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Abstract

The long-tailed distribution problem in medical image
analysis reflects a high prevalence of common conditions
and a low prevalence of rare ones, which poses a signif-
icant challenge in developing a unified model capable of
identifying rare or novel tumor categories not encountered
during training. In this paper, we propose a new Zero-
shot Pan-Tumor segmentation framework (ZePT) based on
query-disentangling and self-prompting to segment unseen
tumor categories beyond the training set. ZePT disentan-
gles the object queries into two subsets and trains them in
two stages. Initially, it learns a set of fundamental queries
for organ segmentation through an object-aware feature
grouping strategy, which gathers organ-level visual fea-
tures. Subsequently, it refines the other set of advanced
queries that focus on the auto-generated visual prompts
for unseen tumor segmentation. Moreover, we introduce
query-knowledge alignment at the feature level to enhance
each query’s discriminative representation and generaliz-
ability. Extensive experiments on various tumor segmenta-
tion tasks demonstrate the performance superiority of ZePT,
which surpasses the previous counterparts and evidences
the promising ability for zero-shot tumor segmentation in
real-world settings.

1. Introduction
A key challenge in medical image analysis stems from the
long-tailed distribution problem, characterized by heavily
imbalanced datasets where a few common cases coexist
with many rare diseases [73] (Fig. 1 (a)). Most existing
methods trained on specific-purpose datasets solely focus
on a narrow scope of organs or tumors [14, 15, 21, 28, 49,

*Equal contribution. BCorresponding authors. This work was sup-
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at https://github.com/Yankai96/ZePT.
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Figure 1. (a) The long-tailed distribution issue in medical image
analysis. (b) ZePT is trained on datasets containing multiple or-
gans and tumors. During inference, ZePT can segment both seen
categories (i.e. organs and tumors) and unseen tumors.

54, 74]. Recently, some studies [8, 36] attempted to design
general-purposed methods that can handle various organs
and tumors with a unified model. However, these models
require large amounts of labeled training data and still have
difficulty in identifying rare or new lesion categories that
are clinically relevant. Obtaining gold-standard annotation
for every tumor category from clinical experts can be highly
expensive due to labor-intensive manual efforts, complex
annotation processes [22], and may incur privacy concerns.
In such a scenario, a zero-shot segmentation approach is
highly desired, where the model can automatically segment
unseen diseases without prior exposure to annotated cases
during training. Therefore, we aim to explore the potential
of zero-shot segmentation in developing a general-purpose
medical image segmentor, as illustrated in Fig. 1 (b).

The zero-shot segmentation [6] paradigm has been
widely studied in the general image processing field [3, 18,
64, 71], which replaces the learnable weights of the classi-
fier with fixed class semantic embeddings [12, 30, 43, 46]
to transfer knowledge from seen (base) categories to unseen
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(novel) ones. Nevertheless, the performance of these meth-
ods is bottlenecked due to the absence of necessary knowl-
edge about the novel classes [61, 76]. In more recent devel-
opments, open-vocabulary semantic segmentation (OVSS)
techniques [13, 17, 35, 48, 67] utilize vision-language mod-
els (VLMs), e.g., CLIP [50], to significantly enhance the
accuracy of zero-shot segmentation. Some of them fur-
ther utilize object queries from MaskFormer [9, 10] trained
on base categories to produce class-agnostic mask propos-
als and then classify proposals with VLMs, demonstrating
strong and robust zero-shot segmentation capabilities.

Although OVSS methods have achieved success in seg-
menting novel categories, their performance heavily de-
pends on the quality of the generated proposals. Our pilot
experiments in Tab. 1 indicate a primary challenge in apply-
ing the conventional OVSS strategy to tumor segmentation
tasks: the vision clues of the semantics of tumors are usually
more subtle and ambiguous than most common-life objects
in natural images, which, as a consequence, makes it diffi-
cult to generate high-quality proposals for the unseen tumor
categories. Therefore, the commonly adopted assumption
in most OVSS methods [13, 17, 35, 48, 67] that the gen-
erated proposals cover almost all the potential object-of-
interest no longer holds in the scenario of tumor segmen-
tation, where a considerable number of tumors of unseen
categories may be poorly covered.

