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Abstract

Monocular 3D detection (M3D) aims for precise 3D ob-
ject localization from a single-view image which usually
involves labor-intensive annotation of 3D detection boxes.
Weakly supervised M3D has recently been studied to ob-
viate the 3D annotation process by leveraging many exist-
ing 2D annotations, but it often requires extra training data
such as LiDAR point clouds or multi-view images which
greatly degrades its applicability and usability in various
applications. We propose SKD-WM3D, a weakly supervised
monocular 3D detection framework that exploits depth in-
formation to achieve M3D with a single-view image exclu-
sively without any 3D annotations or other training data.
One key design in SKD-WM3D is a self-knowledge distilla-
tion framework, which transforms image features into 3D-
like representations by fusing depth information and effec-
tively mitigates the inherent depth ambiguity in monocu-
lar scenarios with little computational overhead in infer-
ence. In addition, we design an uncertainty-aware dis-
tillation loss and a gradient-targeted transfer modulation
strategy which facilitate knowledge acquisition and knowl-
edge transfer, respectively. Extensive experiments show that
SKD-WM3D surpasses the state-of-the-art clearly and is
even on par with many fully supervised methods.

1. Introduction

Monocular 3D detection (M3D) has emerged as one key
component in the area of autonomous driving and computer
vision. Its primary target is to recognize objects and obtain
their 3D localization from single-view images. Thanks to its
low deployment cost, M3D [5, 34] has attracted increasing
attention in both academic and industrial sectors, achieving
very impressive progress in recent years. On the other hand,
most existing studies [21, 33, 37, 39] adopt a fully super-
vised setup which have been facing increasing scalability
concern as large-scale 3D boxes are often labor-intensive
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to collect. Effective M3D training without 3D annotations
has become a critical issue while handling M3D problems
in various research and practical tasks.

Weakly supervised M3D (WM3D) [34] has recently
been explored for learning effective 3D detectors without
3D box annotations, aiming to exploit 2D annotations to
make up for the absence of 3D information. For exam-
ple, WeakM3D [34] exploits LiDAR point clouds to in-
fer 3D information as illustrated in Figure 1(a). However,
it requires costly and complicated LiDAR sensors to col-
lect point clouds which limits its applicability and usability
greatly. WeakMono3D [42] employs 2D information only
by either leveraging multi-view stereo with images from
multiple cameras or constructing pseudo-multi-view per-
spective from sequential video frames as illustrated in Fig-
ure 1(b). However, collecting multi-view images is compli-
cated, and resorting to a pseudo multi-view perspective de-
grades the detection performance clearly. With the advance
of single-view depth estimation, WM3D with depth from
a single-view image presents a potential solution for com-
pensating the absence of 3D annotations. On the other hand,
direct integration of such depth into existing frameworks of-
ten necessitates complex network architectures which fur-
ther incurs significant computational costs. This gives rise
to a pertinent question: When not using additional LiDAR
point clouds or multi-view image pairs, is it possible to har-
ness the depth from off-the-shelf depth estimators without
introducing much computational overhead in inference?

We design SKD-WM3D, a novel weakly supervised
monocular 3D object detection method that is exclusively
grounded on single-view images. One key design in SKD-
WM3D is a self-knowledge distillation framework which
consists of a Depth-guided Self-teaching Network (DSN)
and a Monocular 3D Detection Network (MDN). As illus-
trated in Figure 1(c), SKD-WM3D utilizes depth informa-
tion obtained from an off-the-shelf depth estimator [17] to
enhance the 3D localization ability of DSN and transfers
such ability to MDN via self-knowledge distillation. Such
self-distillation design enables MDN to unearth the intrinsic
depth information from single-view images independently,
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Figure 1. Different paradigms in weakly supervised monocular 3D detection. Our approach in (c) leverages Pseudo Depth Labels from
a single-view image to achieve weakly supervised monocular 3D detection, requiring no extra training data like LiDAR point clouds or
multi-view images as in (a) and (b). It improves usability and applicability greatly. The Pseudo Depth Labels are obtained with an off-the-
shelf depth estimator [17] without extra training and ground-truth depth labels. Data in red denotes extra data in network training.

