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Abstract

Facial action unit (AU) intensity plays a pivotal role in
quantifying fine-grained expression behaviors, which is an
effective condition for facial expression manipulation. How-
ever, publicly available datasets containing intensity anno-
tations for multiple AUs remain severely limited, often fea-
turing a restricted number of subjects. This limitation places
challenges to the AU intensity manipulation in images due
to disentanglement issues, leading researchers to resort to
other large datasets with pretrained AU intensity estimators
for pseudo labels. In addressing this constraint and fully
leveraging manual annotations of AU intensities for precise
manipulation, we introduce AUEditNet. Our proposed model
achieves impressive intensity manipulation across 12 AUs,
trained effectively with only 18 subjects. Utilizing a dual-
branch architecture, our approach achieves comprehensive
disentanglement of facial attributes and identity without ne-
cessitating additional loss functions or implementing with
large batch sizes. This approach offers a potential solution to
achieve desired facial attribute editing despite the dataset’s
limited subject count. Our experiments demonstrate AUEdit-
Net’s superior accuracy in editing AU intensities, affirming
its capability in disentangling facial attributes and identity
within a limited subject pool. AUEditNet allows conditioning
by either intensity values or target images, eliminating the
need for constructing AU combinations for specific facial
expression synthesis. Moreover, AU intensity estimation, as a
downstream task, validates the consistency between real and
edited images, confirming the effectiveness of our proposed
AU intensity manipulation method.

1. Introduction

Facial action units (AUs), serving as anatomical indicators
of facial muscle movements, have been effectively utilized
as conditions for fine-grained facial expression editing in
images [20, 29]. The manipulation of AU intensities offers
advantages such as objective quantification on a six-integer-

level ordinal scale defined by the Facial Action Coding Sys-
tem (FACS) [8], the ability to generate over 7000 combi-
nations in observed facial expressions with a small number
of AUs (30) [33], and the potentials for continuous inten-
sity manipulation, instead of the category-based expression
editing [6]. However, public datasets containing intensity
annotations for over 10 AUs are constrained by limited sub-
ject counts, and frame-level AU intensity annotation requires
expert involvement and extensive works. As a result, cur-
rent AU intensity manipulation methods [20, 29, 40] often
resort to the pretrained AU intensity estimator [3] to obtain
predicted annotations for datasets with larger subject pools,
sidestepping the reliance on expert-labeled datasets with a
restricted number of subjects.

On the other hand, the semantic richness in latent space
and high-quality generation capability of StyleGAN [18]
have facilitated the development of facial attribute editing
methods [4, 7, 11, 21, 36] that enable targeted modifica-
tions without affecting other attributes and identity. How-
ever, searching unified editing directions in the latent space
for attribute editing typically requires substantial data from
numerous subjects to disentangle the target attributes from
others and identity. Limited number of subjects may lead to
overfitting issues and poor generalization to new faces.

Considering these, it is challenging to search disentangled
editing directions for manipulating intensities of multiple
AUs based on the data from limited subjects. To address
this, we propose a method to manipulate intensities of 12
AUs within the W+ latent space [1] of StyleGAN [18] for
high-resolution face image synthesis using only 18 subjects’
data. Specifically, we introduce a novel pipeline designed
to enforce disentanglement within the network, even with a
dataset containing a limited number of subjects compared
to the number of target facial attributes we aim to edit. This
approach offers a potential solution to achieve desired facial
attribute editing despite the dataset’s limited subject count.
To summarize, our contributions are as follows:

• Achieve accurate AU intensity manipulation in high-
resolution synthesized face images conditioned by AU
intensity values or target images without requiring net-
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work retraining or extra AU estimators.
• Introduce an architecture designed to disentangle target

attributes from others and identity, even when working
with data containing very few subjects compared to the
number of target facial attributes we aim to edit.

• Propose the encoding of labels to match the level-wise
disentangled structure of latent vectors in W+ to avoid
entangled labels as conditions for editing.

• Demonstrate the ability to manipulate float or nega-
tive AU intensities while generating consistent results,
despite the training set labels encompassing six levels.