Driven by the aforementioned limitations, we present a
novel framework named ZePT for zero-shot tumor segmen-
tation. ZePT adopts a query-disentangling scheme that par-
titions the object queries into two distinct subsets: funda-
mental queries and advanced queries. Then we decouple the
learning process into two stages, allowing the model to first
understand comprehensive organ anatomies and then focus
on tumor segmentation, analogous to the learning process of
human radiologists. In Stage-I, we pretrain the fundamental
queries via object-aware feature grouping to acquire organ-
level semantics for precise organ segmentation. In Stage-II,
we train advanced queries, guided by self-generated visual
prompts emerging from the fundamental queries, to con-
centrate on the subtle visual cues associated with tumors.
Through the query-disentangling and self-prompting, ZePT
captures fine-grained visual features associated with patho-
logical changes and generates high-quality proposals that
precisely cover unseen tumors. At last, we introduce cross-
modal alignment between automatically sourced medical
domain knowledge and query embeddings to provide weak
supervision and augment the model with additional high-
level semantic information, further enhancing the model’s
generalizability to unseen tumors.

In our experiments, we train ZePT using an assembly of
10 public benchmarks. We measure the tumor segmentation
performance on MSD dataset [2] and a curated real-world
dataset in a zero-shot manner. ZePT shows robust segmen-

tation performance across four unseen tumor categories,
significantly outperforming the previous leading methods
by an average improvement of 15.85% in DSC, 17.43% in
AUROC, and 23.27% in FPR95. Meanwhile, ZePT also im-
proves the segmentation performance of seen organs and
tumors by at least absolute 4.83% in DSC on BTCV [34],
4.51% in DSC per case score on LiTS [5], 2.21% in DSC on
KiTS [20], compared with the strong baseline nnUNet [23]
and Swin UNETR [56].

Our main contributions can be summarized as follows:
• We propose ZePT, a novel two-stage framework with a

query-disentangling scheme tailored for zero-shot tumor
segmentation.

• We formulate tumor segmentation as a unique self-
prompting process to localize unseen tumors.

• ZePT performs feature-level alignment between object
queries and medical domain knowledge, further enhanc-
ing its generalizability to unseen tumors.

• ZePT consistently outperforms SOTA counterpart meth-
ods on multiple segmentation tasks, showing its effective-
ness and robustness.

2. Related Work
Multi-Organ and Tumor Segmentation. The advance-
ment of innovative model architectures [16, 23, 69, 72] and
learning strategies [26, 29, 55, 56, 65, 75] has significantly
propelled the field of automatic multi-organ segmentation,
allowing it to achieve expert-level performance. Despite
this significant progress, pan-tumor segmentation persis-
tently presents a challenge. Existing efforts are usually spe-
cialized for single tumors [19, 21, 27, 28, 49, 68]. Some lat-
est attempts are dedicated to training a universal model for
segmenting various organs and tumors [8, 36]. In addition,
a growing trend is emerging in efforts [7, 11, 39, 59, 62] to
transfer the capabilities of SAM [33] to segment the abdom-
inal organs and specific tumors. Differently, ZePT takes one
step further by investigating a model that is capable of seg-
menting tumors from multiple organs in a zero-shot manner.
Open-Vocabulary Semantic Segmentation. The emerg-
ing concept of OVSS defines a generalized zero-shot se-
mantic segmentation paradigm that allows a model to be
trained on conventional vision datasets with close-set la-
bels while possessing the ability to segment an image
into arbitrary semantic regions according to text descrip-
tions [13, 17, 35, 48, 67]. Nevertheless, as pointed out
in [35], the mask proposals in OVSS methods are not truly
“class-agnostic”. They tend to overfit to seen categories and
fail to cover previously unseen obscure objects. This issue
hinders the transfer of the power of OVSS to zero-shot tu-
mor segmentation on medical images. Differently, ZePT
disentangles the object queries into two sets and adopts
a self-prompting strategy to guide the model to explicitly
learn semantics related to unseen (novel) tumor categories.
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Figure 2. Overall pipeline. Stage-I: Based on MaskFormer [9, 10], we propose an object-aware feature grouping strategy to train a set of
fundamental queries for multi-organ segmentation. Stage-II: A set of advanced queries for tumor segmentation attend to visual prompts
derived from the affinity between fundamental query embeddings and visual features which indicates the presence of unseen abnormalities.
Finally, we incorporate medical domain knowledge to better align text embeddings with query embeddings for cross-modal reasoning.

Unseen Lesion Detection and Segmentation. Some re-
search efforts [47, 53, 57, 70, 77] also explored innova-
tive approaches to detect or segment unseen lesions/tumors,
which formulated the task as out-of-distribution (OOD) de-
tection. Although unseen tumors can be regarded as a kind
of OOD sample, the zero-shot segmentation task in this pa-
per is largely different from OOD detection from the per-
spective that our main objective is to segment and classify
multi-class tumors in a zero-shot manner with text descrip-
tions, while OOD detection only recognizes unseen tumors
as one single outlier class.