bypassing additional modules such as pre-trained depth es-
timation networks and leading to precise and efficient 3D
localization with little computational overhead during infer-
ence. On top of DSN and MDN, we design an uncertainty-
aware distillation loss to optimize the utilization of the
transferred 3D localization knowledge by weighting up
more certain knowledge while weighting down less cer-
tain knowledge. In addition, we design a gradient-targeted
transfer modulation strategy to synchronize the learning
paces of DSN and MDN during the process of learning 3D
localization knowledge, by prioritizing MDN learning at the
initial stage when MDN lags behind DSN and enabling it to
provide more feedback to DSN when MDN is better trained
at late stages.

Our contribution can be summarized in three aspects.
First, we design a novel framework that achieves weakly
supervised monocular 3D detection by distilling knowl-
edge between a depth-guided self-teaching network and a
monocular 3D detection network. Without any extra train-
ing data like LiDAR point clouds or multi-view images,
the framework exploits depth exclusively from a single im-
age with little computational overhead in inference. Sec-
ond, we design an uncertainty-aware distillation loss and a
gradient-targeted transfer modulation strategy which facili-
tate knowledge acquisition and knowledge transfer, respec-
tively. Third, the proposed approach clearly outperforms the
state-of-the-art in weakly supervised monocular 3D detec-
tion, and its performance is even on par with several fully
supervised methods.

2. Related Work

2.1. Monocular 3D Detection

Monocular 3D object detection aims to predict 3D object
localization from single-view images. Standard monocular
detectors [1, 6, 14, 53, 56] operate solely on single images,

without utilizing additional data. However, the inherent
depth ambiguity of monocular detection significantly hin-
ders its performance compared to its stereo counterparts.
To address this limitation, various approaches seek solu-
tions with the help of extra data, such as LiDAR point
clouds [4, 7, 21, 27], video sequences [2], 3D CAD mod-
els [5, 24, 31], and depth estimation [10, 35, 45, 48]. Specif-
ically, MonoRUn [4] adopts an uncertainty-aware regional
reconstruction network for regressing pixel-associated 3D
object coordinates with LiDAR point clouds as extra super-
vision. MonoDistill [7] introduces an effective distillation-
based approach that incorporates spatial information from
LiDAR signals into monocular 3D detection. Additionally,
pseudo-LiDAR-based methods [45, 48] convert estimated
depth maps to simulate the real LiDAR point clouds to
utilize the well-designed LiDAR-based 3D detector. Dur-
ing inference, compared with methods using depth estima-
tion, our method eliminates the need for pseudo depth la-
bels and complex network architectures, with little compu-
tational overhead. Besides, existing fully supervised meth-
ods require large-scale 3D box ground truth, which is labor-
intensive to collect and annotate.

2.2. Weakly Supervised 3D Object Detection

Due to the high cost of annotating 3D boxes in the 3D object
detection task, various weakly supervised approaches [26,
29, 34, 36] have been proposed. For example, WS3D [29]
presents a weakly supervised method for 3D LiDAR ob-
ject detection, which requires only a limited number of
weakly annotated scenes with center-annotated BEV maps.
VS3D [36] introduces a cross-model knowledge distillation
strategy to transfer the knowledge from the RGB domain to
the point cloud domain, using LiDAR point clouds as weak
supervision. Recent research on weakly supervised 3D ob-
ject detection has turned to explore the monocular setting.
For example, WeakM3D [34] generates 2D boxes to select
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Figure 2. The framework of the proposed self-knowledge distillation network. The framework consists of a depth-guided self-teaching
network and a monocular 3D detection network. The depth-guided self-teaching network acquires comprehensive 3D localization knowl-
edge by leveraging depth information and transfers its learned expertise to the monocular 3D detection network via soft label distillation to
enhance its performance. We design an uncertainty-aware distillation loss and a gradient-targeted transfer modulation strategy to facilitate
the knowledge transfer between the two networks effectively. During inference, the monocular 3D detection network extracts intrinsic
depth information from single-view images independently with little computational overhead.

