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Figure 1. Given a reference 3D scene and a pair of style guides: an RGB image and a depth map, we coherently stylize both the scene’s
appearance and shape to best express the given style.

Abstract
Shape and geometric patterns are essential in defining

stylistic identity. However, current 3D style transfer meth-
ods predominantly focus on transferring colors and tex-
tures, often overlooking geometric aspects. In this paper, we
introduce Geometry Transfer, a novel method that leverages
geometric deformation for 3D style transfer. This technique
employs depth maps to extract a style guide, subsequently
applied to stylize the geometry of radiance fields. More-
over, we propose new techniques that utilize geometric cues
from the 3D scene, thereby enhancing aesthetic expressive-
ness and more accurately reflecting intended styles. Our ex-
tensive experiments show that Geometry Transfer enables a
broader and more expressive range of stylizations, thereby
significantly expanding the scope of 3D style transfer.

1. Introduction
With the increasing demand for content creation for virtual
and augmented reality, style transfer [17] has emerged as an
innovative technique that bridges the beauty of art with the
precision of technology. At its core, style transfer involves

*This work was conducted during an internship at Meta

rendering one image in the stylistic manner of another, pro-
ducing a new image that combines the foundational struc-
ture of the former with the aesthetic qualities of the latter.

In its early phases, style transfer was primarily ap-
plied to 2D images [9, 34, 40, 49] and later extended to
videos [24, 41, 76, 80] to achieve temporally consistent styl-
ization across image sequences. Recent works have tack-
led the 3D style transfer problem, by applying styles to 3D
models, such as point clouds [25, 54] and meshes [23, 44].
They stand apart from 2D methods, aiming to ensure a co-
hesive style across multiple camera angles and enabling
free-viewpoint rendering. Due to the error-prone geome-
try stemming from the required 3D reconstruction of them,
the stylization of radiance fields [53] has been actively ex-
plored. Methods have incorporated global [55] and lo-
cal [83] constraints, utilized stylized reference views [86],
and enhanced diversity through hash encoding and seman-
tic matching [56]. Zero-shot approaches [45] have also been
developed to circumvent tedious optimization.

These works focus on transferring aesthetic qualities in
terms of colors, texture, and brushstrokes from style images
to enhance stylization, effectively applying these attributes
to 3D scenes. However, the potential benefits of geometry
remain largely unexplored and neglected. Even though 3D
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scenes and objects naturally possess both shape and color
attributes, most techniques focus solely on color, leaving the
geometric parameters unchanged during the style transfer.
Nguyen-Phuoc et al. [55] adjust geometry, but the output
shapes do not deviate from the original content and fail to
reflect geometric cues from the style images.

As noted by art theorists and image creation experts [1,
22, 33], geometry has historically played a crucial role in
defining and influencing style. The shapes and geometric
patterns in an artwork are essential to its stylistic identity.
From this perspective, in the literature of 2D image style
transfer, techniques like correspondence search and image
warping [33, 47, 48] have been employed to distort image
shapes, showcasing how geometry can enhance the expres-
siveness of stylization. When applied to 2D images, how-
ever, geometric distortion inherently has its limitations. Al-
though shapes are fundamentally 3D forms, images cap-
ture only their 2D projections; thus, warping and distorting
edges in images offer only an implicit sense of the intended
style. It is somewhat limited to assert that they accurately
reflect the shape of the objects in the style image.

In this study, we primarily focus on the benefits of in-
corporating geometric deformation into 3D style transfer.
Unlike previous approaches, we define “geometric style”
as a distinct and clear characteristic that truly captures the
geometric essence of the style image. Our objective is to
transfer these intricate forms into the content of a 3D scene.
To the best of our knowledge, our work is the first in style
transfer literature to propose Geometry Transfer, which ex-
tracts geometric style from a style template using a depth
map and then directly stylizes the shape of neural radiance
fields. However, merely replacing the RGB style image
from the previous methods with a depth map does not pro-
duce the desired results. This issue arises from the intrinsic
separation between appearance and shape in the radiance
fields representation. When the shape is directly optimized,
the resulting colors are not well-aligned with the updated
form. To overcome this challenge, we introduce a novel ap-
plication of deformation fields [61] that predicts the offset
vector for each 3D point. This ensures a harmonious styl-
ization of both appearance and shape during optimization.
Consequently, we demonstrate the potential of stylizing the
geometry of a 3D scene using a depth map as a style im-
age. Beyond this demonstration, we introduce innovative
techniques to highlight how stylization can benefit from the
incorporation of geometry.