2. Related Work
2.1. AU Intensity Manipulation

GANimation [29] is an early work that utilizes AU intensities
as conditions for facial expression manipulation. However, it
suffers from attention mechanism issues that could result in
overlap artifacts in regions where facial deformations occur
[30]. Ling et al. [20] propose using the relative AU inten-
sities between the source and target images as conditions,
avoiding the direct addition of new attributes onto the exist-
ing expression [40]. Alternatively, ICface [40] introduces a
two-stage editing pipeline. The initial stage transforms the
input image into a neutral one with all AU intensities set to
zero, and the second stage maps this neutral status to the
final output, depicting the desired driving attributes with two
independent generators. However, the architecture of ICface
is redundant and resource-intensive. FACEGAN [41] utilizes
AU representations to construct facial landmarks for expres-
sion transfer, reducing the potential of identity leakage from
the target image. These methods place greater emphasis on
facial expressions compared to AUs, both in terms of their
editing goals and evaluation criteria.

2.2. Image Editing in Latent Space

The latent space working with StyleGAN2 [18] is well-
known of its meaningful and highly disentangled properties.
Several unsupervised methods [11, 35, 42, 44] search editing
directions in the latent space without the need for attributes
labels. For instance, GANSpace [11] employs principal com-
ponent analysis to identify semantic editing directions in the
latent space. In contrast, supervised methods [4, 7, 14, 36]
typically rely on pretrained attribute estimators or attribute
labels. InterFaceGAN [36], for example, utilizes a binary
support vector machine [25] to estimate hyperplanes for the
corresponding attribute editing. Furthermore, some methods
[21, 28, 48] use the CLIP loss [31] to enable text-driven
image manipulation. These methods usually handle iden-
tity information effortlessly since commonly used datasets
contain a much larger number of subjects compared to the
attributes involved in the editing process. However, in cer-
tain cases with a limited number of subjects included, the

identity issue becomes significant. Therefore, in our work,
we introduce a novel architecture designed to implicitly dis-
entangle identity information from multiple attributes, even
when dealing with a restricted number of subjects.

3. Proposed Method
3.1. Problem Setting

Our objective is to develop an intermediate module within
the pretrained GAN inversion pipeline that enables the modi-
fication of specific facial attributes in input face images based
on target conditions, while preserving the individual’s iden-
tity and leaving other attributes unaffected. A crucial aspect
of achieving this lies in effectively disentangling the target
facial attributes from others and from identity. Prior works
[11, 36] focused on identifying global editing directions in
latent space for desired facial attributes by analyzing data
from thousands of subjects. The data includes a significantly
larger number of subjects than the number of facial attributes
aiming to edit. Consequently, it is common for different sub-
jects in the dataset to share the same facial attributes. This
characteristic naturally facilitates the disentanglement of
identity-related influences from the identified global editing
directions for the corresponding attribute editing.

However, while data availability from numerous subjects
is abundant, obtaining fine-grained labels poses challenges.
The significant tradeoff between data collection and anno-
tation efforts, particularly when expert annotation is neces-
sary, can hinder the inclusion of detailed labels. In specific
face image editing tasks, such as AU intensity manipulation,
multi-level intensity labels offer advantages over binary la-
bels (activated or not). Yet, datasets with intensity labels
covers more AUs often comprise fewer subjects. The limited
subject pool in facial attribute editing may blend identity fea-
tures with the target attributes, complicating disentanglement
processes. To address this, we propose a novel framework
named AUEditNet. This architecture enables seamless inten-
sity adjustments across 12 AUs in face images, even when
trained on a restricted dataset containing only 18 subjects.

3.2. Pipeline Overview

Consistent with previous works [4, 14, 21], we use a GAN
inversion pair that consists of an encoder E and a generator G
to achieve the transformation between the image space and
the latent space. All editing occurs in the latent space. During
training, we use a pair of images Isrc, Itar from one subject,
while an additional face image Irnd is randomly chosen from
another subject’s data. The processes are visually depicted
in Fig. 1 with detailed descriptions.

