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Abstract

The premise for the great advancement of molecular ma-
chine learning is dependent on a considerable amount of
labeled data. In many real-world scenarios, the labeled
molecules are limited in quantity or laborious to derive. Re-
cent pseudo-labeling methods are usually designed based
on a single domain knowledge, thereby failing to under-
stand the comprehensive molecular configurations and lim-
iting their adaptability to generalize across diverse bio-
chemical context. To this end, we introduce an innovative
paradigm for dealing with the molecule pseudo-labeling,
named as Molecular Data Programming (MDP). In par-
ticular, we adopt systematic supervision sources via craft-
ing multiple graph labeling functions, which covers various
molecular structural knowledge of graph kernels, molec-
ular fingerprints, and topological features. Each of them
creates an uncertain and biased labels for the unlabeled
molecules. To address the decision conflicts among the di-
verse pseudo-labels, we design a label synchronizer to dif-
ferentiably model confidences and correlations between the
labeling functions, which yields probabilistic molecular la-
bels to adapt for specific applications. These probabilis-
tic molecular labels are used to train a molecular classifier
for improving its generalization capability. On eight bench-
mark datasets, we empirically demonstrate the effectiveness
of MDP on the weakly supervised molecule classification
tasks, achieving an average improvement of 9.5%. The code
is in: https://github.com/xinjuanl/MDP/.

1. Introduction

Molecular machine learning has achieved remarkable
success in chemical and biological applications, e.g., chem-

*Corresponding author

ical property prediction [0,22,48,51] and quantum chem-
istry calculations [25, 26, 34, 61], due to its generalization
capability to differentiably learn molecule features and esti-
mate the interested properties. The development processes
have been catalyzed by the release of large labeled train-
ing datasets [23]. Unfortunately, manually collecting and
labeling a sufficient amount of training data is often time-
consuming and labor-intensive. This problem is exacer-
bated for molecular labeling from scientific domains, which
rely on expensive wet-lab measurements or graph structure
computations.

To enable the molecular machine learning with limited
amount of labeled data, weakly supervised learning based
on pseudo-label paradigm augments the training dataset
with noisy sources without access to ground truth. These
methods which can be roughly classified into two groups,
i.e., self-training and graph kernel methods. The for-
mer [28, 56] repeats the process of training model on the
available labeled data and yielding confident pseudo-labels
to create a larger dataset. On the other hand, the later defines
similarity measures for every pairwise graphs using kernel
functions, including random-walk, Weisfeiler-Lehman, and
graphlet kernels [11, 42, 43], where the similarity matrix
among labeled and unlabeled molecules is leverage to in-
fer pseudo-labels. However, while the self-training method
is prone to over-confident predictions especially if the initial
model is not accurate enough, the graph kernel algorithm is
sensitive to the choice of an appropriate kernel function and
cannot generalize well across different datasets.

To address the labeling overfitting and enhance genen-
eralization, data programming is proposed to unify multi-
ple weak supervision sources and provide a more flexible
and expressive pseudo-labeling [4,49]. In particular, users
define domain heuristics/rules in the form of labeling func-
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Figure 1. Diagram of MDP. (1) Designing LFs by expressing various weak supervision sources such as graph kernel, molecular fingerprint
and topological features. (2) Employing the LFs over unlabeled data and learning a label synchronizer to aggregate the LF’s outputs into
probabilistic molecular labels. (3) Utilizing the generated probabilistic molecular labels, MDP trains a molecular property classifier to
ensure that its predictions align with the pseudo-labels or ground-truth labels.

tions (LFs). Each LF generates cheap labels via capturing
specific aspects of domain knowledge, and the multiple la-
bels from diverse supervision sources are then combined
to estimate the posterior probabilities of true labels for the
unlabeled data. Synergizingly applying LFs can take into
account the reliability and correlations of different LFs to
create robust pseudo-labels. For example, Snorkel [36] is
the first end-to-end system for leveraging LFs to serve as
the programming interface, which generates weak supervi-
sion without any labeled training data. Snorkel MeTaL [37]
extends to handle multi-task learning by exploring a hier-
archical labeling model. Nevertheless, the aforementioned
approaches are mainly adopted for text and image data.

