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Abstract

This paper introduces 3DFIRES, a novel system for

scene-level 3D reconstruction from posed images. Designed

to work with as few as one view, 3DFIRES reconstructs

the complete geometry of unseen scenes, including hid-

den surfaces. With multiple view inputs, our method pro-

duces full reconstruction within all camera frustums. A

key feature of our approach is the fusion of multi-view in-

formation at the feature level, enabling the production of

coherent and comprehensive 3D reconstruction. We train

our system on non-watertight scans from large-scale real

scene dataset. We show it matches the efficacy of single-

view reconstruction methods with only one input and sur-

passes existing techniques in both quantitative and quali-

tative measures for sparse-view 3D reconstruction. Project

page: https://jinlinyi.github.io/3DFIRES/

1. Introduction

Consider two views of the scene in Fig. 1. Part of the bed-

room in View 1 is occluded by the wall, and so you may

be uncertain what is behind it, although you might guess

the wall continues. Now consider adding in View 2. You

can see a bedside table, but little else. However, you can

fuse these pieces together to create a consistent 3D sense of

the scene viewed by the images, including both the visible

and invisible parts. We use this sense when shopping for

real estate or looking at a friend’s photos. We estimate the

structure of the scene from parts that are visible to all views;

integrate information across images for parts that visible in

one view but not others; and take educated guesses for com-

pletely occluded regions. Importantly, as the available data

increases from one camera to a handful, we can seamlessly

integrate the evidence across views.

This task poses a challenge for current computer vision

since it requires making judgments about visible and oc-

cluded 3D structures and integrating information across im-

ages with large pose change. These abilities are usually

independently investigated in two separate strands of re-

search. With single image reconstruction techniques [15,

View 1 View 2

?

View 1 Frustum Prediction Full Prediction

3DFIRES

Figure 1. Reconstructing 3D from sparsely posed images.

Given a sparse set of posed image views, our method is able to

reconstruct the full 3D of the scene. On the top, we show two

sparse views of the scene in View 1 and View 2. On the bottom

left is the 3D reconstruction from our network in the frustum of

View 1. We show that our method can generate the occluded side

table (zoom in). On the bottom right is the full reconstruction. We

color occluded surfaces with surface normals.

20, 26, 41, 43], one can predict both visible and occluded

3D structure from an image, but stacking such outputs from

multiple images can produce inconsistent outputs. When

handled independently, methods cannot identify the best

view to reason about an occluded region. Non-line-of-sight

imaging involves transmitting and receiving signals to re-

veal hidden scenes, incompatible with standard camera im-

ages [14]. Sparse view reconstruction methods [1, 17, 39]

can create consistent reconstructions from two views; how-

ever, these approaches are limited to the visible parts of the

scene that can decomposed into planes. Moreover, these

methods are usually specialized to a particular number of

images that can be accepted.

Recently, there has been considerable progress in gen-

eralized radiance fields, which produce full 3D represen-

tations. This occupancy representation and per-scene op-

timization has shown promising results by optimizing for
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novel view synthesis on single scenes from posed images

sets [7, 23, 36, 40]. Extending this line of work, methods

like [32, 46] have shown an ability to predict novel views

for unseen scenes from a few images. However, since these

methods optimize for perceptual quality, the underlying ge-

ometry often has artifacts. Like them we also require one

or more image views at input, but instead we predict an im-

plicit function [20] that can reliably reconstruct both visible

and occluded parts of previously unseen scenes.

We propose 3DFIRES, Few Image 3D-REconstruction

of Scenes, which integrates information from a variable

number of images to produce a full reconstruction of the

scene. 3DFIRES integrates information in the features

space across a varying number of images, enabling it to

identify how to best use the available image data to produce

an accurate reconstruction at a point. As output, 3DFIRES

produces a pixel-aligned implicit field based on a gener-

alization of the Directed Ray Distance Function [20, 21],

which enables high quality reconstructions. Thanks to in-

tegration in feature space, the results are more consistent

than handling images independently: this is what enables

reconstructing the bed-side table in Fig. 1, even though it is

hidden by the wall in one image. We found and document

several design decisions in terms of training and network

architecture needed to produce these results.