Feature Space for Target AUs. Initially, we encode the in-
put source image Isrc into the latent vectors Wsrc = E(Isrc).
To achieve explicit control over facial attributes using con-
ditions associated with physical interpretation, we perform
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Figure 1. Overall scheme of the proposed AUEditNet. AUEditNet has a dual-branch structure that separately addresses source attribute
removal (Source Branch) and target attribute addition (Target Branch). The Source Branch aims at removing the original status in Isrc,
maintaining other attributes and identity while keeping them distinct from the feature space of target facial attributes (highlighted in
yellow). The Target Branch focuses on determining an edited direction ∆Ŵ j

tar for the new status of the target facial attribute, ensuring its
independence from identity and other facial attributes. Instead of applying this branch directly to Isrc, we randomly select another image
Irnd, facilitating implicit disentanglement of attributes and identity. The blue bold arrows present feature flows excluding the target facial
attributes. In this configuration, AUEditNet guarantees that these flows remain outside the embedding space of the target facial attributes.

additional encoding of the latent vector W j
src, one level from

the multi-level vectors Wsrc, through a trainable encoder
Φj

enc. Here, j corresponds to the level index, taking into
account the disentangled level-wise structure of Wsrc, as
outlined in Sec. 3.3. For the purpose of this subsection, we
can disregard this index. The outcome of this encoding pro-
cess is as follows:

Φj
enc(W

j
src) =

{
ĉi,jsrc, â

i,j
src, z

j
src

}
, i ∈ [1, N ], (1)

where N represents the number of facial attributes included
in the editing task. In this Eq. 1, ĉi,jsrc denotes whether the i-th
facial attribute exists or not (AU is activated or not); âi,jsrc is
the corresponding estimated detailed labels (AU intensities);
zjsrc is the embedding which acts as a medium for delivering
information pertaining to the target facial attributes in this
newly encoded space. ĉi,jsrc would select an editing direction
from a globally trainable matrix T if the i-th facial attribute
exists. T contains N editing directions, each possessing the
same dimension as the embeddings. When a specific editing
direction T(ĉi,jsrc) is chosen, we scale it with the estimated
labels âi,jsrc to serve as an intensity control. This yields a
normalized embedding zjN = zjsrc −

∑N
i=1 â

i,j
src · T(ĉi,jsrc).

Ideally, zjN exclusively represents a canonical status of the
target facial attribute, free from any person-specific infor-
mation. While it seems feasible to continue incorporating
new target conditions into this normalized embedding for
subsequent generation with edited attributes [14, 47], this
approach has limitations.
• It cannot ensure the complete exclusion of other attributes

or identity features from the normalized embedding.
• Achieving optimal disentanglement of identity from target

attributes requires training data that ideally encompasses
as many subjects as possible to attain the desired normal-
ized embedding.

• A loss function is necessary to enforce normalized embed-
dings identical within a batch, which heavily relies on the
batch size and can be resource-intensive.

Given these limitations, instead of directly adding target
conditions to the source embedding, our approach adopts
a dual-branch structure to physically prevent irrelevant at-
tribute or identity features (indicated by blue bold arrows)
from infiltrating the feature space of target facial attributes
(highlighted in yellow), as illustrated in Fig. 1.

We introduce Irnd through the same processing steps
with the shared-weights modules and build a normalized
embedding instead of using the source one to compel the
network to retain only the target-attribute related informa-
tion within this encoded space during training. Finally, we
introduce new conditions (the existence of the i-th attribute
ci,jtar and the corresponding detailed labels ai,jtar). This yields
the edited embedding ẑjtar = zjrnd −

∑N
i=1 â

i,j
rnd ·T(ĉi,jrnd)+∑N

i=1 a
i,j
tar ·T(ci,jtar). During testing, we directly use source

normalized embedding for efficiency considerations.
Source Latent Vectors Editing. For all other facial at-
tributes and identity information, our goal is to preserve them
within the original latent space [14]. We input the source
embedding zjsrc and the edited target embedding ẑjtar into
the decoder Φj

dec to obtain the residuals ∆W j
src and ∆Ŵ j

tar

respectively, which are used for editing W j
src. The purpose

of ∆W j
src is to capture the source status of the target facial

attributes in the input image, while ∆Ŵ j
tar stores the new

status. Rather than solely assessing the result with the new
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status, we propose to supervise both outcomes through the
following expressions:{

Ŵ j
N = W j

src −∆W j
src,

Ŵ j
tar = Ŵ j

N +∆Ŵ j
tar,

(2)

where Ŵ j
N represents the intermediate editing resulting from

the removal of the source status of the aimed facial attributes,
and Ŵ j

tar is the outcome achieved by incorporating the target
conditions based on Ŵ j

N . After replacing the latent vector at
the index j in Wsrc with Ŵ j

N (or Ŵ j
tar), we obtain the final

edited latent vectors ŴN (or Ŵtar) for image generation.
ÎNtar = G(ŴN ) represents a synthesized face image with
zero intensities (deactivation) for all AUs, while Îtar =
G(Ŵtar) is generated based on the target intensities.

