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Abstract

The main function of depth completion is to compen-
sate for an insufficient and unpredictable number of sparse
depth measurements of hardware sensors. However, exist-
ing research on depth completion assumes that the spar-
sity — the number of points or LiDAR lines — is fixed for
training and testing. Hence, the completion performance
drops severely when the number of sparse depths changes
significantly. To address this issue, we propose the sparsity-
adaptive depth refinement (SDR) framework, which refines
monocular depth estimates using sparse depth points. For
SDR, we propose the masked spatial propagation network
(MSPN) to perform SDR with a varying number of sparse
depths effectively by gradually propagating sparse depth
information throughout the entire depth map. Experimen-
tal results demonstrate that MPSN achieves state-of-the-art
performance on both SDR and conventional depth com-
pletion scenarios. Codes are available at https://
github.com/jyjunmcl/MSPN_SDR

1. Introduction

Image-guided depth completion is a task to estimate a dense
depth map using an RGB image with sparse depth measure-
ments; it fills in unmeasured regions with estimated depths.
It is useful because many depth sensors, e.g. LiDAR and
ToF cameras, provide sparse depth maps only. With the re-
cent usage of depth information in autonomous driving [22]
and various 3D applications [34, 45, 61, 75], depth comple-
tion has become an important research topic.

Recently, with the success of deep neural networks,
learning-based methods have shown significant perfor-
mance improvement by exploiting massive amounts of
training data [51]. They attempt to fuse multi-modal fea-
tures like surface normal [56, 72] or provide repetitive im-
age guidance [74]. Especially, affinity-based spatial propa-
gation methods have been widely studied [9, 11, 44, 54, 79].

The main function of depth completion is to compensate
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Figure 1. Illustration of the masked spatial propagation process
in the proposed MSPN. The initial mask is obtained from sparse
depths, assigned 1 if depth values are present and 0 otherwise. For
easier comparison, error maps are also provided for each depth
map, in which brighter pixels correspond to larger errors. MSPN
updates depth maps and masks gradually to generate the final re-
fined depth map.

for the limitations of existing depth sensors, but conven-
tional research on depth completion assumes that the spar-
sity is fixed for training and testing. However, in practice,
sparsity changes significantly, for it is difficult to measure
the depths of transparent regions, mirrors, and black ob-
jects. Sensor defects also affect the number of measure-
ments. Besides, conventional spatial propagation methods
[9, 11, 44, 54, 79] refine the depths of all pixels simultane-
ously, regardless of the locations of sparse depth measure-
ments. Therefore, erroneous depths can propagate during
the refinement when only a few sparse depths are available.

In this paper, we develop a sparsity-adaptive depth re-
finement (SDR) framework, which refines monocular dense
depth estimates adaptively according to the sparsity of depth
measurements. Also, we propose the masked spatial propa-
gation network (MSPN) to propagate the information from
sparse depth points to unmeasured regions. First, an off-
the-shelf monocular depth estimator is used to estimate an
initial depth map from an input RGB image. Next, a guid-
ance network generates guidance features using the input
image, the sparse depths, and the initial depth map. Fi-
nally, using the guidance features, the proposed MSPN per-
forms iterative refinement to obtain a refined depth map,
as shown in Figure 1. The proposed SDR framework can
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be trained with a variable number of sparse depths, mak-
ing it more suitable for real-world applications. In addi-
tion, the proposed MSPN performs significantly better than
conventional methods in the SDR scenario by generating
an adaptive propagation mask according to sparse measure-
ments. Moreover, MSPN provides state-of-the-art perfor-
mance on the conventional depth completion on NYUv2
[62] and KITTI [22] datasets.

This paper has the following contributions:
• We develop the SDR framework, which refines monoc-

ular depth estimates using a variable number of sparse
depth measurements.

• For SDR, we propose MSPN to handle a various number
of sparse depths by gradually propagating sparse depth
information.

• MSPN provides state-of-the-art performance on both
SDR and conventional depth completion scenarios.