We evaluate our method on complex interior scenes from

Omnidata [8, 33] dataset collected with a real scanner. We

compare 3DFIRES with the point-space fusion of state-of-

the-art methods for scene-level full 3D reconstruction meth-

ods from a single image [21, 43]. Our experiments show

several key results. First, 3DFIRES produces more accu-

rate results compared to existing works. The improvements

are larger in hidden regions, and especially substantial when

measuring consistency of prediction from multiple views.

Second, ablative analysis reveals the key design decisions

responsible for 3DFIRES’s success. Third, 3DFIRES can

generalize to variable views: we train on 1, 2, and 3 views

and generalize to 5 views. Finally, 3DFIRES can recon-

struct when given LoFTR [37] estimated poses with known

translation scale.

2. Related Works

We aim to produce a coherent 3D scene reconstruction

given a single or a few images with wide baselines.

3D from Single Image. Predicting a complete 3D scene

from a single image is inherently ambiguous. Recently dif-

ferent 3D representations have been proposed to reconstruct

complete 3D scenes (including occluded surfaces) such as

layered depth [35], voxels [3, 11, 19, 41], planes [16], point-

clouds [9, 43], meshes [10, 12, 25], or implicit representa-

tion for objects [22, 26] and scenes [2, 4, 20, 21, 36]. While

they have strong performance on single image, they do not

necessarily produce coherent results when required to infer

on multiple images of the same scene [21]. Our method can

reconstruct hidden geometry from at least a single image

using implicit representation from [20]. Instead of naively

fusing point clouds from different images, we fuse features

when predicting a multi-view consistent point cloud with

few input images.

3D from dense views. Traditional multi-view 3D recon-

struction methods can produce accurate and coherent point-

clouds from pixel correspondences [33]. Classical methods

in computer vision use approaches like Multi-view stereo

(MVS) to construct only visible parts of the scene in all the

images. There is a long line of work in trying to reconstruct

scenes from video sequences [6, 34] where they reconstruct

visible scenes and camera poses. Learning-based methods

for MVS estimate geometry for scenes [18, 24, 38, 45] also

require an input video to explicitly predict scene geome-

try. Instead of requiring high overlap inputs such as video

frames, our method works on wide-baseline images.

3D from sparse view inputs. Our approach operates

in a multi-view setting with a sparse set of views. We

have a similar setting as wide-baseline reconstruction [27].

Associative3D [28] reconstructs the whole scene but re-

quires voxelized scenes to train, our method works on non-

watertight scene data. Prior work also explores planar rep-

resentation [1, 17, 39] for coherent 3D surfaces in non-

watertight scenes. They use feed-forward networks to pre-

dict visible 3D surfaces for each view and merge them us-

ing predicted correspondences. Our approach leverages an

implicit representation that accommodates non-watertight

data, enabling the reconstruction of both visible and oc-

cluded surfaces. We fuse deep features from multiple views

to predict DRDF representation from Kulkarni et al. [20],

producing a coherent reconstruction.

Novel view synthesis. NeRF [23] and its extensions [42,

46, 48] optimizes per-scene radiance fields for novel-view

synthesis, this requires many views and test-time optimiza-

tion. Due to its occupancy-based representation, extracting

geometry often requires thresholding the density function,

which leads to cloudy geometry with sparse input views.

Our method directly predicts geometry from unseen images

without the need for test-time optimization. PixelNerf [46]

or SRT [32] can generalize to new scenes but their objec-

tives optimize for photometric losses.

3. Method

Our goal is to predict an accurate and consistent 3D recon-

struction from one or more sparsely spaced camera views

and known poses. With one image, the method should pre-

dict all surfaces in the camera frustum, including visible and

occluded regions. With more images, the method should

predict the surfaces in the union of the frustum.

We tackle this problem with 3DFIRES, a simple and ef-

fective approach designed for this setting. We first discuss
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Figure 2. (a) Architecture for single view DRDF [20]. Given an image and a query pixel location, it predicts DRDF along the ray from the

query pixel. (b) we extend (a) to work on sparse views. Middle: Given N images, a query point x, and a query direction r⃗q , we aggregate

features from multiple images and output DRDF along the query ray. Right: We show detailed network architecture of 3DFIRES which

consists of a Query Encoder and a DRDF Predictor.