3.3. Multi-level Architecture

The latent space used for editing is the W+ space [1], com-
patible with StyleGAN [18]. Latent vectors in W+ exhibit
a multi-level structure, allowing them to control different
semantic levels of images [43]. The level is indexed by j and
j ∈ [1,M ], where M ≤ 18 due to the dimension of W+.
Instead of attempting to reintegrate the disentangled features
by levels of the latent vectors in W+ using a single editing
module, we opt for multiple independent editing modules.
Each of these modules is responsible for editing a specific
level of the latent vectors. However, as we lack information
regarding the relationship between the aimed facial attributes
and the level index j, supervising the level-wise ĉi,jsrc, â

i,j
src

could be challenging. This is particularly true for the AU
intensity editing task, where it’s not reasonable to expect
that a single level estimated results ĉi,jsrc, â

i,j
src can accurately

represent 12 AU intensities across various areas of the face.
Incorrectly estimating the AU intensity of the input image
could disrupt the normalization process and consequently
affect the final manipulation accuracy. To address this, we
draw inspiration from the concept of a latent space for im-
ages and propose the creation of another ‘latent space’ for
labels. We use a fully connected network Ψenc to encode
the labels of the target conditions (citar, a

i
tar) for the i-th

facial attribute into corresponding level-wise pseudo-labels
(ci,jtar, a

i,j
tar) to suit the editing needs of each level. Given each

level’s estimated (ĉi,jsrc, â
i,j
src), we decode them back to the

label space, resulting in estimated source labels (ĉisrc, â
i
src)

through Ψdec. The entire process can be summarized as fol-
lows: {

Ψenc(c
i
tar, a

i
tar) = ci,jtar, a

i,j
tar,

Ψdec(ĉ
i,j
src, â

i,j
src) = ĉisrc, â

i
src,

(3)

where i ∈ [1, N ], j ∈ [1,M ], and the subscripts ‘src’ and
‘tar’can be interchanged if we switch the roles of the source
and target images during training.

3.4. Objectives

During training, AUEditNet requires source and target im-
ages from the same subject. And the random image can be
randomly picked from other subjects. We train AUEditNet
by minimizing the following loss:

L = λRLR + λPLP + λFLF + λIDLID + λLLL. (4)

Pixel-wise and Perceptual Losses. We minimize both the
pixel-wise loss LR and the perceptual loss LP [15] between
the edited image Îtar, which is generated based on the pro-
vided target conditions, and the actual target image Itar.

LR = ∥Îtar − Itar∥2,
LP = ∥Fpcept(Îtar)− Fpcept(Itar)∥2,

(5)

where Fpcept(·) denotes the perceptual feature extractor.

Pretrained Function Loss. Following the prior works
[14, 47], the pretrained function loss LF focuses on task-
relevant inconsistencies between Îtar and Itar. The incon-
sistencies include both intermediate activation feature maps
{fk, k ∈ [1,K]} and estimation results derived from a net-
work Fpre(·), which is pretrained on the specific task (e.g.
AU intensity estimation).

LF =
1

K

K∑
k=1

∥fk(Îtar)− fk(Itar)∥2

+
1

N
∥Fpre(Îtar)− Fpre(Itar)∥2,

(6)

where K is the number of chosen layers from Fpre.

Identity Loss. We restrict the ID similarity between the
real image Itar and two generated images Îtar; ÎNtar based
on the pretrained ArcFace network [5], denoted as Fid.

LID =

Î∈{Îtar,Î
N
tar}∑

1− ⟨Fid(Î), Fid(Itar)⟩ (7)

Label Loss. We propose the label loss to supervise the
transformation process in the ‘latent space’ for labels through
Ψenc and Ψdec as mentioned in Sec. 3.3. Let’s assume we
use the source image’s labels (cisrc and aisrc) as the target
conditions for the i-th facial attribute. In this scenario, the
generated image should be identical to the source image.
This implies that the estimated source embedding zjsrc should
match the edited embedding ẑjtar at each level. In other
words, the removal of the source status and the addition of
the target status should be entirely consistent. As a result,
the level-wise conditions (ci,jsrc, a

i,j
src) in the label’s latent

space, encoded from the source image’s labels (cisrc, a
i
src),

should align with the estimated conditions (ĉi,jsrc, â
i,j
src). This

corresponds to the second part of Eq. 8, which supervises the
learning of the encoder Ψenc. Supp. provides more details.

