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Abstract

Event-based semantic segmentation has gained popular-
ity due to its capability to deal with scenarios under high-
speed motion and extreme lighting conditions, which can-
not be addressed by conventional RGB cameras. Since it
is hard to annotate event data, previous approaches rely
on event-to-image reconstruction to obtain pseudo labels
for training. However, this will inevitably introduce noise,
and learning from noisy pseudo labels, especially when
generated from a single source, may reinforce the errors.
This drawback is also called confirmation bias in pseudo-
labeling. In this paper, we propose a novel hybrid pseudo-
labeling framework for unsupervised event-based semantic
segmentation, HPL-ESS, to alleviate the influence of noisy
pseudo labels. Specifically, we first employ a plain un-
supervised domain adaptation framework as our baseline,
which can generate a set of pseudo labels through self-
training. Then, we incorporate offline event-to-image re-
construction into the framework, and obtain another set of
pseudo labels by predicting segmentation maps on the re-
constructed images. A noisy label learning strategy is de-
signed to mix the two sets of pseudo labels and enhance the
quality. Moreover, we propose a soft prototypical alignment
(SPA) module to further improve the consistency of target
domain features. Extensive experiments show that the pro-
posed method outperforms existing state-of-the-art methods
by a large margin on benchmarks (e.g., +5.88% accuracy,
+10.32% mIoU on DSEC-Semantic dataset), and even sur-
passes several supervised methods.

1. Introduction
Event cameras are bio-inspired vision sensors that respond
to changes in pixel intensity, generating a stream of asyn-
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Figure 1. Comparison on the DSEC-Semantic dataset. Our
method outperforms other UDA works by a large margin and even
surpasses fully supervised methods.

chronous events characterized by exceptionally high tem-
poral resolution. This technology enables the capture of
dynamic scenes, providing features of high dynamic range
(HDR) and reduced motion blur. Event cameras have been
extensively applied in various applications, including object
recognition [15, 23], SLAM [8], and autonomous driving
systems [19], effectively addressing challenges such as mo-
tion blur and overexposure.

However, event data significantly differ from images,
making it difficult to annotate in dense pixel prediction tasks
such as semantic segmentation. Previous works [1, 31, 32]
require per-pixel paired events and images, and then lever-
age pre-trained networks on images to generate labels for
event data. Although a more precisely paired and sharper
image would naturally yield improved results, these meth-
ods increase the demands on capture devices. Other meth-
ods rely on event-to-image conversion to get rid of the need
for ground-truth labels. E2VID [25] is an event-to-image
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(ETI) reconstruction method to transform events into im-
ages, while VID2E [10] employs image-to-event (ITE) in
reverse. Based on the above methods, a feasible strategy is
to generate pseudo labels from converted images for event
data. ESS [27] further employs unsupervised domain adap-
tation (UDA) to transfer knowledge from labeled image
data (source domain) to unlabeled event data (target do-
main) through the bridge of event-to-image reconstruction.

Despite improvements, reconstruction-based methods
suffer from the limitation that, due to the lack of texture
information in event data, the reconstructed images usually
have large fuzzy regions, inevitably introducing noise into
the generated pseudo labels. Training on noisy pseudo la-
bels has the risk of reinforcing the errors, especially when
they are obtained from a single source, a problem that is
known as confirmation bias [2] in pseudo-labeling.

To alleviate the bias of single-source pseudo labels, in
this paper, we propose HPL-ESS, a hybrid pseudo-labeling
framework for unsupervised event-based semantic segmen-
tation. Our method is built upon a modified UDA frame-
work, which executes self-training on the mixture of un-
paired images and event data. The framework has the abil-
ity to generate a set of pseudo labels by directly predicting
the event data. Simultaneously, we introduce offline event-
to-image reconstruction into the framework, which gener-
ates another set of pseudo labels by predicting the recon-
structed images. Through training on these hybrid pseudo
labels, the network can progressively improve its ability to
directly predict more accurate labels for event data. To grad-
ually mitigate the impact of low-quality reconstructed im-
ages during training, we approach this challenge as a noisy
label learning (NLL) problem. In this context, we distin-
guish between noisy data (reconstructed images) and clean
data (original events). Then, we introduce a noisy-label
adaptation process to further refine pseudo labels at each
iteration. In addition, due to the large domain gap between
image and event, the network is prone to produce dispersed
features in the target domain [10]. To counteract this issue,
we also design a soft prototypical alignment (SPA) module
to learn the intrinsic structure of the target domain and ad-
dress the dispersion of target features. As illustrated in Fig-
ure 1, the proposed method is very effective, outperform-
ing other state-of-the-art UDA approaches by a large margin
and even surpassing several fully supervised methods.