3. Method
As illustrated of Fig. 2, ZePT differs significantly from ex-
isting OVSS approaches [13, 17, 35, 48, 67] in that it dis-
entangles the learning process of seen organs and unseen
tumors into two stages and partitions object queries into
two distinct subsets: fundamental queries and advanced
queries. Specifically, Stage-I aims at pretraining fundamen-
tal queries on multiple datasets containing only organ la-
bels to attain high-quality organ segmentation capability.
In Stage-II, we formulate tumor segmentation as a self-
prompting process, where advanced queries attend to the
visual prompts derived from the affinity between embed-
dings of fundamental queries and visual features for captur-
ing critical fine-grained context information and pathologi-
cal changes related to tumors. We elaborate on the details
of our designs in the following.

3.1. Stage-I: Fundamental Queries for Organs

We build our model upon a MaskFormer [9, 10]. As shown
in Fig. 2 (a), the segmentation backbone consists of three
components. A vision encoder Ve that extracts multi-scale

visual features V = {Vi}4i=1, Vi ∈ RHi×Wi×Di×Ci from
3D volumes. Here, Hi, Wi, Di and Ci denote the height,
width, depth and channel dimension of Vi, respectively. A
transformer decoder Td that updates a set of NF learnable
fundamental queries F ∈ RNF×C by interacting them with
multi-scale visual features. A vision decoder Vd that gradu-
ally upsamples visual features to high-resolution image em-
beddings O ∈ RH×W×D×C .

To capture organ-level information and achieve object-
aware cross-modal reasoning, we propose an object-aware
feature grouping strategy in Td to guide each learnable fun-
damental query to represent and specify a corresponding or-
gan category. This is achieved by grouping visual features
into the query embeddings for context-aware reasoning.

Specifically, Td consists of a series of transformer blocks
enabling the queries to interact with multi-scale features. In
the i-th transformer block, the fundamental queries F ∈
RNF×C first exploit global information from 3D image
feature maps Vi ∈ RHi×Wi×Di×Ci via a classical cross-
attention as follows:

Q = W qδ(F ),K = W kVi,V = W vVi (1)

F̂i = MLP(LayerNorm(Softmax

(
QKT

√
d

)
V), (2)

where W q,W k,W v ∈ RCi×Ci are learnable projection
matrices. δ is a linear projection.

Subsequently, we explicitly assign the relevant local
context information from visual features into the funda-
mental queries based on affinity in the embedding space
to ensure that different queries focus on different visual
regions without overlaps. We first calculate an assign-
ment similarity matrix Si ∈ RNF×HiWiDi between the
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fundamental queries F̂i and the image features Vi via a
Gumbel-Softmax [24, 42] operation:

Sgumbel
i = Softmax

((
F̂iV

T
i +G

)
/τ

)
. (3)

Here G ∈ RNF×HiWiDi are i.i.d random samples drawn
from the Gumbel(0, 1) distribution and τ is a learnable co-
efficient to assist in finding a suitable assignment boundary.

We then group the visual features in Vi and corresponds
the groups to the queries F̂i by taking the one-hot operation
of the argmax over Sgumbel

i :

Sonehot
i = onehot

(
argmaxNF

(Sgumbel)
)
. (4)

Since the straightforward hard assignment (i.e., one-hot) via
argmax is not differentiable, we adopt the straight through
trick in [58, 66] to compute the assignment similarities Ŝi

of one-hot value as follows:

Ŝi =
(
Sonehot
i

)⊤
+ Sgumbel

i − sg
(
Sgumbel
i

)
, (5)

where sg is the stop gradient operator.
With the above operations, the whole transfomrer block

is differentiable and end-to-end trainable. Ŝi indicates the
assignment of object-level visual features to each query. Fi-
nally, query embeddings F̂i will be updated via being as-
signed with the most corresponding features in Vi according
to Ŝi, which can be denoted as follows:

F̂i+1 = MLP (SiVi) + F̂i. (6)

The binary mask proposals BM ∈ [0, 1]NF×H×W×D

for fundamental queries are obtained by a multiplication op-
eration between the query embedding and high-resolution
image features O followed by a Sigmoid. We adopt Dice
Loss to supervise mask proposals with organ labels. We
also process the query embeddings through a MLP layer
to get class embeddings, which are then supervised using
the category information of organs through a Cross-Entropy
loss. As later shown in Fig. 4 (a), our learnable fundamen-
tal queries focus on distinct foreground organ regions and
explicitly encourage the strict boundaries between different
categories, preventing mixed representations where the tar-
get region and the disturbing regions are grouped together.
Such discriminative representation also enhances the local-
ization of unseen tumors, as discussed in Sec. 3.2.