SV-DRDF 3DFIRES

Figure 3. Predictions in the blue camera frustum. Occluded

surfaces are colored with surface normals. A single image to 3D

method like DRDF [20] is unable to reconstruct the parts of the

scene behind the wall with certainty and hence erroneously adds a

full wall in front of the hallway (red box). 3DFIRES which fuses

features from multiple views (Green and Purple camera in Fig. 2)

predicts empty space for the entrance (black box).

tackling scene reconstruction in a single image case in §3.1

using the Directed Ray Distance Function (DRDF) [20] and

scale this approach to multiple image views in §3.2. In §3.3,

we show how we can operationalize our multi-view recon-

struction goal with an attention-based model architecture.

3.1. Background Single View Reconstruction

We begin by revisiting the DRDF formulation for a single

image reconstruction. Consider a single image I, a single

view implicit reconstruction method aims to produce the

full 3D reconstruction for the scene from this image. At

inference, when conditioned on image features, the method

outputs a distance function for a pre-defined set of 3D points

in the camera frustum. It then decodes this predicted dis-

tance function to a surface to recover the 3D geometry of

the scene. For instance, if the predicted 3D distance func-

tion is an unsigned distance function [2], the points on the

surface are with distances close to zero.

Kulkarni et al. [20] solve the single image 3D recon-

struction with the DRDF function and show that using the

DRDF outperforms the standard unsigned distance func-

tion. The DRDF is a ray-based distance function measuring

the distance of a point x to the nearest intersection with a

surface along a ray r⃗. In [20], the ray on which distances

are measured is the ray from the camera center c to x.

Fig. 2 (a) shows the DRDF for one such ray. Now, any

3D point x can be represented as its distance towards the

camera times a unit ray direction, or zr⃗, where z ∈ R

and r⃗ = norm(x − c) where norm(p) = p/||p||. The

DRDF, dDR(zr⃗), furthermore includes a sign that deter-

mines for the point the direction along the ray towards the

nearest intersection (i.e., forwards or backwards). There-

fore (z + dDR(zr⃗))⃗r corresponds to a point on the surface.

The DRDF can be used to create a system that infers

single image 3D by pairing the distance function at a point

x with pixel-aligned features. At inference time, as shown

in Fig. 2 (a), given a point x in the camera frustum we can

extract corresponding pixel-aligned image features using an
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image backbone BB[π(x)], and use an MLP to predict the

DRDF value corresponding to the point x along the r⃗. Since

DRDF is a ray-based function, its value only depends on the

intersections along the ray. For any ray corresponding to a

pixel on the image, the prediction of DRDF for the point

depends on the image features, and the location of the point

on the ray. This parameterization allows DRDF to learn

sharp 3D reconstructions of the scene from a single RGB

image. At training time, we train a model to predict the

DRDF by supervising it with the ground-truth DRDF values

computed using the mesh geometry.

3.2. Extending DRDFs to Multiple Views

Now, with multiple views we have: N images {Ii}
N
i=1

, rela-

tive camera transforms {πi}
N
i=1

, and corresponding camera

centers {ci}
N
i=1

, our goal is to reconstruct the 3D of the

full scene. While the task could perhaps be accomplished

by simply predicting individual 3D for each camera, and

assembling them together. Our insight is that if the camera

frustums have considerable overlap, for overlapping regions

we can achieve a better and more consistent reconstruction

by allowing the network to reason about which camera pro-

vides the best view for each point. This can be achieved

by allowing the network to fuse features across cameras for

the points in feature space rather than by concatenating in

point space. We propose to improve the feature quality of

any point x by fusing the features from multiple cameras.

Since we are now dealing with the multi-view settings, a

multi-view DRDF formulation is necessary to allow us to

predict the DRDF value along each of the query rays, r⃗q ,

originating from the respective camera centers.

In the case of multiple views, the image feature cor-

responding to a point x should be a fusion of features

{fθ[πi(x)]}
N
i=1

. The feature should support predicting

the N DRDF values along all the camera directions as

{dDR(zir⃗i)}
N
i=1

. The intuition of our key idea is that

multiple-image views provide more information about the

3D scene and hence potentially better features. We can learn

these better features by fusing features to predict a consis-

tent output. This requires a novel architecture that attends to

features and rays, {⃗ri}
N
i=1

, originating from all the available

image views. Under this formulation single view DRDF is

a special case of our formulation where N is 1.