However, the extension of programmatic weak supervi-
sion paradigm to pseudo-label molecules has to solve two
key challenges. First, the canonical LFs are beingless to
capture the nuances of biological or chemical properties.
Unlike the text data whose label can be heuristically deter-
mined via named entities, molecules are often characterized
by complex and intricate structures. The diversity of spatial
structures in molecular datasets is immense, while the un-
derlying biochemical mechanisms and interactions may not
be fully understood. This lack of structural understanding
makes it difficult to design rules that automatically capture
the relevant features. Second, there may be decision con-
flicts among the different supervision sources. The simple
majority vote may neutralize pseudo-labels capturing the
desired properties for the specific applications.

To address the challenges mentioned above, as shown in
Figure 1, we propose a novel molecular data programming
(MDP) framework towards molecule pseudo-labeling with
systematic weak supervisions. The key idea is to create ro-
bust pseudo-labels for unlabeled molecules by integrating
knowledge from diverse domains and differentiably learn-

ing to adapt to specific biochemical environment. Particu-
larly, we first define a set of molecular labeling functions to
measure the structural similarities between molecules, in-
cluding LFs based on graph kernels, molecular fingerprints,
and topological features, to cover a wide range of biochemi-
cal context. Based on each similarity matrix consisted of all
the molecule pairs, a clustering algorithm is applied to se-
lect a small subset of prominent examples from the multiple
group centers. These prominent examples are labeled man-
ually to serve for dual purposes: optimizing downstream
classifiers and assigning weak supervision signals to the un-
labeled molecules. We thus generate a large but noisy set of
pseudo-labels according to the similarities between promi-
nent examples and other unlabeled data. Furthermore, we
design a label synchronizer to harmonize the decision con-
flicts between the different molecular labeling functions.
The label synchronizer can dynamically and adaptively esti-
mate the correlations between LFs to generate probabilistic
molecular labels, which are leveraged to train a molecular
property classifier to obtain the satisfactory generalization
performance. The main contributions can be summarized
as follows:

e We propose a novel molecular data programming
framework for molecule pseudo-labeling, which incor-
porates multiple molecular labeling functions combing
various graph domain knowledge to automatically gen-
erate a large amount of reasonable weak supervision
signals for unlabeled molecules.

* We design a label synchronizer that dynamically ad-
justs the confidence of different molecular labeling
functions and adaptively estimates the correlations be-
tween them, thereby mitigating uncertainty and gener-
ating the probabilistic molecular labels.
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 Extensive experiments on benchmark datasets from the
chemistry and biology domains demonstrate the effec-
tiveness of our proposed framework for graph classifi-
cation tasks when labeled molecules are scarce, where
the average improvement is up to 9.5%.

2. Related Work
2.1. Molecular Representation Learning

Extended Connectivity Fingerprints (ECFP) [41] as the
fixed representations are generated based on heuristics al-
gorithms, aiming to maximize the information captured by
the resulting feature vectors [5]. While these methods can
undoubtedly be successful, they inevitably involve a trade-
off by emphasizing specific molecular features while ig-
noring others. Recently, Simplified Molecular-Input Line-
Entry System (SMILES) [52] is widely leveraged to denote
molecular data, serving as the foundation for deriving a
graph structure where heavy atoms are depicted as nodes
and covalent bonds as edges. GNNs [14, 24, 44,46, 60]
have proven to be an effective tool due to their potential
for processing graph-structured data. MPNNs [13] refor-
mulate existing models into the Message Passing Neural
Networks and explore novel variations. DGN [3] enables
the definition of graph convolutions according based on
topologically-derived directional flows by introducing the
globally consistent anisotropic kernels. However, most ex-
isting works have not thoroughly explored the comprehen-
sive integration of multiple domain knowledge sources into
the molecular representation process, thus limiting their ex-
pressiveness.