3.2. Stage-II: Advanced Queries for Tumors

In Stage-II, we aim to refine a set of NA advanced queries
A ∈ RNA×C for tumor segmentation and ensure their gen-
eralization to unseen tumors. The core insight is to endow
the advanced queries with the ability to capture anomaly
information of tumors by utilizing fundamental queries.
We propose to reformulate tumor segmentation as a self-
prompting process where the advanced queries can be aware

of abnormal information related to pathological changes in
the feature context via visual prompts. We retain the train-
ing datasets in Stage-I to avoid the forgetting problem of
the fundamental queries and add several datasets contain-
ing tumor labels for Stage-II. It is worth noting that there
are novel tumor categories in the testing phase, rendering
our method truly “zero-shot”.

Self-Generated Visual Prompts. As shown in Fig. 2
(b), we utilize the pretrained Ve, Vd, Td, and fundamen-
tal queries F from Stage-I. The volumes are fed into the
pretrained network to obtain the multi-scale visual features
V = {Vi}4i=1, high-resolution image embeddings O ∈
RH×W×D×C and refined fundamental query embeddings
F̂ ∈ RNF×C . We compute multi-scale query response
maps Ri ∈ RNF×Hi×Wi×Di representing the affinity be-
tween visual features and different fundamental queries at
each resolution stage. Then we adopt the negative of max-
imal operation [70] along channel dimension on Ri to gen-
erate multi-scale anomaly score Mi ∈ RHi×Wi×Di maps:

Ri = F̂iV
T
i (7)

Mi = −max
c∈1,...,NF

Rc
i , i ∈ [1, 4]. (8)

These anomaly score maps Mi can be further normalized
into mask prompts M̂i ∈ [0, 1]Hi×Wi×Di by min-max nor-
malization and a threshold of 0.5, where M̂

(h,w,d)
i = 1 and

M̂
(h,w,d)
i = 0 represent that the voxel located at position

(h,w, d) in the input 3D volume belongs to an anomalous
unseen category and an in-distribution seen organ class, re-
spectively. We use these mask prompts, adaptively derived
from the embedding space, to assist the advanced queries
to attend to the anomalous context features and learn repre-
sentations that effectively localize unseen tumors.

Query Refinement Decoder. The Query Refinement
Decoder (QRD) takes mask prompts, multi-scale visual fea-
tures, a set of zero-initialized advanced queries, and embed-
dings of fundamental queries as inputs. As shown in Fig. 2
(c), the NA advanced queries are designed to localize and
identify unseen tumors on organs corresponding to the NF

fundamental queries. For the i-th block in QRD, the ad-
vanced queries Ai are first updated via interactions with
multi-scale features Vi and mask prompts M̂i via:

Âi = Ai + Softmax(Mi +QAiKT
Vi
)VVi

T , (9)

where QAi
= fQ(Ai) ∈ RNA×Ci denotes embeddings of

advanced queries under transformation fQ(·). KVi
, VVi

∈
RCi×HiWiDi denote 3D image features under transforma-
tion fK(·) and fV(·), respectively. The visual prompt at-
tention mask Mi at feature location (h,w, d) is defined as:

M(h,w,d)
i =

{
0 if M̂ (h,w,d)

i = 1

−∞ otherwise
. (10)
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We refer to this mechanism as prompt-based masked
attention because it aggregates the visual information
highlighted by given mask prompts, allowing advanced
queries to concentrate on abnormal regions with patholog-
ical changes across various organs, thereby facilitating the
detection of previously unseen tumors. Through a series
of blocks, we can obtain the refined advanced queries Âi.
Then, QRD concatenates fundamental queries F̂i with ad-
vanced queries Âi and performs self-attention among them
to encode the relationship between fundamental and ad-
vanced queries, facilitating the adjustment of their represen-
tations to encourage a clear semantic distinction between
organs and tumors. Finally, we use these updated queries to
generate corresponding mask proposals as described in 3.1.
Organ labels supervise the mask proposals derived from the
fundamental queries, whereas tumor labels supervise those
from advanced queries.

Query-Knowledge Alignment. To make the model
better retain its generalization ability for recognizing un-
seen tumors, we introduce Query-Knowledge Alignment
for the weakly-supervised cross-modal alignment between
visual features of queries and high-level semantics of tex-
tual knowledge. Instead of a simple description (e.g. “a
photo of ”) in previous methods [13, 35, 36, 67], we uti-
lize detailed knowledge of each class name by prompting
GPT4 [44] with an instruction: “Please describe {CLS}.
The answer should encompass attributes related to its lo-
cation, shape, size, and anatomical structure.”. Each piece
of generated knowledge is checked and modified by pro-
fessional doctors to ensure correctness. We adopt Clinical-
BERT [1] as a pretrained text encoder to get the knowledge
embeddings K. The predicted probability distribution over
the training classes for the i-th query is calculated as:

Pi =
exp( 1τ ζ(Ki,Qi))∑|L|
j=0 exp( 1τ ζ(Kj ,Qi))

, (11)

where ζ is the cosine similarity between two embeddings,
and τ is the temperature. Q is derived from query embed-
dings via a linear projection layer. During training, the simi-
larities between matched query embedding and text embed-
ding should be maximized. A cross-entropy loss is applied
on P for supervision.