3.3. Network Architecture

Towards the goal of predicting DRDFs along multiple query

rays r⃗q ∈ {⃗ri}
N
i=1

, we present a simple and effective net-

work 3DFIRES that accomplishes this task. 3DFIRES con-

sists of three modules: The first module is a Backbone Fea-

ture Extractor that obtains pixel-aligned appearance fea-

tures; by projecting the query point x onto the camera, we

can obtain a per-point and per-camera appearance feature

as in [20, 23, 31, 42, 46]. Since the appearance feature is

per-image, the model must learn to aggregate information

across cameras. This is done with our second component

Query Encoder that provides geometric information for ag-

gregating appearance features. Specifically, the query en-

coder uses the information about the relative positions of

query point x and query direction r⃗q w.r.t. cameras {πi}
N

i=1
.

The final module is the DRDF Predictor that takes appear-

ance and query features to produces a DRDF value along the

query direction r⃗q by incorporating the appearance features

(evidence for geometry) and query encoder features (evi-

dence that relates different features). Fig. 3 shows an exam-

ple on how integrating information across multiple views

leads to better prediction for occluded parts of the scene.

Backbone Feature Extractor. Our backbone features ex-

tractor BB(·) aims to create appearance features from an

image. It accepts an image Ii ∈ R
H×W×3 and produces

a grid of D-dimensional features Fi ∈ R
H′

×W ′
×Dimg . We

use a pre-trained depth estimating vision transformer [29].

Feature extraction for each image proceeds independently

using the same network. With extracted per-camera back-

bone features, fi, for point x by interpolating features in

{Fi}
N
i=1

at the projection {πi(x)}
N
i=1

correspondingly.

Query Encoder. Our query encoder q(·) aims to enable

a predictor to decide how to aggregate information across

images. As input, the encoder takes a query 3D point

x and a query direction r⃗q . It additionally considers the

backbone features, camera centers {ci}
N
i=1

and transforms

{πi}
N
i=1

. Our query encoding is the concatenation of: (i) the

relative viewing direction in camera i’s space ∆r⃗i(⃗rq) =
[⃗rq − norm(x − ci), r⃗q · norm(x − ci)] ∈ R

4; and (ii) the

normalized device coordinates (NDC), coordinates of point

x in the camera frame ndci(x) ∈ R
3. Intuitively this query

representation, qi = {∆r⃗i, ndci(x)} ∈ R
7 enables reason-

ing such as: information about surfaces near x in direction

r⃗q is likely not visible in camera i due to either angle or

distance, so this feature ought to be weighted low. The ray

query vector is encoded in a positional encoding layer [40]

with output dimension Dquery.

DRDF Predictor. For a query ray and point tuple, {⃗rq,x},

this model considers the image features {fi}
N
i=1

, and query

features {qi}
N
i=1

yielding a joint camera specific feature,

{fi,qi}
N
i=1

, of dimension Dimg +Dquery. Our self-attention

attends over all these features to produce a weight wi per

feature. We aggregate the features using this weight to pro-

duce a fused feature for the point x. We then use the fused

feature to predict a DRDF value between [−1, 1] with the

help of an MLP. This is akin to selecting cameras that are

likely to contain the geometry information about the ray

point tuple and predicting the geometry information.

3.4. Training 3DFIRES

The effectiveness of 3DFIRES is improved by getting de-

tails right during training. One observation is that sampling
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points near intersections gives improvements over uniform

sampling because the scene-level space is predominantly

empty. By increasing the density of sampled points near

surface, the network can better learn the scene structure. We

sample points along the ray as per a Gaussian distribution

centered at the intersection. Prior work [42] involves ap-

plying ray attention which allows for samples along a ray

to attend with each other before the final prediction. This

has been shown to be effective. However, combining ray

attention with Gaussian sampling during training enables

the network to ‘cheat’. Ray Attention exploits a train-time

shortcut (query point density) to infer intersections. At in-

ference as point density is uniform and this shortcut fails.

Empirically we find Gaussian sampling alone to be more

effective than ray attention.

3.5. Implementation Details

Training. Our image feature backbone is vision trans-

former [29] dpt beit large 384 pretrained by MiDaS [30].

We use ℓ1 loss on log-space truncated DRDF [5, 20, 38].

During training, we randomly sample 1, 2, 3 views with 80
rays per image and 512 points along each ray. Our method

is trained for 300K iteration on NVIDIA A100 GPU with

batch size of 1. More details in supp.