2.2. Weakly Supervised Learning

Weakly supervised learning provides a framework for
creating and combining weak labelers to derive pseudo-
labels of unlabeled data [9, 17, 33, 38]. Data program-
ming [39] is a new paradigm for the programmatic creation
of training sets, in which users express the weak supervi-
sion approach as a labeling function. MeTaL [38] proposes
a multi-task weak supervision setting, which views multi-
ple weak supervision sources as different related sub-tasks
of a problem. Recent advances in weakly supervised learn-
ing enhances the quality of pseudo-labels via improving
the aggregation scheme or the weak labelers. For exam-
ple, CLL [!] utilizes expected error to define a constrained
space, containing the possible labels of the weak supervi-
sion signals. DP-SSL [57] generates probabilistic labels via
combining data programming and multiple choice learning
when there are only a few labeled samples per class. In-
spired by data programming, our work yields a substantial
number of reliable probabilistic labels by extracting a robust
source of supervision signals from unlabeled data, thereby
addressing the issue of label scarcity.

3. Preliminaries
3.1. Molecular Graph Embedding

Without loss of generalizability, we use graph neural net-
works (GNNis) to introduce the representation learning pro-
cess. Given a molecular graph G = (V, £, Xy, X¢), where
YV and £ C V x V denote the set of nodes and edges, re-
spectively. Xy = {z,|v € V} and X¢ = {zy|(u,v) € €}
represent the features of nodes and edges, respectively. We
leverage a GNN to learn embedding h,, € R¢ for each node
v € V and then obtain molecular graph embedding h, € R¢
for the entire graph G after aggregating node embeddings.
Specifically, for a L-layer GNN, the neighborhood aggrega-
tion process at the /-th layer can be defined as:

) = COMD (=D AGGY ({(h{ =D, Al 2,y

cu e N(v)})),

ey
where hg,l) denotes the embedding of node v at the /-th layer,
and A is initialized as z,. N (v) is the neighbor set of
node v, and COM®(-) and AGG")(-) are combination and
aggregation functions at the [-th layer. After propagating
through L layers, the entire graph embedding of G can be
derived through:

hg = READOUT({h,|v € V}), )

where READOUTY(-) is a permutation-invariant readout
function, such as mean or summation pooling.

3.2. Pseudo-label Generation

The goal of pseudo-label generation is to infer the un-
known label vectors of molecules without access to their
ground-truths. Particularly, considering a molecular dataset
D = {G1, - ,Gn}, the pseudo-label generation defines a
labeling function to annotate the unlabeled molecules ac-
cording to prior biochemical knowledge: F(G;) € {Y U
{¢}}, where F denotes a specific labeling function, ) de-
notes the molecular class space of a downstream applica-
tion, and ¢ means null label if the molecule’s class cannot
be confidently generated. Let Y = {F(G;)}Y, denote the
set of inferred pseudo-labels, which will be adopted to train
the molecular graph embedding learning introduced above.

4. The Proposed Framework

In this section, we introduce MDP via solving the two
challenges mentioned in Section 1. The key idea of MDP is
to generate robust pseudo-labels for unlabeled molecules by
integrating knowledge from diverse domains and synergiz-
ingly applying different labeling functions. The workflow
of MDP unfolds in three main stages.

1 Designing Molecular Labeling Functions: Rather than
hand-crafting labels for training data, MDP leverages dif-

310



ferent LFs to yield weak supervision signals for unla-
beled molecules. These LFs are crafted by considering
various molecular structural knowledge of graph kernels,
molecular fingerprints, and topological features.

2 Estimating Correlations between Labeling Functions:
Given the weak supervision signals from the diverse do-
mains, MDP leverages a label synchronizer to generate
probabilistic molecular labels by estimating correlations
between the different LFs and combining their biased
pseudo-labels. The learning process of the label synchro-
nizer is automatic and dataset-agnostic.

3 Training the Molecular Property Classifier: The out-
put of label synchronizer for the unlabeled molecules is
used to train a molecular property classifier, such as graph
neural networks. By leveraging a large amount of un-
labeled molecules, the molecular property classifier can
improve its coverage and robustness on unseen data.