Building on our geometry transfer, we propose a new
3D style transfer method using an RGB-D pair as the style
image, aiming for more expressive stylization that better re-
flects the given style in terms of both shape and appear-
ance. Toward this goal, we propose geometry-aware match-
ing to enhance the diversity of stylization while preserving
local geometry through a patch-wise scheme. Additionally,

we introduce a novel style augmentation strategy to bring a
richer sense of scene depth. Our contributions are summa-
rized as follows:
• For the first time in style transfer literature, we introduce

Geometry Transfer, a method that extracts style from a
depth map and stylizes the geometry of radiance fields.

• We propose a novel usage of deformation fields to ensure
coherent stylization of both shape and appearance.

• We introduce novel RGB-D stylization techniques, en-
hancing expressiveness and better reflecting the style by
leveraging scene geometries.

• Our proposed methods can be seamlessly incorporated
into existing Panoptic Radiance Fields [68], enabling par-
tial stylization of scenes for more practical applicability.

2. Related Works
Neural style transfer. Neural style transfer is the process
of creating a new image that fuses the structural elements of
a content image with the aesthetic characteristics of a style
image. Gatys et al. [17] described the style transfer as an
iterative optimization that aligns feature correlations from
both images, using a deep feature network [69]. Building
on this, various techniques [5, 9, 34, 36–38, 40, 49] have
advanced stylization through semantic correspondence [27,
43, 85], image blending [4, 32, 50, 71, 84] and novel loss
formulas for feature statistics computation [21, 51, 62]. To
address the slow convergence of iterative optimization, a
feed-forward network has been widely adopted to facili-
tate arbitrary stylization [12, 19, 26, 42, 46, 58, 67] in
real-time [29, 64, 77, 79, 80]. In response to inconsis-
tent stylization across multiple images, techniques to styl-
ize videos [7, 15, 24, 41, 63, 75, 76, 80] and stereo im-
ages [8, 18] have been proposed. Given that shape and
geometry are essential for expressive stylization, certain
methods have focused on distorting the content’s structure,
specifically for faces [82] and text [81]. More general
methods [33, 47, 48] utilize correspondence searches and
image warping to align content and style from the same
class identity. Since shapes and geometry are fundamen-
tally 3D forms, however, modifications to 2D images often
fail to capture the accurate style of geometry. Our proposed
method aims to directly stylize the shape of the 3D scene
using the estimated depth map from the style image.
3D style transfer. Recent techniques have applied style
transfer to 3D models to ensure coherent stylization across
images rendered from multiple viewpoints. Earlier methods
stylized explicit representations, such as point clouds [25,
54], and mesh [23, 44]. More recent techniques [10, 14,
45, 55, 56, 83, 86, 87] have actively explored the styliza-
tion of implicit representations, i.e. radiance fields [53].
In optimization-based approaches [14, 56], Nguyen-Phuoc
et al. [55] alternated between rendering and 2D stylization,
using a global style loss to stylize the 3D scene. Meanwhile,
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Figure 2. Overview of our method. First we pre-train TensoRF [6] on real-world images to obtain the color grid Gc and density grid Gσ ,
enabling photorealistic reconstruction. Subsequently, we extract VGG features from style images as an RGB-D pair to stylize the shape
and appearance of radiance fields. Here, the shape is modified through the additional deformation grid G∆, while Gσ remains fixed.

