Decoder, the Voxel Pro-
posal Layer, and the Image Encoder.

Ablation on architectural components. Tab. 3 presents
the breakdown analysis of various architectural components
within Symphonies. The vanilla baseline can be consid-
ered as a light-weight alternative to MonoScene, composed
of a ResNet-50 backbone, an Image Encoder without pre-
trained weight, a 2D-to-3D projection via FLoSP [3], and
a single 3D ASPP layer as the 3D decoder, Pre-training
the Image Encoder leads to a notable improvement of 2.15
mIoU, emphasizing the effectiveness of instance awareness
brought by 2D segmentation pre-training. Further, the pro-
posed Depth-Rectified Voxel Proposal Layer improves per-
formance by 0.75 mIoU through more accurate geometry.
The Symphonies Decoder significantly boosts performance
by 5.38 IoU, attributed to its dynamic instance modeling
and context-capturing capabilities. In summary, the analy-
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Method IoU mIoU Params (M) FLOPs (G)

Baseline 34.06 10.44 57.22 529.20
+ Pre-trained Encoder 35.97 (+1.91) 12.59 (+2.15) 57.22 529.20
+ Voxel Proposal Layer 36.54 (+0.57) 13.34 (+0.75) 57.42 535.84
+ Symphonies Decoder 41.92 (+5.38) 14.89 (+1.55) 59.31 611.89

Table 3. Ablation study on architectural components in Symphonies.

sis in Tab. 3 affirms the effectiveness of the proposed com-
ponents in Symphonies.

Ablation on the Symphonies Decoder. To gain insights
into the functionality of contextual instance queries, we as-
sess the modular interactions within the Symphonies De-
coder Layer. As depicted in Tab. 4, the incorporation of in-
stance queries with either instance-image or instance-scene
cross-attention considerably enhances performance by over
5 IoU and about 1 mIoU. This substantiates the significance
of instance queries for adaptive aggregation of instance se-
mantics. Among them, the instance-image cross-attention
brings less improvement, suggesting that original image
features have already been adequately captured in the pre-
ceding Voxel Proposal Layer. The instance self-attention
further improve the performance, underlining the contex-
tual effectiveness of efficient fusion among instance queries.
Besides, though Scene SA may seem to only marginally im-
prove the performance, its omission reveals significant fluc-
tuations during training, attributed to the sparse interactions
within instance deformable attentions. This underscores the
pivotal role of Scene SA in fostering the generation of con-
sistent features.

Scn.-Inst. Inst.-Img. Inst.-Scn. Inst. Scn.
CA CA CA SA SA

IoU mIoU

35.97 13.34
✓ ✓ 41.36 14.02
✓ ✓ 41.44 14.37
✓ ✓ ✓ 41.35 14.63
✓ ✓ ✓ ✓ 41.75 14.73
✓ ✓ ✓ ✓ ✓ 41.92 14.89

Table 4. Ablation study on Symphonies Decoder. SA: Self-
Attention, CA: Cross-Attention.

Ablation on the Voxel Proposal Layer. Comparing the
Depth-Rectified Voxel Proposal Layer (VPL) with FLoSP
from MonoScene [3] casting pixels to voxels along the
line of sight, as well as the mono VPL using monocular
depth estimator AdaBins [2] (0.058 REL on KITTI), we
note significant occupancy prediction improvements using

the stereo VPL based on MobileStereoNet [35] (0.66 EPE
on KITTI 2015), as shown in Tab. 5. This indicates that the
rectification of more precise depth estimation contributes to
mitigating geometric ambiguities, aligning with the findings
in VoxFormer.

2D-to-3D Projection IoU mIoU

FLoSP [3] 36.02 11.96
VPL (mono) 38.37 12.20
VPL (stereo) 41.92 14.89

Table 5. Ablation on the Depth-Rectified Voxel Proposal Layer.

Ablation on the Instance-Aware Image Encoder. Tab. 6
evidently showcases the synergistic effects of utilizing
pre-trained weights for the Image Encoder with in-
stance queries. Solely utilizing pre-trained weights from
MaskDINO [18] contributes an additional improvement of
0.48 mIoU. Moreover, incorporating instance queries with
the pre-trained encoder yields a significant improvement
of 1.36 mIoU, implying that the proposed instance queries
benefit from the enhanced instance awareness of the en-
coder.

Pre-trained Encoder Inst. Queries IoU mIoU

41.09 13.53
✓ 41.42 13.32

✓ 41.18 14.01
✓ ✓ 41.92 14.89

Table 6. Ablation study on the Instance-Aware Image Encoder.

4.5. Visualizations

Qualitative Results. Fig. 4 presents the visualizations of
Symphonies on SemanticKITTI val, in comparison to the
counterpart MonoScene. Symphonies generates more de-
tailed predictions for instance-centric classes such as cars
and trunks, as well as preserves clear and coherent lay-
outs for structures like buildings and vegetation, attributed
to the enriched instance semantics and contextual informa-
tion provided by instance queries. In contrast, MonoScene
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Figure 4. Qualitative visualizations on SemanticKITTI val. Symphonies consistently produces detailed predictions for objects such as
cars and trunks, while maintaining coherent layouts for structures like buildings and vegetation.

produces vague predictions with a radial shape, which is in-
dicative of the aforementioned ambiguous geometry. These
results underscore the superior capability of Symphonies in
capturing fine-grained scene representations and enhancing
overall scene understanding.

Attention Map Analysis. The attention map analysis in
Fig. 5 provides insights into the mechanisms of the Se-
rial Instance-Propagated Attentions within Symphonies lay-
ers. Notably, instance queries exhibit selective attention
to corresponding regions in both the image and the scene.
Additionally, they activate the semantically related regions
within the scene-instance cross-attention. This observation
validates the effect of our claimed instance-centric seman-
tics in facilitating effective scene modeling.

5. Conclusion
In this paper, we introduced Symphonies, a novel paradigm
for 3D Semantic Scene Completion. Symphonies effec-
tively integrates instance-centric semantics and scene con-
text from both images and volumes, addressing the limi-
tations posed by geometric ambiguity in prior voxel-wise
modeling methods. Extensive experiments demonstrate the
superiority of our approach over existing methods. We
anticipate Symphonies to inspire future research and con-
tribute to advancements in autonomous driving and 3D per-
ception.

Ⅲ
Ⅱ
Ⅰ

Ⅱ
Ⅲ Ⅰ

Ⅰ

Ⅱ
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(a) Reference points for Inst.-Image Cross-Attention.

(b) Reference points for Inst.-Scene Cross-Attention. (c) Attention Maps for Scene-
Inst. Cross-Attention.

Figure 5. Analysis of attention maps within Symphonies.
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