Inference. Given N images, we extract backbone features

for each image. We generate nray = 128 × 128 query rays

from each camera. Along each ray, we sample npt = 256
points that have uniformly spaced depth from 0 to 8m. In

total, we get N ×nray × npt query pairs {x, r⃗q}, which are

fed to 3DFIRES in parallel to get DRDF value. We calculate

positive-to-negative zero-crossings along each ray [20] to

get a 3D point and aggregate the results.

4. Experiment

In this section, we present the experimental framework for

3DFIRES, our system designed to reconstruct full scene ge-

ometry from wide-baseline, sparse images. Considering the

novelty of our problem, there is no prior work that does

this exact setting. To address this, we curated a dataset and

developed testing metrics specifically tailored to the prob-

lem’s requirements. We conduct comprehensive evaluations

of 3DFIRES using real scene images, comparing its perfor-

mance against alternative methods in the field.

4.1. Dataset

Following [21], we use the dataset from the Gibson

database [44], which contains real images of complex and

diverse scenes such as multi-floor villas and expansive

warehouses. The scale of the assets in the dataset presents

challenging reconstruction problem, which is desirable for

evaluating the ability to recover occluded surfaces. We use

the images sampled by Omnidata [8] for a diverse set of

camera poses from the Taskonomy [47] Medium subset, in-

cluding 98/20/20 training/validation/test buildings. Since

our multiview setting is different from the single-view set-

ting of [21], the precise samples are different. Our setting is

also similar to [17, 39] in that images have wide baselines

(median 2.8m translation, 63.9◦ rotation), unlike methods

using video frames [38] where images have high overlap.

Our approach diverges from [17, 39] in also reconstructing

occluded regions and using real (not rendered) images.

To curate our image sets, we use a sampling process

like [17]. For a set of k images, after picking an image

at random, each new image is selected to have at most 70%

overlap with any existing image in the set, and at least 30%

overlap with at least one other image in the set. The pro-

cess balances diversity and coherence in the viewpoints. We

crop images to a fixed field of view. We collect 3781 train-

ing sets among ≥ 10K images. We also sample 300 sets

of 3-view images and 100 sets of 5-view images for evalu-

ation from the held-out test scenes. See the supplementary

for dataset generation details. The 3 view and 5 view test

set contain considerable occluded 3D geometry (41.9% and

43.7% respectively).

4.2. Baselines

To the best of our knowledge, no prior work reconstructs

occluded regions from sparse-view images at scene scale.

We thus create strong baselines from existing methods that

handle parts of our setting. Each method is the strongest in

its line of work.

For instance, the visible surface upper-bound includes

all methods that reconstruct visible surfaces from sparse

views [17, 38, 39]. The DRDF method [20, 21] has been

shown to be more effective for scene-level 3D reconstruc-

tion compared to many other implicit functions like den-

sity [46], occupancy [31], unsigned distance functions on

scenes and rays [2]. MCC [43] is likewise SOTA for point

cloud completion.

Depth Only [8, 29] Prior state-of-the-art works on sparse

scene reconstruction [38, 39] predict visible surfaces from

multiple views, but cannot recover hidden surfaces. To

show the near-oracle reconstruction of visible surfaces, we

use MiDaS [29] depth model trained on Omnidata [8] with

ground-truth scale and shift. This baseline is an upper

bound on the performance of methods like [1, 17, 38, 39].

Multiview Compressive Coding (MCC) [43] This method

predicts occupancy probability from RGB-D partial point-

clouds. MCC works on scene-level reconstructions includ-

ing non-watertight meshes. We train MCC on the same

training set as ours. This method requires depth as input and

at inference we provide it with ground truth depth. Since

MCC only works on a single point cloud, to produce pre-

dictions from multiple images, we infer each image inde-

pendently and aggregate the predicted point cloud in point
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Depth Only MCC SV-DRDF 3DFIRES Ground TruthInput 3-view

Figure 4. Comparison between different methods on held-out test scene. Occluded surfaces are colored with the computed surface

normals. “Depth only” leaves holes with sparse input views, e.g. absent floors and walls. Occupancy-based method MCC [43] produces

cloudy results, failing to get the details like pillow, tables. Concatenation of single view DRDF (SV-DRDF) [20] produces inconsistent

results, e.g. missing wall in row 2, the double wall in row 3. Our method produces more consistent predictions across different views and

also recovers the hidden surface, resulting in a complete mesh. We urge the reader to see results provided in the supplementary videos.

cloud space.