Zhang et al. [83, 86] employed a nearest-neighbor match-
ing loss [35] and utilized a reference stylized view [86] to
enhance detail preservation. Another direction avoids per-
style optimization and instead adopts hypernetworks [10],
feature transformations [45], and Lipschitz mappings [87]
to facilitate arbitrary stylization of 3D scenes. While most
techniques prioritize appearance without altering geometry
during style transfer, we emphasize geometry distortion to
improve stylization expressiveness and style accuracy. To
our knowledge, this is the first use of a depth map as a style
guide to optimize the radiance fields’ geometry. Instead
of using reference images for style as above, several ap-
proaches stylize radiance fields using text prompts via CLIP
embedding [72, 73] and leverage diffusion models [20, 31].
Deformation fields. Deformation fields have been widely
used initially to model the target 3D shape of objects while
preserving their geometric details [13, 30, 74]. They de-
fine the shape as a surface deformation of the template 3D
models. Pumarola et al. [61] introduced D-NeRF, which
employs a time-varying deformation function to capture
the transformation between canonical and deformed scenes.
This approach allows for the reconstruction of dynamic
scenes using a single moving camera. Building on this con-
cept, subsequent studies [16, 59, 60, 70] have addressed the
view synthesis challenge in dynamic scenes. Our approach
distinguishes itself by using deformations to ensure align-
ment of shape and appearance when stylizing the geometry
of the radiance fields.

3. Methodology
Preliminaries: Stylizing Radiance Fields. Stylizing radi-
ance fields is conceptualized as a fine-tuning process that
begins with a pre-trained NeRF on a real-world 3D scene.
We use TensoRF [6] as our scene representation. It intro-
duces two separate grids, Gc and Gσ , each with per-voxel
multi-channel features where the former models appear-

ance, and the latter the volume density. To ensure efficient
rendering and compact representation, TensoRF factorizes
them into multiple low-rank components. For pre-training
on the target 3D scene, which includes training images
{Ii}Ni=1 and their corresponding camera poses {pi}Ni=1, we
follow the training scheme outlined in the original paper and
refer the reader there for additional details.

We primarily follow the methods of stylizing radiance
fields in ARF [83]. In each stylization iteration, we ran-
domly select a viewpoint pi and render the image Îpi . We
then extract 2D feature maps F rgb

I from Îpi
and F rgb

S from
the style image, Srgb, using VGG [69]. After this, we com-
pute the style loss Lstyle between these feature maps, for-
mulated as a nearest-neighbor matching loss [35, 83]:

Lstyle =
1

N

∑
i,j

min
i′,j′

D(F rgb
I (i, j), F rgb

S (i′, j′)), (1)

where D(, ) computes the cosine distance between two nor-
malized feature vectors.

3.1. Geometry Transfer

Our approach stems from a fundamental question: Can we
transfer geometry in the same manner as we transfer col-
ors? To explore this, we introduce the use of a depth map
as a style guide to transfer its geometry to a 3D scene. An
overview of our approach is depicted in Fig. 2.

3.1.1 Depth Map as a Style Guide

Instead of using an RGB image as the style guide, we re-
place it with a depth map, denoted as SD, which captures
a distinct style of shape. During the style transfer process,
we render the depth map Dpi and optimize the style loss
between Dpi and SD. Since the VGG network expects 3-
channel images as input, we concatenate the depth maps
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(a) Stylize density grid

(b) Stylize deformation fields

Figure 3. Comparisons of the stylized results obtained by op-
timizing the density grid (a), and by optimizing the deformation
fields (b). When directly optimizing the density, background col-
ors are assigned to the updated parts of the foreground object.

along the channel dimensions by replicating them three
times. Given that Dpi

relates solely to volume density, the
loss function optimizes the density grid, Gσ . As illustrated
in Fig. 3 (a), this approach revealed that we could manip-
ulate shapes in the same manner that we apply style trans-
fer to colors. However, a challenge arises: while the shape
adapts to the style image, the color fields remain static, lead-
ing to undesired outcomes. For instance, background col-
ors might be applied to updated portions of foreground ob-
jects, even though ideally, the colors of these objects should
evolve cohesively with their shape.

3.1.2 Modeling Deformation Fields

After pre-training on real-world scenes, the density grid Gσ

forms a surface distribution that mirrors the target 3D scene.
Concurrently, color values in the appearance grid Gc are up-
dated in coherence with the corresponding locations of the
surface distribution in Gσ . This synchronization leads to
the rendering of precise surfaces with accurate appearance.
However, when the geometry is stylized, the surface distri-
bution within Gσ changes, yet Gc remains consistent. Dur-
ing sampling of 3D points along rays and querying colors
and densities from these misaligned grids, the colors of the
modified areas are predominantly sourced from the new sur-
face locations in Gc, as shown in Fig. 4 (a), even though the
color fields still align with the original distribution.