4.1. Designing Molecular Labeling Functions

In the traditional molecular feature engineering, we typ-
ically resort to manual creation of features to learn low-
dimensional representations of molecules. For instance, re-
searchers have developed hand-crafting molecular descrip-
tors such as atom types, bond types, topological features,
or quantum chemical properties to capture molecular char-
acteristics [22, 58]. These engineered features play a cru-
cial role in understanding the inherent correlation between
molecular structure and its properties. Nonetheless, much
of the existing work focuses on a limited set of rules for cre-
ating molecule features, thereby constraining their adapt-
ability and generalization in a wide range of biochemical
application context. In this work, we define the molecular
labeling function to harness the potential of weakly super-
vised learning based on the data programming paradigm.
These molecular labeling functions offer a more adaptable
and data-driven approach to create weak supervision signals
that can capture a broader range of structural and property
characteristics from diverse perspectives.

Definition 1 (Molecular labeling function). The molecu-
lar labeling function, denoted as JF, infers the pseudo-labels
for molecules. Specifically, each LF consists of two mod-
ules: similarity estimation and weak supervision signals
creation. The similarity estimation measures the similarity
score between every pair of molecules using a quantitative
function S: S;; = S(G;, G;), where S;; is the (4, j)-th ele-
ment of S corresponding to molecules G; and G;. Based on
matrix S, the pseudo-labels are derived via maximizing the
discrepancy of the different classes.

Similarity estimation. Due to the intricate structural com-
plexity of molecular data and the unknown atomic interac-
tion mechanisms that determine molecular properties, it’s
unfeasible to directly generate weak supervision signals

through heuristic rules, or external knowledge bases, with-
out any manual supervision. To address this challenge, in-
spired by metric learning [27], we assess the similarity be-
tween molecules before deriving weak supervision signals
for unlabeled molecular graphs.

Given the molecular dataset D, we utilize a number of z
similarity estimation methods to derive multiple similarity
matrices {S!, - -+ , S} by measuring the similarity between
any two molecular graphs. S* is a N x N matrix. We design
LFs from three perspectives:

1. Graph-Kernel based LFs: Computing similarity by
comparing occurrences of graphlets [43], shortest-
paths [42] or subtrees [42] across multiple graphs.

2. Molecular-fingerprint based LFs: Computing similar-
ity according to the tanimoto coefficience by using var-
ious encoding methods such as MACCS [&] and Mor-
gan [30] encoding.

3. Topological-feature based LFs: Computing similarity
based on differences in topological features, such as
the number of nodes, degrees and so on.

After obtaining the set of similarity matrices, a cluster-

ing algorithm is employed on each of them to choose a small
subset of prominent examples from various group centers.
These selected examples are then manually labeled to form
the labeled set Dy, = {GF,--- ’g\LDLI}‘ This process re-
sembles active learning but does not necessitate any dataset-
specific parameter learning. Here Dy, and {S!,--- ,S*} are
leveraged in the following subsection to yield weak super-
vision signals for unlabeled molecular graphs.
Weak supervision signals creation. To unify the multi-
class molecular classification tasks containing a number of
m labels, we decompose them into m subtasks. Each sub-
tasks is to classify whether the molecule contains a specific
property (¢ = 1) or not (¢ = —1). For each similarity ma-
trix S*, we derive the pseudo-labels for unlabeled molecular
graphs according to the closeness between them with the la-
beled molecular graphs from Dy,. Specifically, the process
of deriving the weak supervision signal for the unlabeled
graph G jU can be formulated as:

|DE
1 .
. maxc(Zexp{ é - I (yQiL,m, = C) *Wikj}),lfc =1
AL = =
» ) DL
k .
,maxc(zexp{ E_l I (ygiL,m = c) * Wist),ifc=—1,

3)

where A?’m represents a scalar called weak supervision
signal for the unlabeled graph QJU generated by the k-th
molecular labeling function on the m-th binary prediction
task. Wij is the weight computed according to the the nor-
malized similarity between the labeled graph G and the
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unlabeled graph GV, which can be formulated as:

Normalize (S,j) }7 @

Y

The goal of normalizing the similarity matrix is to mitigate
the impact of the different magnitude of the similarity ma-
trices. Z,, is the normalization factor, which is defined as:

Wf] = e:vp{ —

ID"|

L = exp{Z]I (ygfﬁm = —1) * Wlk]}

ID”|

+earp{z (ygf’m = 1) *WZ}

®)

4.2. Estimating Correlations between Molecular
Labeling Functions

Each labeling function is a noisy voter and may contains
conflicts with others. Thus, when integrating knowledge
from diverse domains to establish molecular labeling func-
tions, an effective application of weak supervision paradigm
faces two primary challenges. First, how to enhance the
accuracy of generated pseudo-labels by resolving the con-
flicts between various molecular labeling functions. Sec-
ond, how to transmit the critical information about the qual-
ity of pseudo-labels to the molecular property classifier un-
der training. To address these two challenges, we propose a
label synchronizer G to provide approximate indicators of
the target classification for the unlabeled data according to
the multiple weak supervision signals.