In summary, we combine the Dice loss on mask propos-
als and the cross-entropy loss for query-knowledge align-
ment to supervise the learning in Stage-II.

4. Experiments
Dataset Construction. (1) Training: In Stage-I, we as-
semble the training sets of 8 public datasets, including
Pancreas-CT [52], AbdomenCT-1K [40], CT-ORG [51],
CHAOS [32], AMOS22 [25], BTCV [34], WORD [38]
and TotalSegmentator [60]. These datasets exclusively con-

tained organ labels. In Stage-II, we add CT images from
the training sets of LiTS [5] and KiTS [20]. The overall
seen categories used for training consist of 25 organ classes
and 2 tumor classes. (2) Inference: We employ the MSD
dataset [2] that encompasses a range of segmentation tasks
for five tumor types in CTs. Among these, pancreas tu-
mors, lung tumors, colon tumors, and hepatic vessel tumors
belong to unseen categories. A real-world, private dataset
containing 388 3D CT volumes of four distinct colon tu-
mor subtypes is also utilized for testing. We follow the data
pre-processing in [36] to reduce the domain gap among var-
ious datasets. Due to page limits, details of all datasets and
pre-processing are described in the supplemental material.
Evaluation Metrics. Dice Similarity Coefficient (DSC) is
utilized for evaluating organ/tumor segmentation. We also
report the area under the receptive-operative curve (AU-
ROC) and the false positive rate at a true positive rate of
95% (FPR95), which are commonly used in OOD detection
methods [31, 63, 70]. For all the metrics above, 95% CIs
were calculated and the p-value cutoff of less than 0.05 was
used for defining statistical significance.
Implementation Details. (1) Stage-I: We use the current
benchmark model in medical image segmentation, Swin
UNETR [19], as the backbone, which consists of a vision
encoder and a vision decoder with skip connections. We
adopt four transformer decoder blocks in Td, and each takes
image features with output stride 32, 16, 8, and 4, respec-
tively. We employ AdamW optimizer [37] with a warm-up
cosine scheduler of 50 epochs. The batch size is set to 2
per GPU with a patch size of 96 × 96 × 96. The train-
ing process uses an initial learning rate of 1e−4, momentum
of 0.9 and decay of 1e−5 on multi-GPU (8) with DDP for
1000 epochs. Extensive data augmentation is utilized on-
the-fly to improve the generalization, including random ro-
tation and scaling, elastic deformation, additive brightness,
and gamma scaling. The number of the fundamental queries
NF is 25 for 25 organ classes. The loss is the sum of Cross-
Entropy loss and Dice loss. (2) Stage-II: We adopt the pre-
trained model in Stage-I. We set the initial learning rate as
4e−4. QRD has four blocks and each attention layer in the
QRD block has eight heads. The number of the advanced
queries NA is 20 for tumors/diseases categories. Other set-
tings are kept the same as in Step-I. We implement ZePT
model in PyTorch [45]. All experiments are conducted on 8
NVIDIA A100 GPUs.
Baselines. In this paper, the zero-shot tumor segmentation
setting requires that models directly segment unseen tumor
types during inference without any fine-tuning or retrain-
ing. This is notably challenging as the model has to han-
dle both unseen classes and domain gaps between differ-
ent datasets. For unseen tumor segmentation, we compare
ZePT with a series of representative OVSS methods, includ-
ing ZegFormer [13], zsseg [67], OpenSeg [17], OVSeg [35],

11390



Method
MSD Dataset Real-World Colon

Tumor SegmentationPancreas Tumor Lung Tumor Hepatic Vessel Tumor Colon Tumor
AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑

ZegFormer [13] 66.45 69.33 14.92 41.31 81.78 9.94 75.39 55.94 30.81 50.13 78.81 11.34 55.64 74.29 12.03
zsseg [67] 53.23 79.27 11.40 34.96 87.54 7.98 71.43 60.35 28.57 47.79 82.68 9.68 50.30 79.52 10.18
OpenSeg [17] 44.56 85.19 10.05 23.49 91.75 6.12 59.23 70.52 23.38 41.76 89.44 7.13 41.92 87.51 7.59
OVSeg [35] 70.22 59.73 19.36 52.93 68.65 14.11 85.77 40.28 35.66 59.94 65.25 15.76 69.95 64.84 16.05
FreeSeg [48] 69.98 60.75 18.19 49.92 70.39 13.26 85.62 41.77 35.08 56.45 68.49 14.71 67.01 66.07 15.30
SynthCP [63] 51.24 81.69 11.33 25.85 90.28 6.43 70.12 63.55 28.01 43.84 87.71 8.74 48.37 84.95 8.72
SML [31] 37.95 89.93 9.72 20.18 93.65 6.02 57.44 70.96 22.97 22.41 92.07 6.65 39.88 88.41 7.21
MaxQuery [70] 68.99 59.93 18.15 48.24 70.47 11.29 83.66 42.45 34.30 50.47 69.88 13.43 64.53 67.65 15.24
ZePT 86.81 35.18 37.67 77.84 44.30 27.22 91.57 20.64 52.94 82.36 40.73 30.45 84.35 38.29 36.23

Table 1. Detection and segmentation performance of unseen tumors on MSD [2] and real-world colon tumor dataset. ZePT achieves
state-of-the-art unseen tumor detection and segmentation performance. More results can be found in the supplemental material.

and Freeseg [48]. We also compare ZePT with OOD detec-
tion methods [31, 63, 70], which treat unseen tumors as a
single outlier class. We adopt the masked back-propagation
in [36] to enable the training of these methods on partially
labeled datasets. All baselines are trained with all datasets
used in Stage-I and Stage-II. For seen organ/tumor segmen-
tation, we compare ZePT with SOTA benchmark models,
including nnUNet [23], Swin UNETR [56] and Universal
model [36].

4.1. Main Results

Unseen Tumor Segmentation on MSD Dataset. Tab. 1
shows the segmentation performance of four unseen tumor
categoreis from MSD [2]. All available volumes in these
four tumor segmentation tasks are directly used for test-
ing. Compared with SOTA OVSS methods, ZePT demon-
strates a notable performance enhancement in the context
of average unseen tumor localization performance across
four tasks, achieving at least a 17.43% improvement in
AUROC and a 23.27% increase in FPR95. Regarding the
average performance in unseen tumor segmentation across
these tasks, ZePT continues to maintain a substantial lead,
as evidenced by a notable 15.85% improvement in the DSC.
These results indicate that the proposed query-disentangling
and self-prompting can effectively help the model capture
visual cues related to tumors, thus boosting the ability
to recognize unseen ones. Moreover, OVSS methods re-
quire an additional frozen CLIP vision encoder to classify
each mask proposal, leading to slower inference speeds.
In contrast, ZePT removes this process and adopts query-
knowledge alignment at the feature level, which maintains
a reasonable computation cost. As shown in Tab. 2, ZePT
has fewer network parameters and approximately 23% of
the FLOPs compared to previous OVSS methods.

We also compare ZePT with SOTA OOD detection
methods. ZePT’s average performance surpasses the pre-
viously best-performing MaxQuery [70] across four tasks
by 21.81% in AUROC, 25.47% in FPR95, and 17.78% in
DSC. ZePT aligns visual features with linguistic semantics
for cross-modal interaction instead of solely exploiting in-

Efficiency
Method

ZePT ZegFormer [13] OVSeg [35] FreeSeg [48]

Params 745.94M 950.82M 963.44M 1077.85M
FLOPs 1337.59G 5766.21G 5929.65G 6893.14G

Table 2. Computational cost comparison between ZePT and cur-
rent OVSS methods. The FLOPs is computed based on input with
spatial size 96× 96× 96 on the same single A100 GPU.

Method BTCV LiTS KiTS
nnUNet [23] 82.23±2.07 77.15±3.47 85.18±1.26
Swin UNETR [56] 82.26±2.02 76.79±3.52 85.52±1.13
Universal [36] 86.38±1.61 80.58±3.03 87.05±1.04
ZePT 87.09±1.54 81.66±2.79 87.73±0.99

Table 3. 5-fold cross-validation results on the BTCV [34],
LiTS [5], and KiTS [20] validation dataset. We report the aver-
age DSC of 13 organs in BTCV, the Dice per case score of liver
tumors in LiTS, and the DSC of kidney tumors in KiTS.