To address this issue, we introduce a deformation net-
work to enable synchronous modifications of both shape
and appearance. This network is designed as a function
predicting a three-dimensional displacement vector, ∆xi ∈
R3, that maps a 3D point xi to its canonical location
xi +∆xi. In our context, the canonical space refers to the
original scene before stylization. We represent the deforma-
tion network using another voxel grid, G∆, and update it ex-

Sample  Sample  Sample  Sample  

(a) Sampling w/o deformation fields (b) Sampling with deformation fields

Figure 4. Sampling w/ and w/o deformation fields. Comparisons
of the sampling density σi and color ci for a 3D point xi with and
without deformation fields. The curves represent the 2D projected
surfaces of objects, where green depicts the stylized surface and
blue the original surface. By sampling with deformation fields, we
coherently sample both values from the original surface.

clusively for the purpose of stylizing the geometry, keeping
Gσ unchanged. After the stylization, the canonical surface
remains intact. When rendering the stylized scene, both the
densities and colors are sampled from the original surface
locations, as described in Fig. 4 (b). This ensures that co-
herent colors are associated with the modified areas, leading
to the differences shown in Fig. 3 (b).

3.2. RGB-D Stylization
To realize a more expressive stylization that modifies both
colors and geometry, we employ a pair of style guides: an
RGB image and a depth map. Given an RGB style Srgb, we
use a zero-shot depth estimation network [3] to derive its
depth map. This then serves as the style depth, SD.

3.2.1 Geometry-aware Nearest Matching
To stylize using two style images, specifically Srgb and SD,
the style loss must be adjusted to account for multiple style
sources. Since our goal is to align both colors and geom-
etry, computing the nearest matching loss independently is
inappropriate due to potential inconsistencies between pat-
terns of appearance and shape. A more effective method is
to initially identify the closest match between content and
style features in one domain, then compute the style loss
for the other domain using these predetermined pairs. Alter-
natively, both color and geometry features could be used to
search for the nearest neighbors concurrently. After extract-
ing VGG feature maps from the two modalities, we concate-
nate them along the channel dimension and then perform a
search to find the nearest pair:

j = argmin
i′

D([F rgb
I (i), FD

I (i)], [F rgb
S (i′), FD

S (i′)]) (2)

We then optimize the cosine distance D separately for
features from each modality:

L(i) = D(F rgb
I (i), F rgb

S (j)) +D(FD
I (i), FD

S (j)), (3)

The style loss is calculated as the mean across all feature
vectors: Lstyle =

1
N

∑
i L(i). This strategy, which involves

incorporating geometry features into the matching process,
not only enhances diversity but also better preserves scene
structure, as demonstrated in Sec. 4.
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3.2.2 Patch-wise Optimization

With an RGB style image, it is straightforward to deter-
mine if the output aligns with the style in terms of color,
texture, and other visual attributes. However, in geome-
try, depth maps provide limited cues to identify the style.
This is because shapes are defined not by isolated pixels,
but by their relationship to their surroundings. The existing
nearest matching loss, which conducts matching on a per-
pixel basis, is not enough for transferring the style of geom-
etry effectively. To address this, we introduce a patch-wise
matching scheme that broadens the receptive fields, thereby
becoming more effective in capturing spatial interactions.

Given the extracted VGG feature maps FI and FS , we
first partition each feature map into sets of k × k patches:
{Pi

I}i and {Pi
S}i. The patch-wise style loss LSP is then

given by:

LSP =
1

|PI |
∑
i

min
j

DP(Pi
I ,P

j
S), (4)

where DP(P1,P2) computes the sum of the cosine dis-
tances between feature vectors at corresponding locations
within each patch:

DP(P1,P2) =

k2∑
i

D(F i
1, F

i
2), (5)

Here, D calculates the cosine distance, and F1,2 represents
feature vectors that constitute each patch. To achieve larger
receptive fields without increasing computation, each patch
can be defined with a dilation rate r as a hyperparameter.