RoI LiDAR point clouds as weak supervision and then pre-
dicts 3D boxes that closely align with the selected RoI Li-
DAR point clouds. More recently, WeakMono3D [42] elim-
inates the need for LiDAR, offering both multi-view and
single-view yet multi-frame versions. While the former ac-
quires stereo image inputs from multiple cameras, the lat-
ter constructs a pseudo-multi-view perspective using multi-
ple video frames. The multi-frame version exhibits inferior
3D scene comprehension compared with the multi-view ap-
proach due to its smaller inter-frame disparity, leading to
degraded performance. Instead of requiring extra training
data like LiDAR point clouds or multi-view images, we
tackle the challenge of weakly supervised monocular 3D
detection by leveraging a single-view image exclusively.

2.3. Self-Knowledge Distillation

Knowledge distillation [8, 9, 11, 16, 18, 23, 32, 38, 43, 54]
aims to transfer knowledge from a pre-trained teacher net-
work to a student network for improving its performance.
Self-knowledge distillation [30, 41, 47], distinct from tra-
ditional knowledge distillation, leverages the information
within the student network to facilitate its learning without
the pre-trained teacher network. Specifically, data augmen-
tation approach [15, 46, 50] transfers knowledge through
different distortions of the same training data. However,
they are susceptible to inappropriate augmentations, such
as improper instance rotation or distortion, potentially intro-

ducing noise that hampers network learning. Another typ-
ical approach exploits auxiliary networks [52, 57]. For ex-
ample, DKS [40] introduces auxiliary supervision branches
and pairwise knowledge alignments, while FRSKD [19]
adds a new branch supervised by the original features and
utilizes both soft-label and feature-map distillation. Our
work is the first that introduces self-knowledge distillation
with auxiliary networks for weakly supervised monocular
3D detection. It effectively exploits depth information from
single-view images with little computational overhead dur-
ing inference.

3. Methodology

This section presents the proposed SKD-WM3D. First,
the problem definition and overview are presented in
Sec. 3.1. Then detailed designs of SKD-WM3D are in-
troduced, including the self-knowledge distillation frame-
work in Sec. 3.2, the uncertainty-aware distillation loss in
Sec. 3.3 and the gradient-targeted transfer modulation strat-
egy in Sec. 3.4. Finally, loss functions are presented in
Sec. 3.5.

3.1. Problem Definition and Overview

Weakly supervised monocular 3D detection takes an RGB
image and the corresponding 2D bounding boxes as su-
pervision, aiming to classify objects and determine their
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bounding boxes in 3D space without involving any 3D an-
notations in training. The prediction of each object is com-
posed of the object category C, a 2D bounding box B2D,
and a 3D bounding box B3D. Specifically, the 3D box
B3D can be further decomposed to the object 3D location
(x3D, y3D, z3D), the object dimension with height, width
and length (h3D, w3D, l3D), as well as orientation θ.

We design a self-knowledge distillation framework to
tackle the challenge of weakly supervised monocular 3D
detection from a single-view image. As Figure 2 shows, the
framework consists of two subnetworks including a Depth-
Guided Self-Teaching Network and a Monocular 3D Detec-
tion Network. In the Depth-Guided Self-Teaching Network,
the global features FG extracted by the backbone are fed
into a Depth Head to obtain depth features. Next, the global
features FG and the extracted depth features are fed into a
Fusion Layer to obtain 3D-like features F3D. The 3D-like
features of each object are then obtained via RoIAlign, and
further fed to a Depth-Aware 3D Head to predict 3D box
B̂3D

p and uncertainty Û . In the Monocular 3D Detection
Network, We first use RoIAlign to generate object-level fea-
tures from the global features FG, and then feed them to a
2D-to-3D Head to predict 3D box B̂2D

p and uncertainty U .
The 3D boxes predicted by both networks are further pro-
jected into 2D boxes. Moreover, we design an uncertainty-
aware distillation loss Lud to obtain low-uncertainty knowl-
edge, and a gradient-targeted transfer modulation strategy
to synchronize the learning paces between the two networks
by controlling gradients Ĝ and G of Lud.