2. Related Work
2.1. Monocular depth estimation

The goal of monocular depth estimation is to infer the abso-
lute distance of each pixel in a single image from the cam-
era. Traditional approaches are based on assumptions about
the 3D scene structure — superpixels [60], block world
[25], or line segments and vanishing points [26]. However,
such assumptions are invalid for small objects or due to
color ambiguity, making monocular depth estimation an ill-
posed problem. With the advance of CNNs, training-based
methods have successfully overcome the ill-posedness of
monocular depth estimation. Earlier CNN methods focused
on exploring better architectures [7, 17, 28, 38, 70] or loss
functions [6, 16, 29, 38, 39] for more effective training. Re-
cently, as transformer and self-attention [65] have been ap-
plied to diverse vision tasks [15], transformers for monocu-
lar depth estimation have also been developed [78].

On the other hand, training strategies to utilize 3D infor-
mation have been attempted. For example, merging depth
maps in frequency domain [40], enforcing high-order ge-
ometric constraints by defining virtual normal [76], and
computing depth attention volume which considers pixel-
to-image attention [31], have been attempted. Also, ordinal
regression [21], or planar coefficient estimation [55] have
been attempted.

2.2. Image-guided depth completion

Whereas monocular depth estimation uses only a sin-
gle image as input, image-guided depth completion fo-
cuses on filling depths of unmeasured regions in an image
when sparse depth measurements are provided. Significant
progress has been made after the emergence of learning-
based methods, overcoming the modality gap between im-
age and depth. Early methods on depth completion con-

catenate images and sparse depth maps and process them
using an encoder-decoder network [51, 52]. Also, attempts
have been made to extract image and depth features sepa-
rately and then leverage them to compensate for the modal-
ity gap effectively. For example, multi-branch architecture
[30, 53, 58, 74] and coarse-to-fine framework [47, 73] have
been studied. More specifically, in the coarse-to-fine frame-
work, variants of affinity-based spatial propagation [48] are
dominant [9–11, 44, 54, 73], since it can be easily applied
using various encoder-decoder networks [30, 53, 79].

2.3. Spatial propagation network

Motivated by anisotropic diffusion [68], spatial propagation
networks (SPNs) refine initial depth estimates using sparse
depth measurements [9–11, 44, 54, 73]. They can reduce
blurring caused by the encoder-decoder structure with vary-
ing spatial resolutions. To reconstruct the depth of a pixel
based on spatial propagation, reference pixels, and their re-
ferring methods should be determined. The original SPN
[48] uses three adjacent pixels in a neighboring row or col-
umn and performs refinement in four directions: up, down,
left, and right. Convolution is also used to use neighbor-
ing pixels [10, 11]. Moreover, to refer to distant pixels, de-
formable convolution [13] is employed in [44, 54, 73].

While these SPN methods show impressive perfor-
mance, they do not take the sparsity of available depths into
account, which is essential in practical applications. For ex-
ample, a network trained with 500 sparse depth points is less
effective when the number of sparse depth points changes
significantly since the initial depth map is estimated based
on input sparse depths. In contrast, in this paper, we define
a propagation mask, which is updated together with a depth
map during the refinement. An initial depth map is first up-
dated using only sparse depth points, and then a wider area
is refined based on the propagation mask. As a result, the
proposed MSPN can refine monocular depths effectively us-
ing a variable number of sparse depths.

2.4. Transformer and self-attention

After the success of transformers [14, 65] in natural lan-
guage processing, extensive attempts have been made to ap-
ply transformers to vision tasks as well. Self-attention is a
key component in transformers, which highlights and ex-
tracts important features from input. Recently, many trans-
formers have demonstrated even better performances than
CNNs in vision tasks [4, 15, 20, 27, 49, 57, 67]. Moreover,
there have been researches for cross-attention between dif-
ferent types of features [3, 8, 35], which can combine differ-
ent modalities. In this paper, we develop an attention-based
refinement algorithm for depth completion. Whereas the
conventional spatial propagation performs refinement via
convolutions, the proposed MSPN refines the depth map us-
ing reliable pixels based on the masked attention strategy.