3.2.3 Perspective Style Augmentation

We typically select style images with distinct patterns as
shown in Fig. 1, since this aids in the clearer identification
of their geometric style. To enhance diversity and the per-
ception of depth, we can vary the sizes of these patterns, ap-
plying them differently to surfaces based on their distance.

Before the stylization process, we gather 3D points in
world coordinates from all training viewpoints and cat-
egorize them into N bins, {Bi}Ni=1, based on their z-
coordinates. Each bin Bi is linked to a central value Ci,
determined by averaging the z values of points within that
bin. Given that pattern sizes can vary with the relative reso-
lutions of content and style images [28], we modify the style
images by downsampling them at multiple scales {si}Ni=1.
This process results in a series of style pairs, {Si}Ni=1, where
S = (Srgb,SD). We set the scale of the first bin, s1, to 1. To
reflect real-world conditions, the scales of subsequent bins
are calculated based on their relative distance from the first
bin as: si = C1/Ci.

During stylization, each pixel in the rendered image is
assigned to a bin Bi′ , based on the shortest distance from
the pixel’s z-coordinate to the center Ci′ of the bin. This
method transforms the rendered image into a format akin to
a layered depth image [65]. Each layer is then stylized us-
ing its corresponding style pair Si′ , which is downsampled
to the appropriate scale. Consequently, larger patterns are
mapped onto surfaces closer to the viewer, while smaller
patterns are applied to more distant surfaces, thereby en-
hancing the overall sense of depth.

4. Experiments
Implementation Details. We implemented our work based
on the code of ARF [83], using TensoRF [6] as the underly-
ing NeRF representation. For the training of TensoRF dur-
ing the photorealistic reconstruction stage, we followed the
training scheme from its original paper and utilized a dis-
tortion regularizer [2] to mitigate artifacts such as floaters
and background collapse. In this stage, the deformation
fields are randomly initialized and are optimized to out-
put zeros for all sampled input points. After pre-training,
we maintained the density grid at a constant but updated
both the appearance and deformation grids to stylize the re-
constructed 3D scene using style loss. We employed the
conv2 and conv3 layers of the VGG-16 [69], when com-
puting the style loss. We applied the view-consistent color
transfer [83] before and after the stylization.
Datasets. We conducted experiments on the LLFF
dataset [52], comprising high-resolution captures of real-
world, forward-facing scenes, as used in recent 3D style
transfer methods [55, 83, 86]. Furthermore, we utilized the
ScanNet dataset [11] to verify the capability of our approach
on scenes captured from diverse camera viewpoints, high-
lighting our method’s potential for partial stylization. The
ScanNet dataset includes multiple sequences of real-world
indoor scenes characterized by varied trajectories and a col-
lection of common furniture types.
Evaluation metric. We use Single Image Fréchet Inception
Distance (SIFID) [66] to evaluate the stylizations. SIFID
calculates the feature distance between two images, indicat-
ing the style similarity between the style image and the styl-
ized results for quantitative evaluation in image style trans-
fer [57, 78]. We introduce three methods to assess how both
the shape and appearance reflect the specified style guide:
• RGB: To evaluate stylization, we compute the SIFID be-

tween the RGB style image, Srgb, and the rendered RGB
image, Î .

• Gray: Recognizing that shape and pattern forms, be-
yond color, influence style, we convert both Srgb and Î
to grayscale. We then compute the SIFID between these
images, allowing us to exclude the influence of color and
measure the other style elements.

• Depth: To evaluate the geometry style, we compute the
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Figure 5. Qualitative comparisons with SNeRF [55], ARF [83] and Ref-NPR [86] on the trex and fern scenes [52].

SIFID between the depth style SD and the rendered depth
map, D̂.