We first initialize a learnable vector ) from a uniform
distribution Q ~ U (0,1)" to endow the label synchronizer
with the capability of identifying the confidence of differ-
ent labeling functions. Next, we aim for the label synchro-
nizer G to effectively solve the issue of potentially overlap-
ping and conflict sources. According to Kolmogorov’s the-
orem [7], multilayer perceptron (MLP) with only one sin-
gle hidden layer is capable of approximating various con-
tinuous functions. Furthermore, the simplicity of MLP is
crucial for establishing the label synchronizer when a few
labeled molecular data is available. Therefore, we equip
the label synchronizer with MLP to capture the intricate
correlations among diverse molecular labeling functions.
€ = {Q c sz17wMLP c szz}'

Specifically, after obtaining the weak supervision signals
matrices {A!, A%, ..., A*} across multiple graph labeling
functions, we first utilize €) to represent the confidence of
each molecular labeling function. Then, for a unlabeled
molecule QJU , the generation process of probabilistic molec-
ular label is formulated as:

Tism = o (WM IH{QAY L i), (6)

where ||{Q]fA§:,m}Z:1 represents concatenating the weak
supervision signals of unlabeled graph QJU considering the

confidence of all molecular labeling functions, o represents
the sigmoid function and ¥; ,,, denotes the pseudo-label for
unlabeled graph QJU on the m-th binary prediction task. By
optimizing WMEP | when labeling functions exhibit con-
flicting weak supervision signals for the majority of unla-
beled data, the value of WMLF is negative. Conversely, it
becomes positive when they are in concordance. We use 'Y
as the probabilistic molecular label matrix to train a molec-
ular property classifier in the subsequent section.

4.3. Training a Molecular Property Classifier

In MDP, the ultimate objective is to train a molecular
property classifier capable of generalizing beyond the in-
formation provided by the labeling functions. Throughout
the training process, we train the molecular property classi-
fier, denoted as Dy, on both the probabilistic labels Y and
the ground-truth labels Y. This is achieved by minimizing
two noise-aware variants of the binary cross-entropy loss:
L(Dy(G;),y:) and L(Dgy(G;),y;). The optimization pro-
cess of f can be expressed as:

DL
0* = argmm [ZEMNY L(Do(G:), yi)]
i=1
|Du|

+/\Z]E~

L(Ds(G5), )]
@)

where ) is a tuning parameter to control the emphasis be-
tween L£(Dg(G;),y:) and L(Dg(G;),7;). As for the label
synchronizer G, we construct a adaptive loss item to opti-
mize the parameter € for searching the optimal values of the
parameters £2* and Wy;; p by minimizing this adaptive loss
function:

Dy |

€ = argmln Z Ey,~Y [ (Ge({A%7 A?7 e

i=1

7Af})vy’b)] 3

The total loss function of MDP consists of three binary
cross entropy loss items, which can be written as:

L=LY,Y)+Au(Y,Y) + Lagap(Y,Y)

DL |Dy|
= ZE%NY (Do(Gi)sy)] A By vl
Jj=1
D]

+ Z Eyv [L(G({AL A AF}),0)]),
9

where L is the supervised loss over all labeled graphs and
L, denotes the unsupervised loss computed on all unlabeled
graphs. Y represents the prediction from the classification
model Dy. During the training process, we first learn € with
Ladap- Then the pseudo-labels Y are fixed and used to learn
the classifier. We list the pseudo code in Appendix A.
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Table 1. Test AUC performance of different methods on various molecular prediction benchmarks under the weak supervision setting. The

best results are in bold and the second best results are underlined.