19769



Iteration : 6

MSPN (2nd)

Mask initialize

𝐃𝑁+6𝐃𝑁

𝐌6𝐌0(a) MDE

Initial depth 𝐃𝟎

Image 𝐈

(b) Guidance network

C CC

Sparse depth 𝐒

𝐊𝐧

𝐐𝐧
𝐀𝑛C

𝐃𝑛 (c) MSPN  (1st) 𝐃𝑛+1

𝐌𝑛+1𝐌𝑛

Guidance feature 𝐆

Iteration : 𝑁

Element-wise subtraction ConcatenationC Element-wise multiplication

3 × 3 Conv + LN + ReLU 3 × 3 Conv 1 × 1 Conv Encoder-decoder network RefinementPixel-to-window attention

Figure 2. An overview of the proposed SDR framework.

3. Proposed Algorithm
3.1. Conventional depth completion

Let I ∈ R3×H×W be an image and S ∈ RH×W record its
sparse depth measurements. The goal of depth completion
is to estimate a dense depth map D ∈ RH×W using I and
S. However, it is challenging due to the different modalities
between color and depth. Moreover, while S provides the
accurate depths for measured pixels, it does not provide any
information on unmeasured regions. Therefore, previous
methods [9, 11, 44, 54, 79] generate a guidance feature G ∈
RC×H×W that compensates for the modality gap, as well as
an initial depth prediction D0;

(G,D0) = θ(I,S). (1)

where θ denotes a multi-head network that estimates both
D0 and G. Then, D0 is refined N times to obtain the final
depth map DN

Dn+1 = ϕ(Dn,G), n = 0, . . . , N − 1, (2)

where ϕ is a spatial propagation network.

3.2. Sparsity-adaptive depth refinement

The conventional depth completion methods [9, 11, 44, 54,
79] are trained with a fixed number of sparse depths. In
practice, however, external factors often change the number
of sparse depths, making the conventional methods less ef-
fective. In other words, the number of available depths in S
in (1) is variant.

To address this problem, we propose the SDR frame-
work, which consists of three networks: (a) a monocular
depth estimator (MDE) that estimates an initial depth map,
(b) a guidance network that combines different modality
features, and (c) MSPN that recursively updates depth maps
and masks. Figure 2 illustrates an overview of the proposed
SDR. Note that we may use any off-the-shelf MDE. In this
paper, for MDE, we use the pre-trained parameters of the

Jun et al.’s algorithm [37] to generate D0 and exclude S
from the generation process. Instead, we use D0 to gener-
ate G as follows:

G = Θ(I,S,D0) (3)

where Θ denotes the proposed guidance network.
Next, we refine D0 using G, based on the sparse depth

locations in S. The spatial propagation methods in [11, 54]
refine all pixels simultaneously. Thus, erroneous depth val-
ues can propagate to neighbors, especially when only a few
sparse depths are available. Instead of refining all pixels in a
depth map at once, we define a propagation mask and grad-
ually update the depth map from the sparse depth points.
We perform the recursive refinement on both Dn and Mn,

(Dn+1,Mn+1) = Φ(Dn,Mn,G), n = 0, . . . , N − 1,
(4)

where Φ denotes the proposed MSPN. The initial propaga-
tion mask M0 ∈ RH×W is defined as

M0 = Ξ(S) (5)

where Ξ denotes an indicator function that outputs 1 for
each sparse depth point and 0 otherwise.

3.3. Guidance network

As shown in Figure 2(b), the guidance network takes I, S
and D0 and generates the guidance feature G. To imple-
ment the guidance network, we adopt the encoder-decoder
architecture in U-Net [59]. The encoder extracts lower-
resolution features from input, and the decoder processes
the features to yield G.

In a depth map, pixels on a large object or background
have similar depths and vary gradually. Such depths are
low-frequency components. In contrast, depths on small ob-
jects or edge regions are high-frequency components. Since
sparse depths do not cover an entire image, extracting high-
frequency information from the image is crucial for efficient
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Figure 3. Illustration of the pixel-to-window attention process and generation process of Rn. Mn+1 is generated in the same manner.

refinement. Hence, we extract high-frequency features by
subtracting the results of 1 × 1 convolution from those of
3×3 convolution, as in [71]. We extract the high-frequency
features from I, merge them with the features from S and
D0, and feed the result to the encoder. The decoder has five
blocks, each consisting of 3×3 transpose convolution, layer
normalization [1], ReLU, and a NAF block [5]. More de-
tailed network architecture is provided in the supplemental
document.