2107



To further ensure that the level-wise estimation retains
the information about the labels of the source image, we
utilize the label decoder Ψdec to guarantee that the estimated
results (ĉisrc, â

i
src) decoded from the level-wise conditions

(ĉi,jsrc, â
i,j
src) are consistent with the source image’s labels.

Thus, we build the loss as follows:

LL =

ξ∈{c,a}∑ 1

N

N∑
i=1

(
∥ξ̂isrc − ξisrc∥2

+
1

M

M∑
j=1

∥ξ̂i,jsrc − ξi,jsrc∥2
)
.

(8)

In summary, the first three terms in Eq. 4 ensure the gen-
erated image’s similarity to the target image. The fourth term
enforces identity consistency, and the final term supervises
the learning of level-wise pseudo-labels for avoiding entan-
gled labels as conditions and improving the attribute editing
performance. The hyperparameters λR, λP , λF , λID, λL en-
able a balanced learning from these various losses.

4. Experiments
4.1. Implementation Details

We employed e4e [39] and StyleGAN2 [18] as the GAN
inversion pair. We designed a Siamese network for the exter-
nal AU intensity estimation for the pretrained function loss
in Eq. 6. This network takes a pair of face images from the
same subject as the input and estimates the intensity differ-
ence of AUs between these two images. This design reduces
the impact of subject-specific facial attributes. During train-
ing, we used the convolutional part of VGG-16 [38] as the
backbone to build the AU intensity estimation network Fpre.
During test, we used a separate estimator Hest, which has
the same architecture with ResNet-50 [12] as the backbone.
Importantly, this estimator Hest was never exposed to the
training phase but was trained on the same training dataset.

We trained AUEditNet using the DISFA training sub-
set [23, 24]. DISFA comprises of 27 subjects and provides
multi-level integral intensities for 12 AUs, offering annota-
tions for the largest number of AUs among publicly available
datasets for AU intensity estimation. We used 18 subjects for
training and 9 subjects for testing, following the data split
used in [19, 34]. To assess AUEditNet, we used the DISFA
test subset to evaluate its accuracy in manipulating AU in-
tensities while preserving other attributes. Furthermore, we
expanded our evaluation to encompass facial expressions,
beyond AUs alone, by using the BU-4DFE dataset [46]. Our
evaluation involved tasks related to expression transfer and
data augmentation for AU intensity estimation. For further
assessment of out-of-domain editing performance, we incor-
porated CelebA-HQ [16] and FFHQ [17], which both are the
benchmarks for the high-quality human face image datasets.

4.2. Evaluation Criteria

We assess the performance of AUEditNet by examining the
comparison between the generated image Îtar and the target
image Itar from four perspectives: the accuracy of intensity
editing in AUs, identity preservation, image similarity, and
smile expression manipulation (illustrated in Sec. 4.4).
Accuracy of AU Intensity Manipulation. We quantify
the AU intensity manipulation performance in edited im-
ages by using the external pretrained ResNet-50 based es-
timator Hest, which is unseen during training. We report
the Intra-Class Correlation (specifically ICC(3,1) [37]) and
mean squared error (MSE), both calculated for 12 AUs, be-
tween the estimated values Hest(Îtar) or Hest(Î

N
tar) and

their intended target values.
Identity Preservation. A well-trained image editor should
consistently maintain the identity given various provided
conditions. To assess the similarity of identity, we measure
the distance of embeddings between Îtar and Itar to assess
the similarity of identity, where the embedding is extracted
by a pretrained face recognition model [9].
Image Similarity. We employ two metrics: pixel-wise
mean squared error and the Learned Perceptual Image Patch
Similarity (LPIPS) [45] to measure the image similarity be-
tween Îtar and Itar.