In summary, our contributions in this paper are:
• We propose a hybrid pseudo-labeling framework for un-

supervised event-based semantic segmentation. This
framework gets rid of event-to-image pairs and is robust
to noisy pseudo labels.

• We design a soft prototypical alignment (SPA) module to
enforce the network to generate consistent event features
under the same class, forming a more compact feature
space in the target domain.

• Extensive experiments on two benchmark datasets
demonstrate that our method outperforms previous state-
of-the-art methods by a large margin.

2. Related Work
2.1. Event-based Semantic Segmentation

Using deep learning, [1] first introduces event cameras to
the semantic segmentation task, with an architecture based
on an encoder-decoder CNN, pre-trained on the well-known
urban environment Cityscapes dataset [6]. An open dataset,
DDD17, containing annotated DAVIS driving records for
this task is released in [3]. [10] enables the use of ex-
isting video datasets by transforming them into synthetic
event data, facilitating the training of networks designed for
real event data. Despite its capacity to leverage an unlim-
ited number of video datasets, challenges persist due to the
sim-to-real gap in many simulated scenarios. [32] employs
two student networks for knowledge distillation from the
image to the event domain. However, the method heavily
depends on per-pixel paired events and active pixel sen-
sor (APS) frames. Consequently, in scenarios where APS
frames are unavailable, the application of such a knowledge
distillation approach becomes significantly restricted. [31]
substitutes the active pixel sensor modality with grayscale
images generated by E2VID [25], transferring the segmen-
tation task from the event domain to the image domain. Re-
cently, ESS [27] addresses event-based semantic segmenta-
tion by introducing the DSEC-Semantic dataset, which re-
lies on paired high-resolution images and events, thus pro-
viding high-quality semantic labels for event streams. ESS
also introduces an event-to-image-based UDA method to
transfer knowledge from the source image domain to the
target event domain.

2.2. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) approaches can be
divided into two key methodologies: domain adversarial
learning and self-training. Domain adversarial learning fo-
cuses on aligning feature distributions across domains [9]
but does not inherently ensure the discriminative power of
target features [18]. In contrast, self-training capitalizes on
a model’s high-confidence predictions to bolster the per-
formance within the target domain. This approach signif-
icantly alleviates the domain shift issue by iteratively align-
ing the feature distribution of the target domain to match
that of the source domain, which proves to be particularly
effective in scenarios where obtaining labels for the target
domain is challenging. In this context, strategies such as
leveraging domain-invariant features [5, 12, 17], pseudo-
labeling [36, 38], intermediate domains [16, 21, 30], and
consistency regularisation [13] have been used. We con-
sider that under a similar task and scenario, event data can
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Figure 2. Overview of the HPL-ESS architecture. During training, we introduce offline event-to-image reconstruction as input to our
framework. To avoid overfitting noise, we use only a small proportion (5%) of the reconstructions. The network is trained by hybrid
pseudo labels from reconstruction and self-prediction. Additionally, a soft prototypical alignment (SPA) module is designed to enhance the
consistency of target domain features. In the inference phase, only events are used as input.

also be drawn close to RGB images semantically through
the application of UDA methods.

3. Method
As illustrated in Figure 2, the proposed HPL-ESS frame-
work incorporates self-training UDA techniques, described
in Section 3.2, and employs offline event-to-image recon-
struction to generate hybrid pseudo labels, covered in Sec-
tion 3.3. To gradually mitigate the impact of low-quality
and blurred areas in offline-reconstructed images, we intro-
duce a noisy label learning (NLL) method to refine pseudo
labels. We further propose a soft prototypical alignment
(SPA) module to explore the intrinsic structure of event
data, alleviating the impact of feature divergence as detailed
in Section 3.4.