Method BACE BBBP SIDER ClinTox Tox21 ToxCast HIV MUV
GCN 0.4884+0.022  0.50940.017 0.513£0.006  0.455+0.007 0.5254+0.013  0.60040.002  0.516+0.075  0.535+0.010
GAT 0.53240.032  0.51940.014  0.514£0.009  0.450+0.012  0.533+0.009 0.6034+0.013  0.52240.094  0.541+0.017

GraphSAGE 0.50440.025 0.52240.017 0.517£0.003  0.440+0.013  0.5204+0.016  0.59440.007 0.518+0.088  0.515+0.009
GIN 0.4974+0.026  0.517£0.024 0.571£0.013  0.433+0.012  0.486+0.012  0.609+0.005 0.519£0.044  0.502+0.013
Pseudo-labeling  0.542+0.038  0.542+0.046  0.552+0.026  0.49740.018  0.54340.028 0.499+0.039  0.558+0.056  0.493+0.025
Self-training 0.53240.045  0.52740.038  0.520£0.027  0.502+0.023  0.5564+0.015 0.5034+0.042 0.536+£0.043  0.524+0.033
infomax 0.52440.031 0.46240.043  0.563+0.004 0.460+0.023 0.510+0.016  0.6104+0.004 0.515+0.044 0.573+0.016
context_pred 0.5304+0.070  0.547£0.014  0.584+£0.009  0.494+0.006 0.5334+0.014 0.61640.005 0.562+0.059  0.585+0.023
attr_mask 0.5534+0.047 0.501£0.011  0.555£0.008  0.454+0.018 0.6074+0.010  0.608+0.002  0.527£0.043  0.512+0.039
edge_pred 0.504+0.020  0.552+0.013  0.5954+0.006  0.4394+0.002  0.5694+0.010  0.6174+0.003  0.5494+0.026  0.55240.028
GraphLoG 0.58640.016  0.52740.012  0.524+£0.033  0.494+0.056  0.5554+0.011  0.55040.002  0.503£0.052  0.560+0.049
perturb_edge 0.46440.006 0.473£0.026  0.581£0.009 0.512+0.031  0.5594+0.013  0.60940.006  0.557+0.044  0.513+0.052
drop_node 0.54540.021  0.5324+0.041 0.558+£0.004 0.545+0.057 0.5234+0.016  0.5984+0.006  0.57540.059  0.539+0.017
subgraph 0.4414+0.021  0.454£0.021 0.518£0.005 0.521+£0.024 0.469+0.011  0.60940.003  0.564+0.028  0.487+0.059
Ours 0.632+0.023  0.618+0.011  0.613+0.018  0.615+0.043  0.653+0.006 0.602+0.007  0.665+0.019  0.604-+0.022
Table 2. The effect of different components on molecular property prediction tasks.
Confidence  Correlation  Clustering ‘ BACE BBBP ClinTox SIDER Tox21

v 0.48440.038  0.5654+0.032  0.52340.053  0.5134+0.043  0.58940.020

v 0.546+0.038  0.572+0.038  0.543£0.060  0.506+0.016  0.588+0.016

v 0.61740.033  0.58040.029  0.55240.037  0.58140.015  0.60840.009

v v 0.529+0.096  0.568+0.009  0.500£0.022  0.52740.027  0.58040.020

v v 0.60240.023  0.56640.027  0.5884+0.047  0.5534+0.013  0.61940.003

v v 0.619+0.025  0.606+0.018  0.600£0.045  0.596+0.008  0.64840.004

v v v 0.63240.023  0.61840.011 0.615+0.043  0.613+0.018  0.65340.006

5. Experiments

In this section, we conduct extensive experiments on
benchmark datasets to evaluate the effectiveness of MDP.

5.1. Experimental Settings

> Datasets. Following the settings of previous molec-
ular graph tasks, we evaluate our framework using 8 bi-
nary classification datasets: BBBP [29], Tox21 [12], Tox-
Cast [40], SIDER [19], ClinTox [31], MUV [10], HIV [2],
BACE [45] from MoleculeNet [53], a benchmark for molec-
ular property prediction. Details are in Appendix B.