4.3. Qualitative Evaluation

Within-Dataset Evaluation Fig. 2 illustrates a qualitative
comparison of AU intensity manipulation based on provided
target conditions. Both ReDirTrans [14] and our proposed
AUEditNet employ a two-step editing process to prevent
potential attribute status mixing. After the source status re-
moval, the generated images should exhibit all AU intensi-
ties set to zero, serving as benchmarks when all AUs are
deactivated. ReDirTrans and AUEditNet demonstrate the
ability to learn the desired AU movements, under both cases
when deactivating all AUs or assigning new target intensities.
However, ReDirTrans fails to preserve identity information
in intermediate and final generated images. Additionally,
ReDirTrans attempts to address color discrepancy between
real and inverted images during AU editing, resulting in
undesired color distortion in images. In contrast, AUEdit-
Net focuses only on editing the aimed AUs’ intensities, de-
void of unrelated information, which is achieved through the
dual-branch architecture. On the other hand, DeltaEdit [21]
excels in maintaining identity information and other facial
attributes. However, it is limited to learning noticeable AU
movements and may ignore subtle motions such as eyebrow,
cheek, and lip corner movements, potentially causing sig-
nificant changes in the entire facial expression. AUEditNet
successfully achieves accurate AU intensity editing under
this two-phase editing process while maintaining identity.
Cross-Dataset Evaluation Fig. 3 presents the cross-
dataset results involving single AU editing with multiple
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Figure 2. Comparison of AU intensity manipulation using target AU intensities in DISFA. AUEditNet, ReDirTrans generate editing results
that involve the removal (−) of source attributes and the addition (+) of target attributes. DeltaEdit uses intensity differences between source
and target images for attribute addition (+∆). The removal (−) process yields ’neutral-like’ face images with all AU intensities set to zero.
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U
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A
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A
U
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Inversion atar = 0 atar = 2 atar = 4 atar = −2

Figure 3. Cross-dataset evaluation of single AU intensity manipula-
tion in CelebA-HQ. The descriptions of AUs (from top to bottom)
are Outer Brow Raiser, Brow Lowerer, Upper Lid Raiser, Lip Cor-
ner Depressor, and Lips Part. atar represents the target intensity.

intensity levels on the CelebA-HQ dataset [16]. AUEdit-
Net exhibits the capability to achieve consecutive AU inten-
sity manipulation. Notably, even in the absence of negative
intensities during training, AUEditNet produces reasonable

editing outcomes. For instance, applying negative intensity
to AU 5 (Upper Lid Raiser) results in a generated image with
partial eye closure. Regarding AU 25 (lips part), where inten-
sity indicates mouth openness, providing negative intensity
still maintains the closed configuration, aligning with the
case of zero intensity instead of creating unrealistic results.

4.4. Quantitative Evaluation

Accuracy of AU Intensity Editing. Table 1 presents mea-
surements of ICC and MSE for comparing the estimated AU
intensities against ground truth. We categorize the methods
under each evaluation metric based on their research direc-
tions, whether they focus on the estimation or editing of AU
intensities in images. Among the editing methods, our pro-
posed AUEditNet surpasses state-of-the-art facial attribute
editing methods, especially in terms of the average perfor-
mance across all 12 AUs. When it comes to the performance
of deactivating all AUs, AUEditNet achieves a substantial
38.92% improvement in MSE compared to ReDirTrans [14].
This illustrates the complete and accurate attribute removal
process, which, in turn, contributes to enhanced final per-
formance since attribute removal and addition are entirely
reversible processes with shared trainable parameters.

Furthermore, we expand our comparison to include both
editing and estimation methods because the editing perfor-
mance is also assessed using the same AU intensity esti-
mation process. Moreover, the external estimator Hest is
trained on the same data as AU intensity estimation meth-
ods. We still observe that the estimation performance, when
evaluated with our edited face images, surpasses that of state-
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Method AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg
IC

C
(3

,1
)(
↑)

HR [26] .56 .52 .75 .42 .51 .55 .82 .55 .37 .21 .93 .62 .57
Aps [32] .35 .19 .78 .73 .52 .65 .81 .49 .61 .28 .92 .67 .58
MAE-Face [22] .740 .688 .754 .666 .653 .584 .877 .527 .589 .331 .952 .721 .674

DeltaEdit [21] .091 .058 .114 .034 .383 .065 .694 .008 .004 .041 .581 .166 .179
ReDirTrans [14] .856 .631 .851 .436 .634 .278 .862 .364 .602 .481 .927 .480 .617
AUEditNet .848 .559 .874 .600 .577 .230 .890 .276 .669 .511 .950 .548 .628