3.2. Self-Knowledge Distillation Framework

The self-knowledge distillation framework enhances the 3D
localization ability of the depth-guided self-teaching net-
work by utilizing depth information from an off-the-shelf
depth estimator and then transfers the ability to the monoc-
ular 3D detection network via self-knowledge distillation.

Depth-Guided Self-Teaching Network. To equip the
self-teaching network with 3D localization ability, we pro-
pose to learn from global features FG and depth information
from an off-the-shelf depth estimator to acquire comprehen-
sive 3D knowledge. The depth information is exploited via
two major designs. Firstly, we introduce a depth head D
that extracts depth features FD as follows:

FD = D(FG), (1)

The depth features FD are exploited to generate depth
maps Dp, where the depth map generation is supervised by
the pseudo ground truth of the depth map Dgt that is pre-
dicted by an off-the-shelf depth estimator by using the focal
loss [22] as depth loss Ldep. Hence, the depth features can
be acquired by the depth-guided self-teaching network ef-
fectively.

Remark 1. We generate depth pseudo labels using an off-
the-shelf depth estimator [17] with frozen weights, elim-
inating the need for additional training and ground-truth
depth labels. Adopting an off-the-shelf depth estimator in-
curs negligible costs as compared with prior studies that re-
quire either point clouds [34] or multi-view images [42].

Secondly, we obtain 3D-like features FG3D by integrat-
ing the depth features FD that provide information along
the depth dimension, as well as the global features FG that
capture knowledge about the 2D image plane. Specifically,
we design a fusion layer that fuses the depth features FD

with the global features FG to derive the FG3D as follows:

FG3D = FFN(CA(SA(FD), FG)), (2)

where the FFN is the feed-forward network, and CA, SA
denote CrossAttention, SelfAttention, respectively.
The structures of CrossAttention and SelfAttention
employ the standard transformer architecture [44]. The ob-
tained 3D comprehension improves the network’s ability to
precisely locate objects, effectively mitigating depth ambi-
guity arising from single-view image input.

Monocular 3D Detection Network. The monocular 3D
detection network acquires the 3D localization knowledge
from the depth-guided self-teaching network. By distilling
soft labels generated by the depth-guided self-teaching net-
work, the monocular 3D detection network can extract in-
trinsic depth information from images independently during
inference. This kills the need for additional complex mod-
ules such as pre-trained depth estimation networks or depth
fusion modules, facilitating the inference with little compu-
tational overhead.

3.3. Uncertainty-Aware Distillation Loss

During the knowledge distillation process, uncertain knowl-
edge could affect the network training negatively if all
transferred knowledge is treated equally. To benefit more
from certain knowledge and weaken the effect of uncer-
tain knowledge, we design an uncertainty-aware distilla-
tion loss between the 3D boxes that are predicted by the
two networks in the self-knowledge distillation framework.
The uncertainty-aware distillation loss exploits the predic-
tion uncertainty to modulate the distillation loss magnitude
as follows:

Lud =
Ld

min((Û + U)/2, α)
+

∥∥∥∥∥min(
Û + U

2
, α)