3.1. Definitions and Problem Formulation

In a UDA framework for event-based semantic segmenta-
tion, a neural network F is usually trained from labeled
source dataset S = {Ii, Yi}Mi=1 to transfer to an unlabeled
target dataset T = {Ei}Ni=1. Specifically, the source do-
main S consists of images Ii ∈ RH×W and their corre-
sponding labels Yi ∈ RH×W . In contrast, the target domain
T consists of numerous continuous and asynchronous event
streams Ei and without having access to the target labels Vi.
Each event stream Ei can be represented as a series of tu-
ples {(xj , yj , tj , pj)}, where j denotes the sample index, x,
and y denote the spatial co-ordinates, t represents the times-

tamp, and p indicates the binary polarity (positive or nega-
tive) of brightness changes occurring between two times-
tamps. Due to the high temporal resolution of Ei, we sub-
sample Ei into a sequence of voxel grid representations [37],
where each voxel grid is constructed from non-overlapping
temporal windows with a fixed number of events. These are
then effectively superimposed to form a static frame.

3.2. UDA Framework Overview

We modify DaFormer [14] as the backbone and baseline
for our event-based semantic segmentation UDA method.
The framework is composed of two networks: a teacher
network Fϕ and a student network Fψ . Other modules in
DaFormer are eliminated to ensure the simplicity and effi-
ciency of our method. To facilitate knowledge transfer from
the source domain to the target domain, the modified base-
line is trained using the mixed data of labeled images and
unlabeled events. To be specific, in our work, the student
network Fψ first conducts warm-up by being trained with
the supervised loss on the source image domain

Ls(Fψ | S) = 1

|S|

|S|∑
i=1

H (Fψ (Ii) , Yi) , (1)

where H denotes the cross entropy function. Correspond-
ingly, the parameters of the teacher network are updated
using the exponential moving average (EMA) [29] from
the student model to maintain stability. After warm-up,
the framework follows a self-training strategy, where the
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teacher network directly predicts the event data to generate
pseudo labels for the training of the student model. This
process is repeated until the networks have converged.

In addition, augmentation methods, such as jitter and
ClassMix [22], are used on both events and images to im-
prove the method’s availability across domains. Although
self-training UDA is usually an effective technique, it is
challenging to obtain satisfactory results due to the large
domain gap between images and events. Furthermore, it
suffers from the aforementioned single-source noisy pseudo
labels.

3.3. Hybrid Pseudo-Labeling

To address the above issues, we consider the E2VID [26]
method to reconstruct the event streams into simulated
images, which are then incorporated into our framework
as an intermediate domain to narrow down the gap be-
tween the source image domain and the target event do-
main. The reconstructed images also provide another set of
pseudo labels to alleviate the bias of single-source pseudo
labels. In particular, we randomly sample the event dataset
T = {Ei}Ni=1 to create two groups, Tl =

{
E li
}a
i=1

and
Tu = {Eui }

b
i=1, where a + b = N . Event streams E li are

reconstructed into simulated images I li as

I li = E2V ID
(
E li
)
. (2)

Now, the inputs to the student network encompass source
images Ii, unlabeled events Eui , unlabeled events E li and the
corresponding reconstructed images I li . Notably, we do not
reconstruct all event streams into simulated images to avoid
the network overfitting these noisy data.

As illustrated in Figure 2, the student network Fψ takes
the reconstructed image I li as input and generates the pre-
dicted probability map. This map is then utilized as Fψ(I li),
the pseudo-ground-truth for E li . Simultaneously, similar to
the self-training backbone, event data Eui and E li are input
to the teacher network Fϕ to obtain the direct pseudo la-
bels Fϕ(Eui ) and Fϕ(E li). For Eui , the student network Fψ is
trained with the supervised loss Lu calculated as

Lu(Fψ | Tu) =
1

|Tu|

|Tu|∑
i=1

H (Fψ (Eui ) , Fϕ(Eui )) . (3)

For E li , Fϕ(E li) together with the event pseudo-ground-
truth Fψ(I

l
i) constitutes the hybrid pseudo labels.

The event-to-image reconstruction process suffers from
limited interpretability and a lack of control, leading to
low-quality reconstructed images I li , e.g., incorrect con-
tent and blurred areas. Predicting semantic segmentation
maps on these images and viewing them as pseudo labels
will inevitably introduce significant noise. Directly us-
ing them during training may result in sub-optimal perfor-
mance. Therefore, we treat this as a noisy label learning

Distance:Distance:

JS(      |      )

All Class Prototypes

Target Events Reconstructed Image

Source Images

Figure 3. The concept of our SPA module on source domain, re-
constructed images, and events.

problem and explicitly regard Fψ(I
l
i) as a noisy label of the

events E li . Inspired by [35], we employ a label correction
strategy based on self-prediction to mitigate the noise issue.
This strategy adapts the noisy distribution from the pseudo-
ground-truth Fψ(I

l
i) to the view of the event distribution.