M
SE

(↓
)

HR [26] .41 .37 .70 .08 .44 .30 .29 .14 .26 .16 .24 .39 .32
Aps [32] .68 .59 .40 .03 .49 .15 .26 .13 .22 .20 .35 .17 .30
MAE-Face [22] .200 .186 .514 .032 .320 .222 .221 .093 .204 .146 .164 .260 .213

DeltaEdit [21] .605 .686 1.311 .031 .513 .485 .570 .080 .424 .454 1.157 .420 .561
ReDirTrans [14] .181 .397 .341 .034 .453 .552 .286 .070 .225 .333 .247 .367 .290
AUEditNet .191 .445 .309 .029 .492 .579 .228 .080 .188 .322 .169 .367 .283

ReDirTrans (N) .045 .117 .025 .019 .024 .009 .300 .032 .177 .032 .803 .427 .167
AUEditNet (N) .069 .101 .098 .024 .036 .006 .227 .004 .014 .063 .351 .228 .102

Table 1. Comparison to the state-of-the-art action unit (AU) intensity estimation and editing methods on DISFA [24]. The ‘Method’ column
under each metric is categorized into two parts: 1. Upper part: AU intensity estimation methods; 2. Lower part: AU intensity editing methods.
In the estimation task, we evaluate the performance by comparing the estimated intensities of the input image to the ground truth. For
the editing task, the procedure begins with the editing of the input image based on the target conditions. Then we acquire the estimated
AU intensities from the edited image via the external pretrained estimator Hest. Finally, we compare these estimated intensities with the
provided target conditions. ‘(N)’ denotes the results obtained after the source attribute removal, where all AU intensities are set to zero. Each
group’s best result is highlighted in bold. Without extra facial data, MAE-Face becomes MAE-IN1k [22], leading to ICC dropping to .599.

Method Target
Image

Identity
Preservation

Image
Similarity

Distance (↓) L2 (↓) LPIPS (↓)

GAN
Inversion [39]

Real .368 .025 .173
Inverted .278 .011 .065

DeltaEdit [21] Real .396 .022 .165
Inverted .309 .011 .074

ReDirTrans [14] Real .505 [.024] .175
Inverted .479 .018 .153

AUEditNet Real [.468] .026 [.174]
Inverted [.435] [.016] [.126]

Table 2. Comparison of identity preservation and image similarity
in facial attribute editing methods. ‘GAN Inversion’ as a baseline
illustrates that the accuracy of action unit intensity editing cannot
be reflected in the performance of the Image Similarity criteria.
The best performance is indicated in bold, while the second best is
highlighted within brackets.

of-the-art AU intensity estimation methods on the DISFA
test subset [23, 24]. This finding further solidifies the high
level of consistency between the provided target intensities
and the edited images generated by AUEditNet.

Identity Preservation and Image Similarity. Table 2
summarizes the performance of identity preservation and
image similarity given image editing results. In addition to
comparing the edited images with the real target images,
we also conduct a comprehensive comparison using GAN-

inverted images as the target. All three editing methods focus
on the latent code editing, without adjusting the image en-
coder and generator. From the identity perspective, DeltaEdit
[21] achieves the best performance, nearly matching the
GAN inversion performance. However, this is at the cost of
AU intensity manipulation accuracy, resulting in a decline
of 71.50% in ICC and 98.23% in MSE compared to AUEd-
itNet. Comparing our AUEditNet with ReDirTrans [14], we
observe the identity preservation improvements of 7.33%
and 9.19% considering real and inverted images, respec-
tively. These results further validate the effectiveness of our
method’s ability to achieve disentanglement and preserve
identity during intensity manipulation.

Regarding image similarity, DeltaEdit [21] continues to
outperform the other two editing methods. However, when
using the GAN inversion as the baseline to compare the
inverted source image with the real or inverted target im-
ages separately, we find that the image similarity criteria
still maintain good performance, even when dealing with
different AU intensities between source and target images. In
other words, the difference in AU intensities is not reflected
over the image similarity. When compared to ReDirTrans
[14], AUEditNet achieves comparable performance with the
real target image and achieves better performance with the
inverted one. These results further demonstrate AUEditNet’s
disentanglement ability when achieving AU intensity editing.