3.4. Masked spatial propagation network

Using the output G of the guidance network, MSPN up-
dates a depth map Dn and a mask Mn to Dn+1 and Mn+1,
as shown in Figure 2(c). Each pixel in Dn is refined using
its neighboring pixels, while the sparse depth values in S re-
main unchanged. Specifically, we replace the depth values
in Dn using S and generate D̃n by

D̃n = (1−M0)⊗Dn +M0 ⊗ S (6)

where ⊗ denotes the element-wise multiplication.
Next, we determine reference pixels for the refinement

and the strength of the refinement. The conventional spatial
propagation methods [9, 11, 44, 54] focus on the selection
of reference pixels. However, there are much fewer reliable
pixels than unreliable ones, so these methods are less ef-
fective when only a small number of sparse depths are pro-
vided. Instead, we design the masked-attention-based dy-
namic filter, which computes attention scores between each
pixel and its surrounding pixels. We first generate the query
feature Q ∈ RL×H×W and the key feature K ∈ RL×H×W ,

Qn = fQ([D̃n,G]), Kn = fK([D̃n,G])⊗Mn (7)

where fQ and fK are 1× 1 convolutions followed by layer
normalization [1]. Also, [·] denotes the channel-wise con-
catenation. Since D̃n is unrefined, Kn is a mixture of re-
liable and unreliable pixel features. Therefore, we mask
unreliable pixel features when computing Kn in (7).

Next, we compute the attention scores between Qn and
Kn. Let q ∈ RL be a query pixel feature in Qn at location
(i, j). Also, let WK ∈ RL×p2

denote the p × p window
of the key features in Kn centered at (i, j). Note that we
compute pixel-to-window attention in order to refine pixel
(i, j) using its neighboring pixels. More specifically, the
pixel-to-window attention a ∈ Rp2

is computed as

a = softmax(qtWK + b) (8)

where b ∈ Rp2

denotes the relative position bias [27] in the
w×w window. By performing the attention on all pixels in
Qn, the attention feature An ∈ Rp2×H×W is obtained.

Then, using An and D̃n, we generate a refined depth
map Rn ∈ RH×W . Let WD̃ and WM be the p×p windows
in D̃n and Mn, centered at (i, j), respectively. A refined
depth pixel r in Rn is obtained by

r =

p2∑
t=1

at ·WD̃,t (9)

where the subscript t denotes the tth element in the window.
Figure 3 illustrates the pixel-to-window attention process
and the generation process of Rn.

Finally, depth map Dn+1 at the next iteration step is
given by

Dn+1 = (1−Mn)⊗ D̃n +Mn ⊗Rn. (10)

Also, similarly to (9), mask pixel mn+1 at the next iteration
step is computed by

mn+1 =

p2∑
t=1

at ·WM,t, (11)

yielding the updated mask map Mn+1.
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3.5. Refinement strategy

Note that M0 is defined using S and gets wider as iteration
goes on. We determine the number of refinement iterations
adaptively according to the sparsity of S, i.e. the number of
sparse depth measurements. Suppose that s depth points are
valid and uniformly distributed in S. Then, the distance νs
between adjacent sparse depth points is calculated as

νs =

√
HW

s
− 1. (12)

In addition, within a p × p window, each pixel can refine
pixels within the distance of p/2 − 1. Therefore, to refine
all pixels in an image, we set the number N of iterations as

N =
νs

p/2− 1
. (13)

Since the computation in (12) is for an ideal case, N in (13)
is a lower limit for the mask to spread throughout the entire
image. We, therefore, multiply N by a pre-defined hyperpa-
rameter κ for margin. We also set the minimum number of
iterations to six to perform sufficient refinement even when
a large number of sparse depths are given.

In MSPN, sparse depth points and refined pixels are
treated similarly after iterations. This is less effective when
a large number of sparse depths are provided. Hence, we
use two MSPN layers and initialize the mask to M0 as
shown in Figure 2. The second MSPN refines the depth map
by reusing the accurate S with the mask initialization. This
helps to reduce the adverse impacts of monocular depth er-
rors around the sparse depths. Empirically, we fix its iter-
ation number to six. To summarize, two MSPN layers are
configured in series and perform refinement for N and six
iterations, respectively.