Specifically, for each E li , we reconstruct the refined pseudo

label V̂i
l

by combining Fψ(I
l
i) and the Fϕ(E li) as

V̂i
l
= (1− α)Fψ(I

l
i) + αFϕ(E li), (4)

with a hyper-parameter α. Then, the modified loss Ll for E li
is

Ll(Fψ | Tl) =
1

|Tl|

|Tl|∑
i=1

H
(
Fψ

(
E li
)
, V̂i

l
)
. (5)

With the progression of training, the teacher network be-
comes increasingly potent, thereby gradually generating
more accurate Fϕ(E li) and weakening the impact of Fψ(I li)
in Eq. (4)

3.4. Soft Prototypical Alignment

Although the reconstructed images I li and the event El
i be-

long to the same target domain, we find there is a large dis-
tribution gap between them as shown in Figure 4(a). To
enhance the consistency of target features, inspired by [36],
we propose a soft prototypical alignment (SPA) module to
explicitly align the distributions by pulling I li and El

i to the
same prototype, respectively. As illustrated in Figure 3,
we employ each class’s mean value Fψ(Ii) on source im-
ages as prototypes η since the source domain can provide
much cleaner data. Then, we reduce the soft relative differ-
ence between reconstruction-to-source distance and event-
to-source distance to achieve our goal. The reconstruction-
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Figure 4. t-SNE analysis of SPA module on the source image,
reconstructed image and target events. (a)Without SPA; (b) With
SPA.

to-source distance between Fψ(I
l
i) and η is calculated as

Z
(I)
i =

exp
(
−
∥∥Fψ (

I li
)
− η

∥∥ /τ)∑
exp

(
−
∥∥Fψ (

I li
)
− η

∥∥ /τ) , (6)

where τ is the coefficient temperature. Similarly, the event-
to-source distance between Fψ(E li) and η is calculated as

Z
(E)
i =

exp
(
−
∥∥Fψ (

E li
)
− η

∥∥ /τ)∑
exp

(
−
∥∥Fψ (

E li
)
− η

∥∥ /τ) . (7)

We use the Jensen-Shannon (JS) divergence [7] instead of
KL divergence used in [24] for distribution alignment due
to the symmetry of JS divergence. This ensures an equal
pulling effect on the distributions of Fψ(I

l
i) and Fψ(E li).

The JS divergence loss is calculated as

LSJS = JS
(
Z

(I)
i ∥Z(E)

i

)
, (8)

and compels the network to generate consistent event fea-
tures and image features for E li and I li under the same class.

Additionally, E li and Eui are not trained with the same set
of pseudo labels, making the target distributions of E li and
Eui more likely to be dispersed. In such a scenario, the net-
work fails to rectify the labels of target data located at the far
end of the class cluster. Considering that the distributions of
Fψ(E li) and Fψ(Eui ) belong to the same scene, their distri-
butions are expected to exhibit similar relative distances. To
achieve this, we further employ the mean value of each class
in Fψ(I

l
i) as a prototype. We then bring in the relative dis-

tances of Fψ(E li) and Fψ(Eui ) to Fψ(I
l
i), respectively. Em-

ploying a methodology akin to Eqns. (6), (7), and (8), we
obtain LIJS that forms a more compact feature space in the
target domain. Figure 4(b) illustrates that SPA effectively
minimizes the target domain distribution distance, aligning
it with the relative distance observed in the source domain.

The overall loss in our framework is defined as

L = Ls + Lu + Ll + ω(LSJS + LIJS), (9)

where ω denotes a hyper-parameter.

4. Experiments
4.1. Dataset

As target data, we evaluate the proposed framework on
two event-based semantic segmentation datasets, namely
DSEC-Semantic [11] and DDD17 [3]. These driving-
focussed datasets were captured using automotive-grade
event cameras, encompassing a diverse range of urban and
rural settings.

The DDD17 dataset comprises per-pixel paired events
and frames captured by DAVIS event cameras with a reso-
lution of 346× 260. In [1], semantic labels were generated
using pre-trained segmentation networks based on DAVIS
images, resulting in 15,950 samples for training and 3,890
for testing. Due to the low resolution, several categories in
DDD17 have been merged into six classes, namely flat (road
and pavement), background (construction and sky), object,
vegetation, human, and vehicle.