∥∥∥∥∥
2

, (3)

where Û and U denote the uncertainty of the 3D boxes
that are predicted by the two networks, respectively. Here
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we assume the 3D box predictions have the Laplace dis-
tribution, and we adopt the standard deviations as the un-

certainties, inspired by [20, 25, 33].
∥∥∥min( Û+U

2 , α)
∥∥∥2 is

the L2 regularization, and α is a fixed value set to 0.1. Ld

denotes the basic distillations loss, and we employ the com-
monly used SmoothL1 [13] loss to enforce the consistency
between the 3D boxes predicted by the two networks. The
SmoothL1 loss leaves a soft margin when computing the
difference between the two 3D boxes:

Ld =

{
0.5× (B̂3D

p −B3D
p )2, if |B̂3D

p −B3D
p | < 1.0

|B̂3D
p −B3D

p | − 0.5, otherwise
,

(4)
where B̂3D

p and B3D
p are the predicted 3D boxes from

the depth-guided self-teaching network and the monocular
3D detection network, respectively.

Remark 2. The proposed uncertainty-aware distillation
loss Lud integrates average uncertainty Û+U

2 as regulariza-
tion and a weighted component for the basic distillation loss
Ld, allowing adaptive learning adjustments based on the
knowledge’s uncertainty level. Specifically, when dealing
with uncertain knowledge, a smaller weight is assigned to
the basic distillation loss Ld to mitigate potential adverse
effects on network learning. Consequently, the network
prioritizes optimizing uncertainty reduction in such scenar-
ios. When dealing with certain knowledge, the network em-
phasizes optimizing the basic distillation loss Ld due to its
higher weight. Notably, the basic distillation loss Ld simply
considers box consistency, while integrating uncertainty is
beneficial for enhancing the knowledge distillation process.

3.4. Transfer Modulation Strategy

The depth-guided self-teaching network, which leverages
depth information to predict 3D boxes, transfers its learned
3D knowledge to the monocular 3D detection network. The
asynchronous learning paces of the two networks pose po-
tential challenges to effective 3D knowledge transfer.

We design a gradient-targeted transfer modulation strat-
egy to synchronize the learning pace of the depth-guided
self-teaching network and the monocular 3D detection net-
work. We modulate the knowledge transfer dynamically,
by controlling the gradients from the uncertainty-aware
distillation loss Lud. Specifically, we adapt the gradi-
ents based on the 2D projection performance of each net-
work, assigning smaller backward gradients for the good-
performing network and higher backward gradients for the
bad-performing network. The gradient-targeted transfer
modulation strategy is formulated as follows:

Ĝ′ =
2× L̂proj

L̂proj + Lproj

× Ĝ,G′ =
2× Lproj

L̂proj + Lproj

×G, (5)

Where Ĝ and G are the original gradients of the two net-
works, Ĝ′ and G′ are the modified gradients, L̂proj and
Lproj are projection losses, computed between the pro-
jected 2D boxes from 3D box predictions and 2D box anno-
tations.

The gradient-targeted transfer modulation strategy prior-
itizes training the monocular 3D detection network when
its learning lags behind the depth-guided self-teaching net-
work at the early training stage. As the monocular 3D de-
tection network learns and improves gradually, it is enabled
to provide more feedback progressively to the depth-guided
self-teaching network.

3.5. Loss Functions

The overall objective consists of three losses including Lud,
Ldep and Lbase. Lud is the uncertainty-aware distillation
loss as defined in Sec. 3.3. Ldep is the depth loss for su-
pervising the predicted depth map. Lbase includes losses
for supervising 2D boxes prediction by 2D heads and the
3D box predictions, which has been adopted in prior Cen-
terNet [55] and WeakMono3D [42]. We set the weight for
each loss item to 1.0, and the overall loss function can be
formulated as follows:

L = Lud + Ldep + Lbase. (6)

4. Experiments
4.1. Datasets

We conduct experiments over the KITTI 3D dataset [12]
and the nuScenes dataset [3] that have been widely adopted
for benchmarking of 3D object detection methods. The
KITTI 3D dataset consists of 7,481 images for training and
7,518 images for testing. The labels of the train set are pub-
licly available and the labels of the test set are stored on a
test server for evaluation. For ablation studies, we follow [5]
which divides the 7,481 training samples into a new train set
with 3,712 images and a validation set with 3,769 images.
The nuScenes dataset comprises 1,000 video scenes, includ-
ing RGB images captured by 6 surround-view cameras. The
dataset is split into a training set (700 scenes), a validation
set (150 scenes), and a test set (150 scenes). Following [34],
the performance on the validation set is reported.

