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Figure 1. HouseCat6D is a multi-modal category level 6D object pose and grasping dataset with highly diverse household object categories
of different photometric complexity and a high number of varying scenes covering large viewpoint distributions. It comprises room-scale
high-quality camera trajectories and object poses without markers in realistic scenarios including occlusions as well as dense grasping pose
annotation. Data includes synchronized RGB, depth from active stereo, and polarimetric RGB+P images in scenes comprising objects

without texture, strong reflections, or translucency.
Abstract

Estimating 6D object poses is a major challenge in 3D
computer vision. Building on successful instance-level ap-
proaches, research is shifting towards category-level pose
estimation for practical applications. Current category-
level datasets, however, fall short in annotation quality and
pose variety. Addressing this, we introduce HouseCat6D,
a new category-level 6D pose dataset. It features 1) multi-
modality with Polarimetric RGB and Depth (RGBD+P), 2)
encompasses 194 diverse objects across 10 household cat-
egories, including two photometrically challenging ones,
and 3) provides high-quality pose annotations with an er-
ror range of only 1.35 mm to 1.74 mm. The dataset also
includes 4) 41 large-scale scenes with comprehensive view-
point and occlusion coverage, 5) a checkerboard-free en-
vironment, and 6) dense 6D parallel-jaw robotic grasp an-

* Equal contributions.
f Corresponding Author (e-mail: guangyao.zhai@tum.de).

notations. Additionally, we present benchmark results for
leading category-level pose estimation networks.

1. Introduction

6D pose estimation is one of the cornerstones in many com-
puter vision tasks, especially for interactions like robotic
manipulation [60, 66—68] or augmented reality [20]. Many
methods have been proposed to solve this task from var-
ious perspectives and achieve outstanding results on pub-
lic benchmarks [5, 25, 34, 63]. Most of the methods fo-
cus on instance-level where each network is trained and
tested on a single object instance [42, 58]. However, gen-
eralization and applicability are limited, as the object mesh
is required, and an individual network needs to be trained
for each instance. Recent methods focus on category-level
pose estimation [9, 11, 37, 43, 44, 59] by training on mul-
tiple objects within one category. They can later gener-
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Table 1. Dataset Overview. HouseCat6D represents a large-scale and highly accurate category-level 6D pose dataset that combines the
advantages of various established datasets (e.g. extensive pose coverage, highly accurate GT, occlusions cases, and grasping annotation).
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alize to unseen objects from the same category. How-
ever, a significant limitation blocking further progress is
the lack of datasets for training and evaluation that fulfill
all criteria like large-scale, accurate, and realistic. Exist-
ing category-level datasets only comply partly, e.g., high
quantity and low quality [59], or high quality but insuffi-
cient quantity [61].

To this end, we propose a new category-level dataset
HouseCat6D. It consists of high-quality ground-truth an-
notations on diverse objects acquired by multiple sensor
modalities with extensive viewpoint coverage. Our dataset
includes 194 objects from 10 different categories, includ-
ing photometrically challenging classes such as glass and
cutlery (Fig. 1), occlusion cases, and 3 sensor modali-
ties, i.e., RGB, depth, and polarimetric images, with a to-
tal of 23.5k frames and approx. 160k annotated object
poses. We additionally provide 10M grasp pose annota-
tions to a subset of the dataset, endowing it with the capac-
ity to serve robotic manipulation tasks, e.g., category-level
robotic grasping [62]. Our dataset recording relies on an ac-
curate external infrared tracking system and additional sub-
sequent post-processing through sparse bundle adjustment
to avoid errors induced by timestamp offsets and motion
blur of the freely moving camera rig [50, 51]. Specifically,
we conduct three calibrations, i.e. pivot calibration, times-
tamp calibration, and hand-eye-calibration. For the times-

tamp calibration, we adopt existing methods [18, 30] ad-
justed to our setup with an ICP-based refinement. For the
hand-eye-calibration, we improve the calibration from re-
cent work [61] by aggregating multiple measurements of a
ChArUcO [2] calibration board (Sec. 3.3). Compared to
the recent PhoCaL dataset [61] that relies on a robotic end-
effector to estimate poses and thus has limited viewpoint
coverage and backgrounds, our method provides accurate
object pose annotation and wide viewpoint coverage while
providing pose annotations of similar quality. We use active
stereo as depth maps, which is more reliable on different
surface materials [32, 61]. In addition to the typical RGB
and depth, we provide polarimetric images with four differ-
ent filter angles. Recent investigations have shown that this
modality is especially suitable for tasks such as depth and
surface normal estimation [33, 35, 57], and 6D pose estima-
tion [23], especially for photometrically challenging objects
or surfaces. In summary, our main contributions are:

1. We propose HouseCat6D a large-scale multi-modal
category-level object pose dataset with RGBD +
RGBP data, comprising 194 high-quality 3D models
of household objects including transparent and reflec-
tive objects in 41 scenes with broad viewpoint coverage,
challenging occlusions and no markers.