DSEC-Semantic, a recently introduced dataset for event-
based semantic segmentation, extends the comprehensive
DSEC dataset [11]. It includes 53 driving sequences
captured by an event camera at a resolution of 640 ×
480. [27] used a state-of-the-art image-based segmenta-
tion method [28] to generate segmentation labels. This pro-
cess yields 8,082 labeled training samples and 2,809 testing
samples, distributed across 11 classes: sky, building, fence,
person, road, pole, sidewalk, vegetation, vehicle, wall, and
traffic sign.

As source data, we use the CityScapes street scene
dataset [6], which includes 2,975 training and 500 valida-
tion images with a resolution of 2048 × 1024. Following
common practice in UDA methods, we resize the CityScape
images to 1024× 512 pixels.

4.2. Implementation Details

In our experiments, we employ DaFormer [14] as our
UDA backbone. The encoder in Daformer uses an MiT-
B5 model [34] and is pre-trained on ImageNet-1K. Across
all experiments, the batch size is consistently set to 4. We
use the AdamW optimizer with a weight decay of 1×10−4.
The learning rate is set to 6 × 10−5 and we use a learning
rate warm-up for 1,500 iterations, with a linear increase in
the learning rate during this period. We additionally warm-
up for 5,000 iterations on the source dataset to make the
network gain the initial semantic segmentation ability. α in
Eq. 4 and ω in Eq. 9 are both set to 0.5. For data augmenta-
tion in both source and target domains, we follow [14, 33]
and employ techniques such as color jitter, Gaussian blur,
and ClassMix [22]. These augmentations are instrumental
in training the model to learn more robust features across
different domains.

In the event-to-image simulation process, Spade
E2VID [25] is employed as our emulator for reconstruction.

23132



Table 1. Performance and necessary number of events on DSEC-Semantic dataset in both UDA and fully supervised learning settings.

Type Method No. of Events Accuracy [%] mIoU [%]
Supervised EV-SegNet [1] - 88.61 51.76

HALISE [4] - 89.01 52.43
ESS [27] 2E6 89.37 53.29

UDA EV-Transfer [20] 2E6 60.50 23.20
E2VID [25] 2E6 76.67 40.70
ESS [27] 2E6 84.04 44.87
Ours 1.8E5 (↓ 91.0%) 89.92 (+ 5.88%) 55.19 (+10.32%)

This step occurs solely in the offline phase, ensuring that it
does not impact the efficiency of our online training and
testing process. It is worth noting that E2VID will progres-
sively produce expanding black artifacts if fed with discon-
tinuous event inputs. To mitigate this problem, we reinitial-
ize the E2VID network each time an image is reconstructed,
preventing the occurrence of such artifacts. Regarding the
event pre-processing on the DDD17 dataset, events are con-
verted into 20 voxel grids, with each grid containing 32,000
events. For the DSEC-Semantic dataset, due to its higher
resolution, the number of voxel grids is increased to 40, and
each grid comprises 100,000 events.

4.3. Comparison with State-of-the-Art

We compare our method with previous relevant approaches,
and use the top-1 accuracy and the mean intersection over
union (mIoU) as the common semantic segmentation eval-
uation metrics. Beyond UDA methods, certain approaches
have embraced a fully supervised setting to tackle the chal-
lenges. EV-SegNet [1] presents the first baseline for event-
based semantic segmentation, which employs an encoder-
decoder architecture and takes only events for fully su-
pervised learning. HALISE [4] encodes event frames and
source images into a spike stream, representing informa-
tion in a binarised manner, and aligns the feature distribu-
tion in these spike streams. EV-Transfer [20] fabricates the
motion of a still image to generate event streams, and then
uses source labels and the corresponding synthetic events to
conduct training. E2VID [25] converts events in the DSEC-
Semantic dataset to reconstruct images, and then predicts
semantic segmentation maps using other pre-trained mod-
els. E2VID can only perform direct transfer as there is
no event label for training. VID2E [10] converts source
video frames to synthetic events and trains on the source
labels. ESS [27] employs the above E2VID-based process
to generate pseudo-labels and attempts to transfer knowl-
edge from the source image domain to the target event do-
main by the UDA technique. While methods employing
supervised learning may achieve superior results compared
to traditional UDA approaches, their reliance on labels sig-
nificantly elevates the demands for dataset collection.