3.6. Loss functions

For NYUv2 [62], we use both L1 and L2 losses for training.
Let di and d̂i denote the ith depths in the ground-truth depth
map D and a predicted depth map D̂, respectively. Then,
the loss function is defined as

L(D̂,D) =
1

|D|

2∑
σ=1

∑
i

|d̂i − di|σ (14)

where |D| denotes the number of valid pixels in D.
For KITTI [22], we use the scale-invariant logarithmic

loss function, which is widely used in monocular depth es-
timation [2, 78]. It is defined as

LSI(D̂,D) = α

√
1

|D|
∑
i

ei2 −
λ

|D|2
(
∑
i

ei)2 (15)

where ei = log d̂i − log di. As in [2, 78], we set α = 10
and λ = 0.85.

4. Experiments

4.1. Datasets

NYUv2 [62]: It contains 464 indoor scenes captured by
Kinect v1 and provides 120K and 654 images for training
and testing, respectively. As done in [51, 54, 79], we use
the uniformly sampled 50K images for training. Also, as in
[62], we fill in missing depths using the colorization scheme
[42]. The original images of size 640 × 480 are bilinearly
downsampled by a factor of 1

2 and then center-cropped to
304 × 228. Sparse depths are randomly sampled from the
ground truth depth map.
KITTI Depth Completion (DC) [22]: It contains outdoor
scenes captured by HDL-64E. Since the depth maps ob-
tained by HDL-64E are sparse, the measurements are used
as input, and the ground truth is generated by combining
the information in 11 consecutive frames. In this work, we
use the 10K subset in [79] for training and do the test on a
1K validation set. As in [54, 79], the original images are
bottom-center-cropped to 240× 1216.

4.2. Evaluation metrics

We adopt the top three metrics in Table 1 for NYUv2 and
the bottom four for KITTI. For RMSE, NYUv2 uses meters,
and KITTI uses millimeters.

Table 1. Evaluation metrics for estimated depth maps. Here, |D|
denotes the number of valid pixels in a depth map D, di is the ith
valid depth in D, and d̂i is an estimate of di.

REL 1
|D|

∑
i |d̂i − di|/di

δk % of di that satisfies max
{

d̂i
di
, di
d̂i

}
< k

RMSE (m, mm) 1
|D|

(∑
i(d̂i − di)

2
)0.5

iRMSE (1/km) 1
|D|

(∑
i(

1

d̂i
− 1

di
)2
)0.5

MAE (mm) 1
|D|

∑
i |d̂i − di|

iMAE (1/km) 1
|D|

∑
i |

1

d̂i
− 1

di
|

4.3. Implementation details

Network architecture: In Figure 2 (b), we adopt PVT-Base
[67] as the encoder of the guidance network. The encoder
takes the input of spatial resolution H × W and yields the
output of spatial resolution H/16 × W/16 with 512 chan-
nels. The decoder consists of five blocks; each upsamples
its input feature using 3 × 3 transposed convolution, fol-
lowed by layer normalization, ReLU activation, and a NAF
block [5]. To the last four decoder blocks, the encoder fea-
tures are skip-connected via concatenation. The guidance
network outputs G of resolution H ×W with 64 channels.
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Figure 4. SDR results on NYUv2. For each depth map, the corresponding error map is provided below, in which brighter pixels represent
larger errors.
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Figure 5. Comparison of the SDR performances on NYUv2.

The detailed network architecture is provided in the supple-
mental document.
Training: We train models with the AdamW optimizer [50]
with an initial learning rate of 10−3, weight decay of 10−2,
β1 = 0.9, and β2 = 0.999. The batch size per GPU is set to
24 and 16 on NYUv2 and KITTI, respectively, using gradi-
ent accumulation. We use a 13×13 window for MSPN. For
NYUv2, the model is trained for 36 epochs, and the learn-
ing rate is halved after 18, 24, and 30 epochs. For KITTI,
the model is trained for 60 epochs, and the learning rate is
halved after 30, 36, 42, 48, and 54 epochs. The number of
iterations N in (13) is weighted by κ = 2.

For NYUv2, the number of sparse depth points is uni-
formly sampled between 10 and 1000. In the case of KITTI
[22], each input lidar scan has 64 lines. To simulate a real-
world case and to compare with other methods, we sample
lines instead of sampling each sparse depth point randomly.
The number of sampled lines is set evenly between 4 and
64. To determine the number of iterations, we compute the
average number of sparse depth pixels per line and use it to
calculate N in (13).
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Figure 6. Comparison of the SDR performances on the KITTI
validation set.