4.1. Qualitative and Quantitative Comparisons

In Fig. 5, we qualitatively compare our results with re-
cent top-performing 3D style transfer methods, including
SNeRF [55], ARF [83], and Ref-NPR [86] on the the trex
and fern scenes [52]. All these methods stylize radiance
fields, guided by a single style image. The scale of the style
image plays a crucial role in replicating the patterns from
the style image; hence, we manually tuned these methods
to find the optimal configurations. Since SNeRF did not
provide an official implementation, we used an alternative
version provided by Zhang et al. [86], enabling a density up-
date as mentioned in their original paper. For Ref-NPR, we

utilized NNST [35] to generate a reference stylized view.
For ARF, we used the authors’ provided TensoRF version
since the geometry of the scene is noisy and very inaccu-
rate in the original version with Plenoxels. We applied the
distortion regularizer [2] to refine its geometry during pre-
training for fair comparisons.

As shown in the figure, our method provides clearer col-
ors and more accurately stylized shapes. Notably, our styl-
ized results replicate the clear and complete forms of style
patterns, an ability not achievable by merely stylizing col-
ors, due to the limited space available for mapping com-
plete patterns without altering geometry. To be specific, in
order to stylize the fern leaves, it is necessary to change
their shape because the leaves are sharp and narrow, which
cannot display patterns of the style image without a shape
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Method trex fern

RGB Gray Depth RGB Gray Depth

SNeRF [55] 1.62 0.81 0.59 1.32 0.64 0.40
ARF [83] 1.54 0.64 0.51 1.11 0.48 0.36
Ref-NPR [86] 1.59 0.72 0.61 1.75 0.79 0.41
Ours 1.43 0.58 0.44 0.81 0.37 0.28

Table 1. Quantitative comparisons of SIFID [66] for RGBs,
grayscale images, and depth maps with recent methods. Lower
scores indicate better performance. For each scene, images are
rendered from 30 viewpoints, and their average score is computed.

deformation. Our method accurately stylizes those regions
while the others are limited to stylizing only appearance to
just hallucinate the shape. Even though SNeRF updates the
density during stylization, the resulting geometry does not
reflect any cues from the style image because it lacks proper
guidance for geometry style.

In Table 1, we compare the SIFID [66] to measure the
style similarity between the style images and the rendered
images. Our method outperforms others in all metrics, en-
compassing both appearance and geometry. This demon-
strates that incorporating stylization into geometry, as well
as colors, enhances the overall style representation and
more accurately reflects the intended styles.

In Table 2, we present the results of a user study designed
to assess visual appeal based on user preferences. We col-
lected rankings from 22 participants for each set of styl-
ization results produced by Ref-NPR [86], ARF [83], and
SNeRF [55], and then computed the average rankings for
12 different stylized scenes. Notably, our proposed method
outperforms the others, achieving the highest average rank-
ing. Furthermore, out of 264 total responses (22× 12), our
method was mostly favored, being selected as the best in
162 instances.

metric Ours Ref-NPR ARF SNeRF

Avg. rank ↓ 1.55 3.17 2.58 2.70

Table 2. User study results reporting the average ranking.

4.2. Ablation Experiments

Geometry-aware nearest matching. In Fig. 6, we com-
pare the results of the nearest matching exclusively with
the color features extracted from Srgb and our proposed
geometry-aware strategy. When using only color features,
the resulting style includes similar colors and overlapping
patterns in regions with a similar appearance. This approach
tends to wash out object boundaries, rendering them indis-
tinguishable, and leads to a loss of content structure and di-
versity, particularly in semi-transparent objects. In contrast,

3D Scene w/o geometry feature with geometry feature

Figure 6. Ablation study on the impact of geometric features.
Comparison of the results using nearest matching based on color
features versus geometry-aware matching. Geometry features en-
hance diversity and enable distinct stylizations, differentiating ob-
jects with similar colors.

w/o patch-wise optimization

with patch-wise optimization

Figure 7. Impact of patch-wise optimization. The patch-wise
scheme enhances the clarity and accuracy of patterns and shapes.