DSEC-Semantic dataset. We employ the CityScape
dataset as the labeled source dataset and the DSEC-
Semantic dataset as the unlabeled target dataset. This
dataset poses additional challenges due to its more fine-
grained categories compared to the DDD17 dataset. We
report the obtained results for all methods in Table 1.

As we can see from there, our method demonstrates a
significant improvement, outperforming the previous state-
of-the-art UDA work ESS by 5.87% and 9.65% in terms of
accuracy and mIoU, respectively. Notably, our UDA-based
method even surpasses the performance of fully supervised
approaches by 0.55% in terms of accuracy and 1.9% in
terms of mIoU. Since this is a highly imbalanced dataset,
the gain in mIoU is more representative in the segmenta-
tion task. In addition, by solely utilizing the E2VID recon-
struction method offline, our approach avoids dependency
on recurrent networks in E2VID during both training and
inference, significantly reducing the required input events
from 2E6 to 1E5 (a 95% reduction). These enhancements
remarkably prove the effectiveness and computational effi-
ciency of our proposed method.

Some example results are visualized in Figure 6. The
background of the reconstructed image exhibits fuzzy re-
gions and low resolution, which inevitably poses signifi-
cant challenges to semantic segmentation Networks. For
instance, due to the lack of texture information in events,
the reconstructed sky category appears very similar to the

Figure 5. Example results on DDD17 dataset. The DDD17 ground
truth lacks details for some objects.
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Figure 6. Visualization results on DESC-Semantic dataset. From left to right: event frame, event-to-image reconstruction, the maps
predicted by E2VID, ESS, and our proposed HPL-ESS, ground truth.

building category in terms of contrast and edge information,
leading to potential misinterpretation of the model’s predic-
tions (as indicated by the red arrow). The proposed hybrid
pseudo-labeling method effectively mitigates these interfer-
ence factors in reconstructed images, resulting in improved
performance.

DDD17 dataset. Table 2 reports the UDA results on
the DDD17 dataset for event-based semantic segmentation.
Similar to the DSEC-Semantic dataset, only labeled im-
ages from CityScape and unlabeled events from DDD17 are
available in this task. Table 2 showcases that our method
achieves consistent optimal results, outperforming the pre-
vious state-of-the-art work by 1.05% (mIoU) and 0.79%
(accuracy), respectively.

Since the event ground truth in DDD17 is derived from
the low-quality paired images, this significantly impacts
the reliability, especially concerning texture details, as also
mentioned in [27]. As Figure 5 illustrates, our predictions
even surpass the ground truth in object details. Taking the
first line in Figure 5 as an example, in the yellow box, our
network better separates the details of the trees and street-
lights, which are missing in the DDD17 ground truth. Sim-
ilarly, in the second line, our method segments more cor-
rect trees, while the DDD17 ground truth misclassifies trees
with sky. This discrepancy could potentially lower our per-
formance during evaluation. Due to the higher resolution
and quality of the DSEC-Semantic dataset, we opted for this
dataset to evaluate our method and comparison works.

4.4. Comprehensive Analysis

Since DSEC-Semantic is a higher-quality dataset, all abla-
tion experiments are conducted on DSEC-Semantic.

Table 2. Performance comparison of HPL-ESS with state-of-the-
art methods on DDD17 dataset in UDA setting. Only source labels
are available.

Method Accuracy [%] mIoU [%]
EV-Transfer [20] 47.37 14.91
E2VID [25] 83.24 44.77
VID2E [10] 85.93 45.48
ESS [27] 87.86 52.46
Ours 88.65 (+0.79%) 53.51+(1.05%)

Design analysis of our framework. We conduct several
ablation studies to assess the effectiveness of the proposed
framework. As depicted in Table 3, (a) directly applying
the UDA baseline alone does not yield satisfactory results,
likely due to the substantial domain gap between the im-
age and event domains. Similarly, (b) training directly on
the event-to-image (ETI) reconstructed images from E2VID
also results in unsatisfactory performance. This result veri-
fies the aforementioned discussion, namely event-to-image-
based methods will suffer from the noise brought by the
reconstructed image. Both (a) and (b) highlight the unreli-
ability of solely relying on the single-source pseudo labels
and emphasize the necessity for hybrid label learning. An
intriguing observation is that (c) employing the source data
to pre-train the network for a certain number of iterations,
i.e., using a warmup phase, significantly enhances the per-
formance. In (d), our method is based on source domain
warm-up, and as described in Section 3, the E2VID recon-
structed images are introduced on top of the UDA backbone
to provide the hybrid pseudo labels for events, leading to
considerable performance gains.
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Table 3. Ablations study on DSEC-Semantic dataset.