4.4. Sparsity-adaptive depth refinement

We evaluate the SDR performances of the proposed MSPN
with other depth completion algorithms [12, 18, 19, 23, 24,
30, 32, 33, 43, 44, 46, 51, 54, 64, 66, 69, 77, 79]. Fig-
ures 5 and 6 compare the RMSE performances according to
the number of sparse depths on NYUv2 and KITTI, respec-
tively. In Figures 5 and 6, a solid line indicates that a single
model is evaluated for various numbers of sparse depths.
On the contrary, each symbol means that a separate model
is trained and evaluated for a fixed number of sparse depths.
The following observations can be made from Figures 5 and
6:

• By comparing the solid lines in Figure 5, we see that the
proposed MSPN outperforms all the other methods for all
numbers of sparse depths on NYUv2.

• Specifically, some methods are specialized for many
sparse depths, and their performances degrade signifi-
cantly with fewer sparse depths. Conversely, some are
specialized for few sparse depths, and their performances
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Figure 7. SDR results on KITTI. For each depth map, the corresponding error map is provided below, in which brighter pixels represent
larger errors.

improve marginally with more sparse depths.
• On the other hand, the proposed MSPN exhibits simi-

lar performances to those symboled methods [54, 79],
trained for specific numbers of sparse depths. This in-
dicates that MSPN yields robust results regardless of the
number of sparse depths.

• In Figure 6, MSPN significantly outperforms the other
methods on KITTI when less than 64 lines are available.

• For KITTI, methods specialized for a certain number of
LiDAR lines do not perform well with a small num-
ber of lines. On the contrary, MSPN utilizes monocular
depth estimation results to perform depth completion ef-
fectively, regardless of the number of lines.

• Overall, MSPN yields more reliable depth maps for vary-
ing numbers of sparse depths than the conventional algo-
rithms on both indoor and outdoor images. This indicates
that MSPN is more suitable for real-world applications.

Figures 4 and 7 show SDR results with varying numbers
of sparse depths. We see that depth maps can be improved
with just a single sparse depth, and errors are reduced when
more sparse depths become available.

More results, including exact metric scores and addi-
tional qualitative results, are in the supplemental document.

4.5. Ordinary depth completion

Although the primary focus of MSPN is SDR, we also eval-
uate the performance of MSPN under an ordinary depth
completion scenario. For this ordinary depth completion,
we add another decoder head to the guidance network in or-
der to predict an initial depth map and do not use the monoc-
ular depth estimator, as in previous works [44, 54, 79]. The
detailed network architecture for ordinary depth completion
is in the supplemental document.

We train and test our model using a fixed amount of
sparse depths. For NYUv2, we use randomly sampled 500
sparse depths from the ground truth and train the network
for 72 epochs. For KITTI, we train models specialized for
16 and 64 LiDAR lines, respectively, for 72 epochs. For a
fair comparison on KITTI, we use the 10k subset for train-
ing provided by [79].

Tables 2 and 3 compare the performances on NYUv2 and
KITTI, respectively. We see that the proposed MSPN pro-

Table 2. Comparison of ordinary depth completion results on
NYUv2. In each test, the best result is boldfaced.

Method RMSE(↓) REL(↓) δ1.25(↑)

S2D [51] 0.204 0.043 97.8
GuideNet [64] 0.101 0.015 99.5
PackNet-SAN [24] 0.120 0.019 99.4
TWISE [33] 0.097 0.013 99.6
NLSPN [54] 0.092 0.012 99.6
RigNet [74] 0.090 0.013 99.6
DySPN [44] 0.090 0.012 99.6
Zhang et al. [79] 0.090 0.012 -

Proposed 0.089 0.012 99.6

NLSPN Zhang et al.S2D ProposedGT / Image

Farther

Larger

Nearer

Smaller

Figure 8. Qualitative comparison of ordinary depth completion
results on NYUv2.

vides state-of-the-art performances on ordinary depth com-
pletion as well. Figure 8 qualitatively compares the results
with [51, 54, 79] on NYUv2. We see that MSPN fills in
challenging regions with fine details more effectively.