when geometry features are also used, the combined con-
sideration of shape and color during the matching process
results in distinct colorization and patterns across objects,
even those with similar appearances. This differentiation of
boundaries enhances content preservation.
Patch-wise optimization. In Fig. 7, we compare the results
of the nearest neighbor loss with and without our proposed
patch-wise optimization. Without the patch-wise scheme
(the top figure), each feature vector in the content and style
feature maps is independently matched based on the respec-
tive cosine distances, which leads to a failure in maintaining
local geometry. Due to its small receptive fields, the scene
often contains only incomplete parts of patterns and shapes,
resulting in decreased style accuracy. In contrast, when ap-
plying the patch-wise optimization (the bottom figure), the
positions of local neighbors within the feature maps are pre-
served during the matching process, enabling the capture of
larger receptive fields. This approach results in the intact
and complete reproduction of patterns from the style image.
Perspective style augmentation. In Fig. 8, we compare the
effects of our proposed perspective style augmentation on

8571



with perspective augmentationw/o perspective augmentation

Figure 8. Perspective style augmentation impact. The proposed
augmentation enhances depth perception by mapping larger pat-
terns to closer surfaces and smaller patterns to more distant ones.

stylization. As depicted on the left, stylizing the entire sur-
face with patterns of uniform size, regardless of the distance
from the camera, violates perspective rules and diminishes
the sense of depth. Conversely, the right column figures
demonstrate that decreasing the pattern sizes based on their
depth location enhances the perception of depth in the 2D
rendered image and aids in preserving the scene’s structure.

4.3. Application: Partial Stylization

In Fig. 9, we demonstrate the applicability of our method
in partially stylizing 3D scenes. Instead of partially opti-
mizing the scene based on semantic masks [39], we have
integrated our method with Panoptic Lifting [68]. This
approach involves volumetric representations that produce
view-consistent panoptic segmentations, along with RGB
values and shapes. Our method can be seamlessly incorpo-
rated into it, enabling us to dynamically render and select
target classes and object instances during runtime.

The Panoptic Lifting models a function that maps a 3D
point xi to color ci, volume density σi, semantic class prob-
ability κi, and object id distribution πi over each class as:
κi(k)πi(j). The underlying representation adopts TensoRF
and consists of a color grid Gc and Gσ . To stylize Panop-
tic Lifting, we introduce an additional deformation grid G∆

and apply our proposed RGB-D stylization methods to opti-
mize both Gc and G∆. After the style transfer, we obtain the
stylized color grid Gc′ and use it to freely render the stylized
scene. It is important to note that even if the shape changes
after stylization, our use of deformation fields enables sam-
pling from the canonical space for color and density, as well
as for the classes and object ids. Thus, if the stylization al-
ters the original shapes, the semantic predictions cohesively
adapt to the new shapes.
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Figure 9. Stylization with 3D semantic lifting. We stylize Panop-
tic Lifting, pre-trained on the ScanNet dataset [11], allowing for
the free alteration of target objects for stylization during runtime.
As the stylization alters the colors and shapes of objects, the seg-
mentation adapts to their updated forms.

To render the partially stylized view for specific target
classes or objects, we begin by estimating the target class
for each 3D point along the rays. During RGB rendering,
color is sampled for the 3D points that comprise the target
objects from the stylized grid Gc′ . This sampling is con-
ducted after applying deformation to the points, denoted as
xi + ∆xi. The rest of the scene is rendered using colors
from the original grid Gc, with no deformation applied.
Limitations and future work. Our selection of Ten-
soRF [6] as the underlying representation inherently con-
strains our capabilities in handling 360◦ unbounded scenes.
Also, additional challenges arise due to our focus on ac-
curately transferring the shapes and patterns from a single
style image to the 3D scene. This task is highly ill-posed
as the patterns in 3D scenes do not appear identical when
viewed from significantly different perspectives. To effec-
tively stylize 360◦ scenes, it would be beneficial to investi-
gate the use of multi-view style guides or 3D style guides,
extending beyond a single-image style reference.

5. Conclusion

We proposed Geometry Transfer, a novel method that uses
a depth map as a stylistic guide for modifying the geometry
of radiance fields. By innovatively employing deformation
fields, we achieved coherent alteration of both shape and
appearance in 3D scenes. Building upon this foundation,
we developed novel RGB-D stylization techniques, lever-
aging geometric cues to enhance aesthetic expressiveness
and more accurately reflect intended styles. Extensive ex-
periments have shown that our methods facilitate a broader
spectrum of stylizations compared to previous approaches,
significantly expanding the scope of 3D style transfer.
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