4.2. Evaluation Protocols

For the KITTI 3D dataset, following [39], we adopt the
evaluation metric AP|R40

which is the average of the AP
of 40 recall points. We report the average precision on
bird’s eye view and 3D object detection as APBEV |R40 and
AP3D|R40 . In addition, as most weakly supervised 3D ob-
ject detection methods apply IoU threshold of 0.7 for the
test set and 0.5 for the validation set, we adopt the same
thresholds for fair benchmarking. We adopt four metrics
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Method Backbone Supervision
APBEV /AP3D(IoU= 0.7)|R40

Easy Moderate Hard

WeakM3D [34] ResNet-50
Weak

11.82/5.03 5.66/2.26 4.08/1.63
WeakMono3D [42] DLA-34 12.31/6.98 8.80/4.85 7.81/4.45
SKD-WM3D (Ours) DLA-34 15.71/8.95 10.15/5.54 8.08/4.53

Table 1. Comparison on the performance of the Car category on KITTI test set. For all results, we use AP|R40 metrics with IoU threshold
equal to 0.7. The best results are in bold.

Method Backbone Supervision
APBEV /AP3D(IoU= 0.5)|R40

Easy Moderate Hard

CenterNet [55] DLA-34

Full

34.36/20.00 27.91/17.50 24.65/15.57
MonoGRNet [35] VGG-16 52.13/47.59 35.99/32.28 28.72/25.50
M3D-RPN [1] DenseNet-121 53.35/48.53 39.60/35.94 31.76/28.59
MonoPair [6] DLA-34 61.06/55.38 47.63/42.39 41.92/37.99
MonoDLE [28] DLA-34 60.73/55.41 46.87/43.42 41.89/37.81
GUPNet [25] DLA-34 61.78/57.62 47.06/42.33 40.88/37.59
Kinematic [2] DenseNet-121 61.79/55.44 44.68/39.47 34.56/31.26
MonoDistill [7] DLA-34 71.45/65.69 53.11/49.35 46.94/43.49
MonoDETR [53]* ResNet-50 72.34/68.05 51.97/48.42 46.94/43.48
VS3D [36] VGG-16

Weak

31.59/22.62 20.59/14.43 16.28/10.91
Autolabels [51] ResNeXt101 50.51/38.31 30.97/19.90 23.72/14.83
WeakM3D [34] ResNet-50 58.20/50.16 38.02/29.94 30.17/23.11
WeakMono3D [42] DLA-34 54.32/49.37 42.83/39.01 40.07/36.34
SKD-WM3D (Ours) DLA-34 55.47/50.21 44.35/41.57 41.86/36.92

Table 2. Comparison on the performance of the Car category on KITTI val set. For all results, we use AP|R40 metric with IoU threshold
equal to 0.5. * denotes this performance is reproduced from the official code. The best results of weakly supervised 3D object detection
approaches are in bold.

Method AP↑ ATE↓ ASE↓ AAE↓
WeakM3D [34] 0.214 0.814 0.234 0.682
SKD-WM3D (Ours) 0.242 0.795 0.231 0.659

Table 3. Comparison on the performance of the Car category on
nuScenes val set. The best results are in bold.

for the evaluation on the nuScenes dataset, namely, AP (Av-
erage Precision), ATE (Average Translation Error), ASE
(Average Scale Error), and AAE (Average Attribute Error).
Following [34], AVE (Average Velocity Error) and AOE
(Average Orientation Error) are not reported due to the lack
of supervision for velocity and movement direction in the
weakly supervised approach.