formation from visual modality like most OOD region seg-
mentation methods. The results suggest that leveraging fea-
tures from images together with medical domain knowledge
benefits the semantic understanding of unseen tumors.
Real-World Colon Tumor Segmentation. We further con-
duct a zero-shot evaluation on a real-world colon tumor
dataset. The average results of four colon tumor subtypes
are also summarized in Tab. 1. ZePT outperforms the base-
lines by at least absolute 14.40% in AUROC, 26.55% in
FPR95, and 20.18% in DSC, demonstrating much better
generalizability and robustness. ZePT reaches a much lower
FPR95 compared with previous methods, which is crucial
for safety-critical medical scenarios. The results indicate
ZePT has a strong potential for utility in clinical practice.
Segmentation of Seen Organs and Tumors. As shown
in Tab. 3, the segmentation performance of ZePT on seen or-
gans surpasses strong baseline nnUNet [23] and Swin UN-
ETR [56] by at least absolute 4.83% in DSC on BTCV [34],
4.51% in DSC for liver tumors on LiTS [5], and 2.21%
in DSC for kidney tumors on KiTS [20]. Notably, ZePT
achieves comparable or even better segmentation perfor-
mance compared with the Universal model [36], which uti-
lizes an assembly of 14 public datasets with a total of 3, 410
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Figure 3. Qualitative visualizations on MSD [2] dataset. We compare ZePT with other advanced OVSS methods and OOD detection
methods in a zero-shot manner. The segmentation results presented from rows one to four correspond, in order, to hepatic vessel tumors,
lung tumors, pancreatic tumors, and colorectal tumors. We present the visualizations on other datasets in the supplemental material.

CT scans for training. The Universal model [36] adopts a
CLIP text encoder, which processes the organ and tumor
names into text embeddings, to introduce the semantic re-
lationship between anatomical structures. ZePT takes one
step further by designing a more advanced architecture for
visual feature extraction and incorporating additional medi-
cal domain knowledge to polish feature representations with
diverse and fine-grained cues. These improvements demon-
strate that ZePT can also segment seen organs and tumors
with high accuracy.

Qualitative Analysis. Fig. 3 shows the qualitative re-
sults and demonstrates the merits of ZePT. Most competing
methods suffer from segmentation target incompleteness-
related failures and misclassification of background regions
as tumors (false positives). ZePT produces sharper bound-
aries and generates results that are more consistent with the
ground truth in comparison with all other models.

We also visualize the query response maps of different
seen organs and unseen tumors, as well as the anomaly
score maps to illustrate the working mechanism of funda-
mental queries and advanced queries in ZePT. As shown
in Fig. 4 (a), the different organ regions are confidently ac-
tivated by fundamental queries Fi (F1 for spleen, F5 for
esophagus, F6 for liver, etc.). This advantage is attributed
to the object-aware feature grouping, which enables each
fundamental query to represent a corresponding organ.

In Row 1 of Fig. 4 (b), we can observe the pancreas
region is captured by the fundamental query F11, and the
anomaly score maps derived from F11 maintains high re-
sponses around the pancreas tumor region to indicate our
model the potential location of unseen tumors. Further-

𝐹! → Spleen 𝐹" → Liver 𝐹# → Stomach

𝐹$ → Esophagus 𝐹% → Aorta 𝐹& → Postcava

CT scan

Ground truth

(a) A testing example containing seen categories (From BTCV) 
𝐹!! → Pancreas 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒

𝑚𝑎𝑝 𝐹𝑟𝑜𝑚 𝐹!!
A!! → Pancreas 

Tumor

𝐹!% → 𝐶𝑜𝑙𝑜𝑛

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒
M𝑎𝑝 𝐹𝑟𝑜𝑚 𝐹!% A!% → Colon Tumor

(b) Testing examples containing unseen tumors

Figure 4. Visualization of query response maps. (a) A test sample
containing seen categories from BTCV [34] evaluation set. (b)
Two test samples, one from the MSD’s pancreas tumor task [2] and
the other from the real-world colon tumor segmentation dataset.
We can observe the query distribution on the different organs and
tumors with obvious separation. The clear boundaries and high
responses show the advantages of encouraging discriminative and
disentangled queries to represent different objects, which benefits
the segmentation of both seen and unseen categories.

more, the advanced queries A11 capture the region corre-
sponding to the pancreas tumor according to the guidance
of mask prompts derived from anomaly score maps. The
same phenomenon can also be observed in the example of
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colon tumor segmentation in Row 2 of Fig. 4 (b). These
visual examples fulfill the motivation of the self-prompting
strategy that uses the anomaly score maps derived from fun-
damental queries as visual prompts to guide the advanced
queries to segment unseen tumors.