Smile Manipulation. We evaluate smile attribute manip-
ulation using metrics proposed in [7] on the FFHQ dataset
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Method Smile Attribute

Ed (↓) ρ (↑)

Talk-to-Edit [13] 0.212 40.9
StyleFlow [2] 0.099 88.9

Do et al. [7] (W/ StyleGAN2) 0.103 96.9
AUEditNet 0.099 121.3

Table 3. Comparison of smile intensity manipulation performance
on the FFHQ test dataset. AUEditNet achieves the best performance
given identity preservation (Ed) and manipulation efficiency (ρ).
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Figure 4. AU intensity manipulation conditioned on target images to
achieve facial expression transfer on the BU-4DFE dataset. The fine-
grained facial expressions, such as AU 17 (Chin Raiser) in ‘Sadness’
and AU 25 (Lips Part) in ‘Disgust’, are transferred accurately.

[17]. Specifically, we modify the intensities of AU 6 (Cheek
Raiser) and AU 12 (Lip Corner Puller) across eight levels
simultaneously to enable smile intensity editing [10]. Ta-
ble 3 provides comparisons based on identity preservation
(Ed) and manipulation efficiency (ρ). The result indicates
that AUEditNet better preserves identity when an attribute
undergoes the same quantity of change than others.

4.5. Expression Transfer

Setting individual AU values is a cumbersome process and
requires expertise for achieving desired expression synthesis
[27]. In contrast, our proposed AUEditNet demonstrates
the capability to directly transfer facial expressions from
target images without the need for retraining the network.
The process involves inputting the target image with the
desired expression into the target branch in Fig. 1. Instead
of employing removal and addition processes, we directly

Model
Target

(Removal & Addition)
Neutral

(Removal)

MSE ↓ ICC ↑ ID ↓ MSE ↓ ID ↓

Tr
ai

ni
ng w/o LR & LP 0.388 0.584 0.502 0.253 0.440

w/o LF 0.507 0.356 0.480 0.467 0.454
w/o LID 0.288 0.619 0.533 0.115 0.515

D
es

ig
n Sngl. 0.317 0.598 0.545 0.621 0.724

+ Encoder, Decoder 0.290 0.617 0.505 0.167 0.600
+ Dual. 0.288 0.617 0.471 0.111 0.439

+ Label Mapping 0.283 0.628 0.468 0.102 0.426

Table 4. Ablation Study for AUEditNet.

feed the estimated embeddings of the target image into the
decoder Φj

dec, similar to the procedure in the source branch,
to acquire editing residuals with target facial expressions. Fig.
4 shows expression transfer results on the BU-4DFE dataset
[46]. The edited images demonstrate the contributions of AU
intensity manipulation to the facial expression reenactment.

4.6. Ablation Study

Table 4 shows the results of ablation studies for AUEditNet.
In module design, the integration of dual branch (+ Dual.)
leads to improvements in both AU manipulation accuracy
(MSE, ICC) and ID preservation (ID). Notably, in the ‘Re-
moval’ case for neutral face generation, MSE and ID get
33.5% and 26.8% improvements, respectively. The evalua-
tion in this removal-only process is valuable for assessing
whether unrelated information is introduced into the target
AU space during editing, which is often invisible when ‘Re-
moval and Addition’ processes are implemented. Level-wise
label mapping can further improve manipulation accuracy.
Regarding training loss, a well-trained AU intensity estima-
tor (LF ) plays a more crucial role than a paired target image
(LR & LP ). This observation aligns with the fact that pixel-
wise MSE and perceptual loss may not effectively capture
AU motions. The absence of ID loss leads to a performance
drop in ID. However, it also loosens constraints on latent
code editing, resulting in more accurate AU manipulation.

5. Conclusion
In this work, we achieved accurate AU intensity manipula-
tion in high-resolution synthetic face images. Our method
allows conditioning manipulation on intensity values or tar-
get images without retraining the network or requiring extra
estimators. This pipeline presents a promising solution for
editing facial attributes despite the dataset’s limited subject
count. We validated our method both qualitatively and quan-
titatively through extensive experiments. The performance
boost with synthetic augmented data confirms the quality of
generated samples, mitigating the challenge of data scarcity.
In the future, we aim to explore weakly- (or self-) supervised
methods to further advance AU intensity manipulation.
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