4.3. Implementation Details

We conduct experiments on 2 NVIDIA V100 GPUs with
batch size of 16, and train the framework with 150 epochs.
We use the Adam optimizer with the initial learning rate
1e−5, which is gradually increased to 1e−3 for the first 5

epochs and decayed with rate 0.1 at the 90 and 120 epochs.
We employ DLA-34 [49] as the detector’s backbone. The
pseudo ground truth of the depth map is generated with an
off-the-shelf depth estimator [17] without using the ground
truth of depth label.

4.4. Comparison with State-of-the-Art Methods

We compare our method with several state-of-the-art
weakly supervised monocular 3D detection methods on the
KITTI test set. As Table 1 shows, our method achieves su-
perior detection performance across all metrics. This supe-
rior performance is largely attributed to our designed self-
knowledge distillation framework that extracts and exploits
intrinsic depth information from a single-view image effec-
tively. It should be highlighted that our method employs a
single-view image exclusively without involving additional
training data such as LiDAR point clouds [34] or multi-view
image pairs [42].

Table 2 shows the benchmarking on the KITTI vali-
dation set. Specifically, we compare our method against
both state-of-the-art weakly supervised monocular 3D de-
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Figure 3. Qualitative illustration on KITTI val set. Red boxes denote ground-truth annotations and Green boxes denote our predictions.
The ground truth of LiDAR point clouds is utilized for visualization purposes only. Best viewed with zoom-in.

Figure 4. Qualitative illustration of object detection and the corresponding detection uncertainties on KITTI val set. Red boxes denote
ground-truth annotations and Green boxes denote our predictions. The detection accuracy is closely correlated with the detection uncer-
tainty. Best viewed with zoom-in.

tection methods and fully supervised methods. It can be
seen that our method achieves superior performance com-
pared to WeakM3D [34] and WeakMono3D [42] across
most metrics, even without using LiDAR point clouds or
multi-view images. Notably, our method significantly out-
performs WeakM3D [34] in the Moderate and Hard cate-
gories, primarily due to the sparse nature of distant LiDAR
point clouds adversely affecting its performance. Addition-
ally, its performance is even on par with several fully super-
vised methods [1, 35, 55].

Table 3 shows the results on the nuScenes validation
set. It can be seen that our proposed method outperforms
WeakM3D [34] across all four evaluation metrics, validat-
ing the effectiveness of our approach.

Qualitative Results Figure 3 shows qualitative results
with both 2D RGB images and 3D point clouds. In sim-
ple scenarios, our model achieves great prediction accuracy,
which is largely attributed to the proposed self-knowledge
distillation framework as well as the uncertainty-aware dis-
tillation loss and the gradient-targeted transfer modulation
strategy, all working together to facilitate comprehensive
3D information extraction effectively. However, for heav-
ily occluded or distant objects, the accuracy of orientation
and depth estimation tends to drop, which is common for
monocular 3D detection due to its ill-posed nature. In addi-
tion, Figure 4 shows the visualization of predicted bounding
boxes and their corresponding uncertainties. It can be ob-
served that the prediction accuracy of bounding boxes has a
close correlation with the prediction uncertainty.
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Index MDN DSN
APBEV /AP3D(IoU= 0.5)|R40

Easy Moderate Hard

1 ✓ 0.00/0.00 0.00/0.00 0.00/0.00
2 ✓ 45.23/40.96 34.27/31.02 30.17/26.27
3 ✓ ✓ 55.47/50.21 44.35/41.57 41.86/36.92

Table 4. Ablation study of the proposed self-knowledge distilla-
tion framework. The best results are in bold. MDN denotes the
Monocular 3D Detection Network, while DSN denotes the Depth-
Guided Self-Teaching Network.