Single-view DRDF (SV-DRDF) [20] This method recon-

structs both visible and hidden surfaces from a single input

image. We use this baseline to show the benefit of our pro-

posed multi-view feature aggregation. For a fair compari-

son, we upgrade the original backbone from ResNet34 [13]

to the same BEiT [29] and use the same training strategy

such as Gaussian sampling of points. Both improve results.

Since this baseline only supports single image reconstruc-

tion, we produce predictions independently from each input

image and aggregate all the point clouds.

4.3. Evaluation Metrics

We use two metrics to evaluate our system.

Scene F score. Following [20, 43], we compute the scene

accuracy (fraction of predicted points within ρ of a ground

truth point), completeness (fraction of ground truth points

within ρ from a predicted point), and their F-score (F1).

This gives an overall summary of scene-level reconstruc-

tion. We classify the scene into (1) visible: points that are

visible from any one of the input views; and (2) hidden:

points that are hidden from all of the input views. Due to

the space limit, we only show F-score at ρ = 0.2. A full ta-

ble with accuracy, completeness, F-score at different ρ is in

the supp. Trends are the same across values of ρ and there

is no significant accuracy/completeness imbalance for the

baselines (MCC, SV-DRDF).

Multiview consistency. Only measuring the F-score does

not measure the consistency of 3D reconstruction when

generating results from multiple views. Doubled predic-

tions of surfaces do not change the Scene F score results if

they are within ρ. Prior work [17] used a detection-based

method that penalized double surfaces on planar predic-

tions, but their metric is not applicable since it requires pla-
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5-Views

Ground TruthOurs Ground TruthInput Views OursInput Views

Ours Ground Truth Ours Ground Truth

Figure 5. Qualitative results on held-out test scenes. Top row: Reconstruction from 3 images and compared with ground truth. Our method

can reconstruct a complete scene structure within all the camera frustums, including the occluded surfaces. Bottom row: Predictions from

5 input images compared with ground truth. For the 2nd and 3rd examples, ceilings are removed to reveal the details of the scene.

nar instances. We require a metric that can measure the con-

sistency of 3D reconstruction of points in individual frus-

tums. Specifically, we would like to ensure that points Pi

generated from all query rays originating from ci of πi are

consistent with points, Pj , generated from by ray queries

from cj of πj at the intersection of frustums of both the

cameras. For every point, p ∈ Pj and within the field of

view of camera i, we compute their minimum distance to

points in Pi. Our metric measures percent of points in the

set Pj that have minimum distance within the threshold of

ρ. We evaluate this metric bidirectionally to ensure com-

plete results.

4.4. Results

Qualitative Results. Fig. 3 shows reconstruction from us-

ing query rays from the blue camera in Fig. 2. Occluded

surfaces are colored with surface normals. DRDF [20] is

unable to reconstruct the parts of the scene behind the wall

with certainty and erroneously adds a full wall in front of

the hallway. 3DFIRES fuses features from multiple images

(Green and Purple camera in Fig. 2) accurately predicts the

empty space.

Fig. 4 shows results unseen test scenes, and compares

reconstruction of baselines. Red box crop show highlighted

differences and provide a zoomed-in view for detailed ex-

amination. Depth only (MiDaS with ground truth scale and

shift) reconstructs only visible regions this leaves holes such

as the missing surfaces behind chairs in Row 1; and ab-

sent floor sections in Row 4. MCC [43] tends to produce

cloudy volumes and misses details like pillows and tables.

Single-view DRDF (SV-DRDF) produces occluded regions

and sharp surfaces but lacks consistency when aggregating

results from multiple views. This is noticeable in its inabil-

ity to reconstruct the occluded wall in Row 2, the creation

of a doubled ceiling in Row 3 due to occlusions. 3DFIRES,

effectively merges observations from multiple images, re-

sulting in sharp and accurate reconstructions of both visible

and hidden surfaces. By fusing information across views in

the feature space, our method overcomes the limitations of

other approaches. This ensures comprehensive and consis-

tent scene-level reconstruction from few sparse views.

In Fig. 5 we show additional alongside the ground truth.

3DFIRES successfully reconstructs large occluded areas,

floors hidden by foreground objects (colored in pink), and

unseen sides of objects such as the back of chairs in the

first example and the kitchen islands in the second exam-

ple. The reconstruction from multiple views demonstrates

consistency and coherent surfaces in overlapping regions.