Method Baseline ETI Warmup NLL SPA mIoU [%]
(a) ✓ 36.76
(b) ✓ 40.70
(c) ✓ ✓ 44.87
(d) ✓ ✓ ✓ 51.08
(e) ✓ ✓ ✓ ✓ 52.23
(f) ✓ ✓ ✓ ✓ 52.69

HPL-ESS ✓ ✓ ✓ ✓ ✓ 55.19

Table 4. Ablation study for the proportion of event samples partic-
ipating in the event-to-image reconstruction.

Proportion Accuracy [%] mIoU [%]
0% 82.71 44.87
1% 86.54 46.84
5% 89.91 55.19
10% 89.89 55.15
50% 89.81 54.96
80% 89.75 54.82

100% 89.63 54.51

We further validate the effectiveness of the proposed
NLL strategy and SPA module. As shown in Table 3, NLL
reduces the noise of pseudo-labels on reconstructed images
through iterative label refinement, making it more adaptive
to the event domain and resulting in a performance gain.
SPA prioritizes the divergence of various features on the
target domain and aligns the labeled and unlabeled events
with the source domain prototype, contributing to enhanced
evaluation performance. Ultimately, the simultaneous in-
troduction of these two modules in our framework leads to
optimal performance.

Proportion of reconstructed event samples. In our
framework, we do not transform all event data into re-
constructed images to avoid overfitting the reconstruction
noise. In fact, as demonstrated in Table 4, the optimal result
is achieved when using only 5% of the event data to gener-
ate the reconstructed images as the pseudo labels. Perfor-
mance experiences a slight decline as more reconstructed
images are introduced. Particularly, when using 100% of
the data, it results in an mIoU drop to 54.51%. The lower
dependence on the number of reconstructed images also un-
derscores the remarkable computational efficiency of our
method during training. Further reduction of the ratio, be-
low 5%, leads to progressively worse performance, reach-
ing its lowest point at a 0% ratio and reverting back to the
UDA backbone.

Online/Offline reconstruction pseudo label. Offline
event-to-image reconstruction enables us to directly predict
the reconstructed image using a pre-trained network and get
pseudo labels for event data, which are named reconstruc-
tion pseudo labels here. In this section, we compare the

Table 5. Ablation study for online and offline reconstruction
pseudo labels.

Method Accuracy [%] mIoU [%]
OffLine 83.25 48.45
OnLine 89.92 55.19

effects of fixing these reconstruction pseudo labels and it-
eratively repredicting them by our network during training.
As shown in Table 5, the online reprediction strategy re-
markably surpasses the offline fixing strategy, demonstrat-
ing that our method becomes more powerful during training
and can predict more accurate reconstruction pseudo labels
for event data.

5. Discussion and Limitation
Due to the imbalance issue presented in the benchmark
datasets, the accuracy performance of classes with insuf-
ficient samples, e.g., ’rider’ and ’traffic light,’ is compara-
tively lower than the accuracy of some other classes, e.g.,
sky and road. These results are illustrated in the visualiza-
tion examples in Supplementary Materials. Despite that
our approach yields significant improvement for the classes
with a small number of samples when compared to previous
methods, we will further consider more strategies to deal
with the data imbalance issue in the future work.

6. Conclusion
In this paper, we have proposed a novel hybrid pseudo-
labeling framework HPL-ESS for unsupervised event-based
semantic segmentation. HPL-ESS effectively alleviates the
challenges posed by noisy pseudo labels, a common is-
sue in this field. The proposed method uniquely incorpo-
rates self-training unsupervised domain adaptation and of-
fline event-to-image reconstruction to generate high-quality
hybrid pseudo labels. The introduction of a noisy label
learning strategy further refines the pseudo labels gradually.
Moreover, a soft prototypical alignment (SPA) module sig-
nificantly enhances the consistency and reliability of the tar-
get features. The effectiveness of HPL-ESS is evidenced by
its superior performance in extensive experiments, where it
not only surpasses existing state-of-the-art UDA methods
but also exceeds several supervised methods.
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