2. We develop a novel pipeline for annotation, recording,
and post-processing to achieve comparable accuracy to
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robotic GT, but with a mobile handheld multi-camera
rig. We detail all acquisition and calibration steps and
make the high-quality 6D object pose annotations to-
gether with 6D grasp labels accessible to the commu-
nity.

3. We provide and discuss the benchmark evaluation re-
sults on HouseCat6D for SOTA category-level baselines
to show challenges and foster novel research in the field.

2. Related Work

The recent state-of-the-art methods are mostly data-driven
approaches. A common need for these methods is a dataset
for training and evaluation. In this section, we give an
overview of existing datasets and provide a summary of
mentioned datasets in Tab. 1.

2.1. Instance-level 6D Object Pose Dataset

Early-stage datasets provide nontemporal consistent im-
ages. LineMOD [25] and LM-Occlusion [3] are arguably
the most used datasets. They use an RGBD camera to an-
notate the pose of the objects. The camera pose is esti-
mated with checkerboards, which constantly appear in all
images. Although these two datasets were heavily used, the
quality of object meshes and annotations varies [4]. Other
datasets were proposed to overcome these issues. Such
as HomebrewedDB [34] and others [16, 52]. However,
those datasets still rely on checkerboard-based camera lo-
calization, or human-powered annotation [49], or a rotat-
ing table [17] to provide tolerable annotations. Consec-
utive datasets focus on providing sequential images with
camera and object pose annotations. This allowed to
investigate pose tracking approaches with temporal con-
straints [4, 24, 36]. One very popular such benchmark is
YCB [63]. The annotation is achieved by leveraging an
RGBD camera and Structure from Motion (SfM) [46]. Al-
though this makes large-scale annotation possible, the an-
notation quality is bound to the quality of the depth camera
used [32, 61]. In comparison, the Laval 6DOF dataset [24]
marker-based tracking results in high-quality annotations
and checkerboard-free images. However, marker-induced
depth artifacts need a depth map post-correction. On the
other hand, StereoOBJ-1M [40] uses SfM with checker-
boards in a more precise way to ensure quality and quan-
tity. However, this also introduces checkerboards in ev-
ery image. GraspNet-1Billion [21] provides parallel-jaw
grasping labels besides object pose annotations, making it
more feasible for downstream robotic bin-picking. How-
ever, the dataset has limited viewpoint changes and only
simple backgrounds. In contrast, our dataset captures multi-
ple household scenarios with adequate viewpoint coverage.

2.2. Category-level 6D Object Pose Dataset

Category-level pose estimation has been proposed to ad-
dress generalizability in 6D pose estimation over multiple
objects of the same category. The task is to generalize pose
estimation per class and not for individual instances, which
is challenging due to high intra-class variance. Many recent
methods have been proposed [7, 8, 14, 31, 37, 43, 44, 53]
to solve this problem due to its realistic setup. Only a few
datasets exist, which we will briefly review here.

The NOCS dataset [59] is the first category-level 6D
pose dataset. It contains six categories and two sub-datasets,
namely CAMERA25 and REAL275. In REAL275, the
poses are aligned using checkerboards. For CAMERA?2S,
ShapeNetCore [6] objects are placed in table-top scenarios.
A dataset focusing more on the robotic field is kPam, which
uses keypoints. Manuelli ef al. [45] capture kPam using a
similar approach as Marion et al. [46]. They perform 3D
reconstruction before manually labeling the keypoints on
the 3D reconstruction. The dataset results in 117 training
sequences and 245 testing sequences. While NOCS and
kPAM contain solid objects, TOD [39] and PhoCaL [61]
specifically focus on either translucent or transparent and
reflective objects. TOD [39] is captured with a robotic
arm and annotated keypoints and focuses on stereo images.
Wang et al. [61] introduce a category-level dataset includ-
ing polarimetric images besides RGBD only. For annota-
tion, a robotic arm is used to tip individual objects with a
calibrated pointer. Annotations are refined via ICP. Instead
of using a robotic arm, Wild6D [22] is annotated via track-
ing. Every 50th keyframe is annotated and then registered
via TEASER++ [65] and colored ICP [48]. The training
dataset is label-free, and only the test dataset contains an-
notations. For recording, multiple iPhones are used to cap-
ture RGB images, depth, and point cloud. Fu et al. [22]
introduce Wild6D, an unlabeled RGBD video dataset with
diverse scenes. They also investigate the use of additional
synthetic labels and annotate a fraction of the real videos for
evaluation. Other class-based datasets exist. Objectron [1]
focuses on scale and provides over 14k scenes. However,
it only provides annotated 3D bounding boxes and does not
give detailed shape information for the objects.