While our method is trained with up to three views, it

seamlessly extends to five views. This adaptability stems

from our architecture’s inherent flexibility to the number of

input views. With increasing views it predicts clean and

coherent reconstructions within all the camera frustums.

Quantitative Results. We evaluate our method on sets of 1,
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Table 1. Quantitative results on Scene F-score (ρ = 0.2) for Hidden points, Visible points, All points. For 3 and 5 views, we evaluate

Consistency. Depth only: visible surface upperbound is separated to indicate it has oracle information. Despite accurate reconstructions

on visible surfaces, these lines of work cannot recover hidden surfaces, causing low overall performance. With 1 view, 3DFIRES is

comparable to single view DRDF. With more views, 3DFIRES outperforms all the other baselines in F-score. There is large improvement

in consistency metric compared to single view DRDF, showing that aggregating features produces a more coherent reconstruction. Full

tables showing accuracy and completeness are in the supplemental.

1 view 3 views 5 views

Hidden ↑ Visible ↑ All ↑ Hidden ↑ Visible ↑ All ↑ Consistency ↑ Hidden ↑ Visible ↑ All ↑ Consistency ↑

Depth only - 85.31 60.12 - 87.84 63.90 72.79 - 91.29 69.40 72.57

MCC 40.27 56.40 50.25 42.91 62.02 54.78 70.20 38.51 64.44 55.94 66.57

SV-DRDF 53.36 73.45 65.21 48.02 76.19 65.61 76.44 47.51 81.31 70.54 78.13

3DFIRES 53.34 74.29 65.71 49.99 76.74 66.56 85.48 49.52 81.74 71.41 85.92

Table 2. Ablation study on training strategies. GS: Gaussian sam-

pling near intersection along the ray during training. Ray Attn:

points along a query ray attend to each other.

Hidden Visible All Consistency

-GS 43.07 77.05 64.81 83.45

+Ray Attn. -GS 47.09 77.60 65.58 83.27

+Ray Attn. +GS 14.85 3.36 13.29 33.56

Ours 50.20 77.30 66.46 85.45

Table 3. Quantitative results on noisy camera poses generated by

LoFTR, evaluated on 3 view cases at ρ = 0.2. 3DFIRES assumes

accurate pixel-aligned features but still produces more consistent

reconstructions compared to not aggregating features.

3-View Hidden Visible All Consistency

SV-DRDF 37.39 62.71 52.93 57.65

Ours 38.85 62.40 53.19 65.71

3, 5 views respectively, as detailed in Tab. 1. Our approach,

designed for flexible input views, matches prior works in

single-view scene reconstruction and achieves state-of-the-

art results with multiple input views. In single-image cases,

it is comparable to the single-view DRDF baseline.

For 3-view sets, our method outperforms MCC [43] or

DRDF [21]. Although MiDaS with ground truth scale and

shift demonstrates optimal visible surface reconstruction,

it falls short in overall scene reconstruction because of no

reconstruction on occluded surfaces. When evaluated on

scene consistency, 3DFIRES shows a large absolute im-

provement of > 9%, over the second-best baseline, show-

ing 3DFIRES’s ability to aggregate features across views to

produce consistent results.

The trend persists with 5-view inputs, where our method

has the highest F score and consistency. Our method is not

trained on 5-views subset but still remains robust to more in-

put views enhancing the reconstruction quality in both visi-

ble and hidden surface reconstructions.

4.5. Ablations and Analysis

Ablation study on training strategy. We conduct an ab-

lation study (Tab. 2) to investigate the effectiveness of dif-

ferent training strategies for our method. Without Gaussian

sampling or ray attention (-GS), the method has degraded

performance (-7% in hidden F score). With ray attention

only (+Ray Attn. -GS), the method is able to better recon-

struct the hidden surface but is still worse than ours (-3%).

With both ray attention and Gaussian sampling (+Ray Attn.

+GS), the network finds shortcut during training and does

not work during testing. With Gaussian sampling strategy,

our method performs the best.