> Baseline models. To verify the effectiveness of
MDP, we evaluate it by comparing it with four types of re-
lated methods: (1) vanilla GNN including GCN [18], GAT
[50], GraphSAGE [15] and GIN [54]; (2) semi-supervised
learning methods including self-training [21] and pseudo-
labeling [20]; (3)self-supervised predictive learning meth-
ods including edge prediction (edge_pred) [16], at-
tribute masking (attr_mask) [16], context prediction (con-
text_pred) [16] and infomax [16]; (4) self-supervised
contrastive learning methods including node dropping
(drop_node) [59], edge perturbation (perturb_edge) [59],

subgraph extraction (subgraph) [59] and GraphLoG [55].
> Implementation. The details of implementation are
in Appendix C.

5.2. Evaluation on Molecular Graph Datasets

Q: Whether our proposed framework MDP can outper-
form the baselines on molecular datasets under weakly
supervised learning? Yes, one key advantage of MDP is
to infer high-quality pseudo-labels by combining diverse
domain knowledge, which can help the molecular prop-
erty classifier identify more features that co-occur with the
heuristics encoded in the labeling functions.

> Comparison between traditional semi-supervised
learning methods and vanilla GNN models. The com-
parison results are shown in Table 1, from which we make
following observations. @ The traditional semi-supervised
learning methods (pseudo-labeling and self-training) can
achieve better performance than the vanilla GNN in most
cases. The experimental results demonstrate that incor-
porating pseudo-labels learned from unlabeled data into
training process is usefulness. @ When the number of bi-
nary classification tasks increases, the efficacy of pseudo-
labeling and self-training may diminish. As the number
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Figure 2. Diversity metrics among labeling functions on BACE: Disagreement (left), Double Fault (center), Double Correct (right). Each
cell in the matrix denotes the coverage of training instances, marked by color intensity, where both molecular labeling functions ¢ and j
label the same example. Note that certain blocks are inherently zero. For instance, the Double Correct metric represents situations when
two molecular labeling functions simultaneously provide the same correct label, resulting in a zero value in the Positive/Negative block.

of binary classification tasks increases, depending solely on
a single domain of knowledge for pseudo-label generation
may result in unreliable pseudo-labels, potentially leading
to limited or even detrimental performance improvement.

> Comparison between self-supervised learning
methods and vanilla GNN models. As shown in Table
1, we observe @ the self-supervised learning methods can
obtain better performance than the vanilla GNN. Due to
the additional supervision information extracted from unla-
beled data, the experimental results illustrate that utilizing
considerable unlabeled data can be effective to alleviate the
bottleneck of labeled data. However, the pretext tasks of
these methods are not specifically designed for downstream
tasks. Therefore, there exists an inherent training objective
gap between the pretext and downstream tasks.

> Comparison between MDP and all baseline mod-
els. From Tabel 1, we can easily observe that @ MDP
can outperform all baselines on all datasets, except Tox-
Cast. With proper denoising scheme and strong association
of pseudo-labels, MDP can effectively resolve the conflicts
and overlapping issue between labeling functions. Exper-
imental results demonstrate the advantages of MDP over
others by integrating multiple LFs and estimating correla-
tions to generate pseudo-labels with high quality. However,
due to the large number of binary classification tasks and la-
bel sparsity within the ToxCast dataset, MDP’s performance
is not satisfactory. While the simplicity of the label syn-
chronizer is its advantage in weakly supervised learning, it
encounters challenges in adapting effectively when the gen-
erated pseudo-labels become complex.

BACE BBBP
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060-/—/’4 0.600 /——-———‘
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) —— PL 0.475 == PL
0.40 | st ’ st
125250  50.0 100.0 125250  50.0 100.0

Coverage (% of full training set) Coverage (% of full training set)

Figure 3. Plot of increasing labeling sample coverage (x-axis), v.s.,
accuracy (y-axis) using test curves.