Index Lud TMS
APBEV /AP3D(IoU= 0.5)|R40

Easy Moderate Hard

1 49.95/44.61 38.24/35.74 37.28/34.82
2 ✓ 53.16/48.13 41.85/39.02 40.14/35.70
3 ✓ 52.35/46.30 41.45/38.91 39.73/35.44
4 ✓ ✓ 55.47/50.21 44.35/41.57 41.86/36.92

Table 5. Ablation study of the proposed uncertainty-aware distil-
lation loss and the gradient-targeted transfer modulation strategy.
The best results are in bold. Lud denotes the Uncertainty-Aware
Distillation Loss, while TMS denotes the gradient-targeted trans-
fer modulation strategy.

Method WeakM3D [34] MonoDistill [7]* SKD-WM3D (Ours)*

FPS 13.9 25.0 30.3

Table 6. Comparison on inference speed of M3D methods. * de-
notes this method utilizes dense depth maps.

4.5. Ablation Study

We conduct extensive ablation studies on the KITTI valida-
tion dataset to evaluate our designs. Specifically, we evalu-
ated the efficacy of the two individual networks in the pro-
posed self-knowledge distillation framework. Additionally,
we examine the effect of the proposed uncertainty-aware
distillation loss and the gradient-targeted transfer modula-
tion strategy. Lastly, we evaluated the efficiency of our
monocular 3D detection framework.

Self-Knowledge Distillation Framework. We train two
models to assess the contributions of the two networks in
our proposed self-knowledge distillation framework. As
Table 4 shows, training the monocular 3D detection net-
work alone produces few meaningful detection results as
the absence of depth information leads to ambiguous ob-
ject localization along the depth dimension. As a compar-
ison, training the depth-guided self-teaching network alone
can produce reasonable detection results thanks to the depth
map pseudo labels. In addition, training both subnetworks
concurrently produces the best 3D detection, validating the
effectiveness of extracting 3D information from a single im-
age. We can also see that including the self-knowledge dis-
tillation on top of the depth-guided self-teaching network

greatly improves the detection by reducing the adverse ef-
fects of uncertain knowledge and enabling communication
between the two subnetworks during training.

Uncertainty-Aware Distillation Loss and Gradient-
Targeted Transfer Modulation Strategy. Table 5 shows
the ablation study of the proposed uncertainty-aware dis-
tillation loss and the gradient-targeted transfer modulation
strategy. It can be observed that the baseline does not per-
form well due to the adverse effect of uncertain knowl-
edge and the asynchronous learning paces of the two sub-
networks. On top of the baseline, including either the
uncertainty-aware distillation loss or the gradient-targeted
transfer modulation strategy improves the detection perfor-
mance significantly, underscoring the importance of attain-
ing high-certainty knowledge and synchronizing the learn-
ing paces of the two networks. In addition, combining
the two designs achieves the best performance, highlight-
ing their complementary nature and collaborative roles in
knowledge acquisition and knowledge transfer.

Inference speed comparison. Table 6 compares the in-
ference speed on the KITTI validation set. Our method
demonstrates superior efficiency thanks to our designed
self-knowledge distillation framework, without utilizing
complex network architectures during inference.

5. Conclusion
In this paper, we point out that previous weakly super-
vised monocular 3D detection methods either require ad-
ditional LiDAR point clouds or paired images from multi-
ple viewpoints or temporal sequences. To overcome these
constraints, we propose a weakly supervised monocular 3D
object detection approach that is exclusively grounded on
single-view image inputs. Central to our approach is a self-
knowledge distillation framework, which effectively har-
nesses the depth information within a single-view image
with little computational overhead during inference. We
further introduce an uncertainty-aware distillation loss and
a gradient-targeted transfer modulation strategy, facilitat-
ing knowledge acquisition and knowledge transfer, respec-
tively. Finally, extensive experiments demonstrate the ef-
fectiveness of our method. Moving forward, we plan to
further generalize our work to diverse and challenging sce-
narios, such as occlusions, varying lighting, and weather
conditions, thereby enhancing its practical applicability.
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