Robustness with noisy camera poses. Our method re-

quires accurate camera poses to aggregate pixel-aligned fea-

tures. This setting is challenging with sparse view data since

camera estimation can be noisy. We test if the misalign-

ment of image features caused by noisy camera projection

matrices degrades our system. We use LoFTR [37] to esti-

mate the camera rotation and translation angle and evaluate

the reconstruction within all the camera frustums. Since

LoFTR does not provide a translation scale, we use ground

truth instead. Tab. 3 shows results on 3-view cases. Our

method still has significantly higher consistency over single

view DRDF baseline. We provide an analysis with synthetic

Gaussian camera noise in the supplementary.

5. Conclusions

We present 3DFIRES, a scene-level 3D reconstruction
method that requires only one or a few posed images of a
scene. Our method takes in an arbitrary number of input
views, fuses multi-view information in the features space
and predicts DRDF given a 3D point and query direction.
We train our method on a large-scale scene dataset and show
its strong ability to reconstruct both visible and hidden sur-
faces coherently within all the camera frustums on challeng-
ing wide-baseline images. Currently, our methods requires
pose input from off-the-shelf estimation methods, solving
for 3D reconstruction and adapting the poses is a challeng-
ing next step and left to future work.
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[30] René Ranftl, Katrin Lasinger, David Hafner, Konrad

Schindler, and Vladlen Koltun. Towards robust monocular

depth estimation: Mixing datasets for zero-shot cross-dataset

transfer. TPAMI, 2022. 5

[31] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul

Joo. Pifuhd: Multi-level pixel-aligned implicit function for

high-resolution 3d human digitization. In CVPR, 2020. 4, 5

[32] Mehdi S. M. Sajjadi, Henning Meyer, Etienne Pot, Urs

Bergmann, Klaus Greff, Noha Radwan, Suhani Vora,

Mario Lucic, Daniel Duckworth, Alexey Dosovitskiy, Jakob

Uszkoreit, Thomas Funkhouser, and Andrea Tagliasacchi.

Scene Representation Transformer: Geometry-Free Novel

View Synthesis Through Set-Latent Scene Representations.

CVPR, 2022. 2

[33] Daniel Scharstein and Richard Szeliski. A taxonomy and

evaluation of dense two-frame stereo correspondence algo-

rithms. IJCV, 2002. 2

[34] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In CVPR, 2016. 2

[35] Jonathan Shade, Steven Gortler, Li-wei He, and Richard

Szeliski. Layered depth images. In Siggraph, 1998. 2

[36] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-

tions with periodic activation functions. NeurIPS, 2020. 2

9750



[37] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and

Xiaowei Zhou. LoFTR: Detector-free local feature matching

with transformers. CVPR, 2021. 2, 8

[38] Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou, and

Hujun Bao. Neuralrecon: Real-time coherent 3d reconstruc-

tion from monocular video. In CVPR, 2021. 2, 5

[39] Bin Tan, Nan Xue, Tianfu Wu, and Gui-Song Xia. Nope-

sac: Neural one-plane ransac for sparse-view planar 3d re-

construction. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2023. 1, 2, 5

[40] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-

tures let networks learn high frequency functions in low di-

mensional domains. NeurIPS, 2020. 2, 4

[41] Shubham Tulsiani, Saurabh Gupta, David F Fouhey,

Alexei A Efros, and Jitendra Malik. Factoring shape, pose,

and layout from the 2d image of a 3d scene. In CVPR, 2018.

1, 2

[42] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-

vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-

Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:

Learning multi-view image-based rendering. In CVPR, 2021.

2, 4, 5

[43] Chao-Yuan Wu, Justin Johnson, Jitendra Malik, Christoph

Feichtenhofer, and Georgia Gkioxari. Multiview compres-

sive coding for 3D reconstruction. CVPR, 2023. 1, 2, 5, 6, 7,

8

[44] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra

Malik, and Silvio Savarese. Gibson env: Real-world percep-

tion for embodied agents. In CVPR, 2018. 5

[45] Yiming Xie, Matheus Gadelha, Fengting Yang, Xiaowei

Zhou, and Huaizu Jiang. Planarrecon: Real-time 3d plane

detection and reconstruction from posed monocular videos.

In CVPR, 2022. 2

[46] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelNeRF: Neural radiance fields from one or few images.

In CVPR, 2021. 2, 4, 5

[47] Amir R. Zamir, Alexander Sax, William Shen, Leonidas J.

Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:

Disentangling task transfer learning. In CVPR, 2018. 5

[48] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Dis-

tilling view-conditioned diffusion for 3d reconstruction. In

CVPR, 2023. 2

9751