4.6. Analysis

MSPN: Figure 9 shows the mask update process of MSPN
using 16 LiDAR lines on KITTI. We see that the mask val-
ues at the second MSPN layer are less widened than those of
the first MSPN layer. This indicates that the two MSPN lay-
ers play different roles — The first layer roughly refines an
entire image, and the second layer intensively refines near
sparse depths. Figure 10 (a) shows the RMSE performances
of each MSPN layer on NYUv2. Since the role of the sec-
ond layer is to refine nearby regions of sparse depths, it has
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Table 3. Comparison of ordinary depth completion results on the
KITTI validation set. In each test, the best result is boldfaced.

Lines Method RMSE(↓) MAE(↓) iRMSE(↓) iMAE(↓)

16

NLSPN [54] 1288.9 377.2 3.4 1.4
DySPN [44] 1274.8 366.4 3.2 1.3
Zhang et al. [79] 1218.6 337.4 3.0 1.2

Proposed 1212.7 341.8 2.6 1.2

64

NLSPN [54] 889.4 238.8 2.6 1.0
DySPN [44] 878.5 228.6 2.5 1.0
Zhang et al. [79] 848.7 215.9 2.5 0.9

Proposed 835.7 218.5 2.1 0.9

1

0

Figure 9. Illustration of the mask update process of MSPN on
KITTI. The three rows represent the input, the first masks, and the
last masks, respectively. The two columns indicate the masks of
the first and second MSPN layers, respectively.

a higher gain as more sparse depths are provided.
Generalization: We assess the generalization capability
of the proposed SDR. In this test, the guidance network
and MSPN, trained for Jun et al. [37], are not fine-tuned.
In Figure 10 (b), we use other off-the-shelf networks,
[7, 21, 36, 41, 78] for monocular depth estimator and eval-
uate the SDR performances. We observe similar trends
for various MDEs, which indicates that the proposed SDR
framework provides robust results without being sensitive
to the adopted monocular depth estimators. Figure 10 (c)
compares the cross-dataset evaluation performance of SDR
on RealSense split of SUN RGB-D [63] with [54] and [79].
We observe that the proposed SDR provides robust perfor-
mance on unseen cameras. Qualitative results are provided
in the supplemental document.
Ablation study: To assess the impact of the mask update
process in MSPN, we remove the mask and its update pro-
cess in MSPN. Figure 10 (d) compares the SDR results of
this ablated setting on NYUv2. We see that the ablated set-
ting severely degrades the SDR results, especially with a
small number of sparse depths. This indicates that the mask
update plays a crucial role in MSPN.
Depth hole filling: We evaluate the depth filling perfor-
mances of MSPN for large areas with no sparse depths. To
this end, we mask the center 114×152 region of a 228×304
ground-truth depth map and train the network to restore the
masked region. We compare the results of the proposed
MSPN with Zhang et al. [79] in Table 4 and Figure 11. Note
that MSPN recovers missing regions more faithfully.
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Figure 10. (a) SDR results of each MSPN layer. (b) SDR re-
sults using different monocular depth estimators. (c) Cross-dataset
evaluation performance on SUN RGB-D. (d) Ablation study of the
mask update process in MSPN.

Table 4. Comparison of depth hole filling results on NYUv2. The
performance is evaluated only on masked areas.

Method RMSE(↓) REL(↓) δ1.25(↑) δ1.252 (↑) δ1.253 (↑)

Zhang et al. [79] 0.348 0.073 0.925 0.982 0.995
MSPN 0.325 0.064 0.936 0.986 0.996

GT Zhang et al. ProposedInputImage

Farther

Nearer

Figure 11. Qualitative comparison of depth hole filling results.

5. Conclusions
In this paper, we proposed the sparsity-adaptive depth re-
finement (SDR) framework for real-world depth comple-
tion. First, a monocular depth estimator generates an initial
depth map. Then, the guidance network generates guidance
features using the initial depth map, the input image, and
sparse depth measurements. Finally, the proposed MSPN
gradually refines the initial depth map using the guidance
features by propagating sparse depth points to the entire
depth map. Extensive experiments demonstrated that the
proposed MSPN provides excellent results on both SDR and
conventional depth completion scenario.
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