5.3. Ablation Studies.

Q: How do different components of MDP contribute to
the performance of weak supervision? We carry out an
ablation study to analyze the effect of each component of
MDP. We can easily find that @ wusing only clustering to
sample labeled graphs can be helpful for improving model’s
performance. This phenomenon illustrates that calculat-
ing inter-instance similarity by aggregating multiple dis-
tance matrices can effectively sample significant labeled
data without requiring human labeling efforts or additional
parameter learning processes. @ Combining clustering and
estimating the correlation between molecular labeling func-
tions (5th row) outperforms almost all baselines except the
full model (last row). This experiment emphasizes that re-
solving conflicts between various labeling functions signifi-
cantly enhances the reliability of probabilistic molecular la-
bels, ultimately improving the model’s performance. & The
full model (last row) achieves the best performance. This
experimental result demonstrates that estimating the corre-
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lation between molecular labeling functions and dynami-
cally learning the confidence of different molecular labeling
functions are complementary to each other.

5.4. Experiment with Fewer Labeled Examples.

Q: Whether MDP can perform well as the number
of pseudo-labeled data changes? When we increase
the coverage of labeling sample, as depicted in Figure
3, it becomes evident that MDP consistently outperforms
pseudo-labeling (PL) and self-training (ST). Furthermore,
the model trained using data generated with different types
of labeling functions performs quite well with an AUC of
0.576 when only 12.5% of the full BACE training set is la-
beled. As the coverage of labeled samples grows, the per-
formance demonstrates improvement. Notably, when we
label the entire training set, the classifier attains its highest
level of performance. The same trend is observed on the
other datasets, as shown in Figure 6 in Appendix D.2.

5.5. Diversity Measures.

Q: Whether is it advantageous to select molecular la-
beled data using the clustering algorithm instead of ran-
dom sampling? To enhance our understanding of the di-
versity among various labeling functions, we calculate met-
rics based on ensemble diversity measures to answer the
question of whether using a clustering algorithm for sam-
pling molecular labeled data is more beneficial than random
sampling. In particular, we utilize a 2 X 2 contingency table
T to count for the votes for all unlabeled examples, which
encompasses samples covered by Ty? + 113 + To1 + 171
in binary classification. T% is the total number of label
pairs emitted by labeling function ¢ and 5. We calculate
the diversity using the following metrics, all of which are
normalized with respect to the size of the unlabeled training
set: Agreement:= Tyg + T711. Disagreement:= T19 + T .
Double Fault:= Tyo. Double Correct:= T7;.

Figure 2 presents a heatmap illustrating the pairwise di-
versity of BACE. In this heatmap, "RD-MDP” represents
that MDP selects molecular labeled data using the random
sampling. Notably, there is more variation (disagreement)
and less agreement (double fault and double correct) in the
RD-MDP when compared to the standard MDP method.
Similar phenomenons are observed on the BBBP dataset,
as shown in Figure 5 in Appendix D.1. This observation
highlights that selecting labeled graphs with a clustering
algorithm can achieve stronger correlation and less varia-
tion in weak supervision signals, which undoubtedly lead
to greater ensemble efficiency.

5.6. Training and Validation Curves.

Q: Whether MDP achieves faster training and valida-
tion convergence than the vanilla GNN models? Be-
yond predictive performance improvement, we show the

BACE
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0.9
So08
= GIN_train  ---- GAT_valid
8’0 7 GIN_valid —— MDP_train
£ —— GAT_train  ---- MDP_valid
0 A
= 0.6 D T L
0.5 B
0.4
0 20 40 60 80 100
Epoch

Figure 4. Training and validation curves of different models.

training and validation curves of different methods in
molecular prediction tasks in Figure 4. We find that MDP
achieves faster training convergence and higher validation
performance than other vanilla GNN models on the dataset
BACE. The training curve of MDP (the red solid line) takes
about 20 epochs to reach convergence, while other vanilla
GNN models takes about 30 epochs to gradually start con-
verging. Meantime, the validation performance of MDP
(the red dashed line) is the highest than other GNN mod-
els, which are rather significant. These experimental results
illustrate the effectiveness of the MDP.

6. Conclusion

We develop a unifying framework for weakly super-
vised learning on molecular data. Crucial to the success
of the proposed framework is to consider various domain
knowledge to construct different molecular labeling func-
tions and utilize a label synchronizer to estimate the corre-
lations between them. This ensures that MDP can be effec-
tive on different datasets without additional any pre-training
or fine-tuning. Extensive experiments on multiple bench-
mark datasets from the chemistry and biology domains and
different GNN backbones demonstrate the effectiveness of
our proposed framework for graph classification tasks under
weak supervision.
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