4.2. Ablation Study and Discussions

Significance of Object-Aware Feature Grouping. We re-
move the object-aware feature grouping (OFG) and use the
vanilla MaskFormer [10] to update the fundamental queries.
We denote this variant as ZePT (w/o OFG) in Tab. 4, which
is observed to have a performance drop on both seen and
unseen categories. This shows that OFG is crucial in learn-
ing object queries for region-level information.
Importance of Query Refinement Decoder. We replace
the Query Refinement Decoder (QRD) with a vanilla trans-
former decoder to directly update all object queries to-
gether. It should be noted that this operation also elimi-
nates the query-disentangling scheme since object queries
are entangled into a single set and directly matched across
all categories. We denote this variant as ZePT (w/o QRD)
in Tab. 4, which is observed to have a significant perfor-
mance drop of 11.89% in AUROC and 10.39% in DSC for
unseen colon tumor segmentation. This confirms the effi-
cacy of QRD, designed to use visual prompts for updating
advanced queries and to introduce interactions between the
two sets of queries. This design enables both query sets to
modify their representations for enhanced performance.
Effectiveness of Prompt-Based Masked Attention. As il-
lustrated in Tab. 4, we replace the prompt-based masked at-
tention with a vanilla self-attention layer and directly con-
catenate the visual prompts (anomaly score maps) with im-
age features to update the advanced queries. We denote this
variant as ZePT (w/o PMA). This variant leads to decreased
performance on both seen and unseen tumors, verifying that
prompt-based masked attention is an effective way to lever-
age the visual prompts.
Efficacy of the Query-Knowledge Alignment. We remove
the query-knowledge alignment and employ the CLIP im-
age encoder to classify mask proposals in the same manner
as conventional OVSS methods. We denote this variant as
ZePT (w/o QKA) in Tab. 4, which is observed to have a per-
formance drop of 10.13% in AUROC and 5.19% in DSC on
unseen colon tumors. Compared with an additional tuned
CLIP image encoder, our feature-level cross-modal align-
ment between queries and domain knowledge directly and
explicitly introduces high-level linguistic semantics into the
visual representation, which is more effective and efficient.
Investigation on Self-Generated Visual Prompts. Re-
cently, many methods based on SAM [33] leverage vi-
sual prompts for medical image segmentation [7, 39, 62].
ZePT, using self-generated prompts adaptively derived from
the embedding space, consistently outperforms these SAM-

Method
Liver Tumor

in LiTS (Seen)
Real-World Colon
Tumor (Unseen)

AUROC↑ DSC↑ AUROC↑ FPR95↓ DSC↑
ZePT (w/o OFG) 95.96±0.85 80.84±3.17 75.39 48.24 31.28
ZePT (w/o QRD) 94.53±1.75 80.11±3.98 72.46 58.93 25.84
ZePT (w/o PMA) 96.25±0.62 81.00±3.01 78.01 44.35 33.06
ZePT (w/o QKA) 95.04±1.09 80.61±3.34 74.22 50.31 31.04
ZePT 96.82±0.47 81.66±2.79 84.35 38.29 36.23

Table 4. Ablation study of different network components on LiTS
and the real-world colon tumor segmentation dataset.

Methods with Different Prompts DSC↑ NSD↑
MedSAM [39] (relaxed 3d bbx prompt) 26.18 36.25
MSA [62] (1 point prompt) 27.88 39.06
MA-SAM [7] (relaxed 3d bbx prompt) 29.39 41.11
ZePT (relaxed 3d bbx prompt) 35.89 48.04
ZePT 36.23 48.78

Table 5. Comparisons between ZePT and SAM-based [33] med-
ical image segmentation methods [7, 39, 62] on real-world colon
tumor segmentation dataset. We report DSC and Normalized Sur-
face Distance (NSD).

based methods, which adopt bounding boxes or points
provided by the users as prompts (Tab. 5). Moreover,
our prompt-based masked attention can also handle box
prompts. We observe that self-generated visual prompts can
match or even surpass the performance of strong manual
prompts, like relaxed boxes, a finding corroborated by our
visualization of anomaly score maps in Fig. 4 (b). Such
flexible and adaptive self-generated prompts are crucial for
unseen tumor segmentation scenarios, where acquiring even
bounding box prompts is challenging.
Discussions about Limitations. The zero-shot segmenta-
tion performance of ZePT on unseen tumors still falls be-
hind supervised models fully trained on these tumors. Al-
though the comparison is unfair, it indicates there is still
much room for improvement. We hope our work can shed
some light on designing models with zero-shot abilities for
medical imaging tasks.

5. Conclusions
In this work, we propose ZePT, a novel framework based on
query-disentangling and self-prompting for zero-shot pan-
tumor segmentation. We disentangle the object queries into
two subsets and decouple their learning process into two
stages. ZePT exploits discriminative and object-level fea-
ture representation for organs and tumors. We introduce
a self-prompting strategy to adaptively localize abnormali-
ties for guiding the queries to be aware of the pathological
changes among visual contexts. Additionally, we perform
query-knowledge alignment at the feature level to further
enhance the model’s generalization capabilities. The signif-
icant performance improvements of ZePT on various organ
and tumor segmentation tasks validate its effectiveness.
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