3. Dataset

Our dataset aims to provide large scale with extensive
view coverage and high-quality pose annotations without a
checkerboard. It is composed of 34 training scenes (20k
frames), five test scenes (3k frames), and two validation
scenes (1.4k frames). The scenes comprise objects from 10
household categories, including photometrically challeng-
ing objects like glass and cutlery, with occlusions. With
a total of 194 objects, each category contains 19 objects
on average. Our dataset also features multiple modalities,
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Figure 2. Dataset Acquisition Pipeline. (a): Pre-scanning 3D models. (b): Pivot calibration to calibrate measurement tip from the tracking
body. (c): Pose annotation of objects using measurement tip. (d): Hand-Eye-Calibration to calibrate camera center of tracking body. (e):
Camera trajectory recording (f): Post-processing step to reduce synchronization-induced trajectory error.

Figure 3. Tracking System. ARTTRACK?2 tracking system and sets of infrared marker bodies we used for our setup. Once at least four
infrared spheres are detected from at least two cameras, the tracking system provides the pose of the marker body as transformation from

tracker system base to marker body base.

Figure 4. Hand-Eye-Calibration. Instead of single image based
using closed form solution with measured checkerboard pose like
in [61], our newly proposed approach takes more image captures
into account. This makes it more robust against checkerboard de-
tection errors in a wider range of camera poses.

namely RGB images, polarimetric images, and depth maps.
This section details our dataset. The acquisition setup is
described in Fig. 2.

3.1. Objects & Hardware

Here, we briefly describe the hardware setup we use for
the dataset acquisition. More detailed information, such as
product names and their specs, is provided in the supple-
mentary material. For our dataset, we choose 10 house-
hold categories to represent typical household scenarios:

bottle, box, can, cup, cutlery, glass, remote, shoe, teapot,
and tube. All objects are scanned with a structured light
stereo-based 3D scanner to ensure the quality of the recon-
structed meshes. For the photometrically challenging cate-
gories, we use self-vanishing 3D scanning spray to enable
scanning. For tracking the annotation tool and camera rig,
we utilize an external tracker system composed of 4 infrared
cameras to ensure tracking quality without using a checker-
board. Fig. 3 shows our camera setup and used tracking
bodies for the annotation pipeline. We evaluate the accuracy
of the tracking with translation and rotational error [24] us-
ing a robotic setup (details in supplementary material). The
average error is 0.67 mm / 0.12° in the static case and 0.92
mm / 0.16° in the dynamic tracking scenario. Our dataset
comprises two main modalities: Polarimetric RGB image
and active stereo depth. We use a dedicated sensor for each
of the modalities. For polarimetric images, we use a polari-
metric camera, which produces four polarized RGB images
for every shot. To measure depth, we decided on an active
stereo depth sensor over Time-of-Flight sensors as active
stereo depth provides, in general, more robust depth on pho-
tometrically challenging material [32]. To synchronize the
two cameras, an external hardware trigger is used to trigger
both cameras simultaneously.

3.2. Object Pose Annotation

Annotating the 6D pose of the object is, without a doubt, the
most crucial part of a 6D pose dataset. In our dataset, we
adopt the highly accurate object pose annotation pipeline
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Figure 5. Post-Processing via Bundle Adjustment. Example of COLMAP [50, 51] refinement on selected frame with large camera
displacement. Even though our timestamp synchronization step reduces the effect of motion induced pose offset, subtle errors still remain
((a), marked red). In comparison, the post processing step significantly reduces the given offset error ((b), marked green).

from [61] but replace the robotic end-effector pose with
an IR tracking body. This ensures reliable tracking qual-
ity while covering a more extensive working volume. The
annotation step follows tool tip calibration, 3D points mea-
surement of the objects, and point correspondence with
ICP-based refinement. In this subsection, we describe the
details of each step.

Tip Calibration. The poses of the object meshes are an-
notated by measuring the 3D point using the tooltip. Thus,
calibrating the location of the tip from the tracking body is
essential to ensure the accuracy of the annotation. We use an
NDI Active 4-Marker Planar Rigid Body (Northern Digital,
Ontario Canada) as the measurement tip (Fig. 3 (b)). The
tip is calibrated by fixing the tip while pivoting the track-
ing body and finding the optimal location of the point to
minimize the variance of the fixed point (pivot calibration).
The most common way to evaluate the quality of the pivot
calibration is by measuring the variance of the fixed pivot
point. We carefully calibrated with 18 points, with the final
variance of the tip location of € = 0.040 mm.

Pose Annotation. After the tip is calibrated from the
tracking body, it can measure accurate 3D points in space
in the world coordinates of the tracker system. We measure
points for the initial point correspondence and ICP refine-
ment as in [61] while covering around three times more
point measurements with various surfaces of the object,
thanks to the enlarged working space without the constraint
given by using a robot arm [61]. We evaluate the quality of
the pose annotation step by simulating the pose annotation
pipeline on randomly selected three objects with the addi-
tion of pivot calibration error (Sec. 3.2) and static tracking
error (Sec. 3.1), which gives an average RMSE of 0.32 mm
in translation and 0.43° in rotation.

3.3. Camera Trajectory Annotation

Another critical aspect of 6D pose annotation is accurate
camera trajectories. The object poses are annotated from
the center of the tracker system, not from the the individual

camera. Thus, the camera pose from the tracker system base
has to be applied to obtain the 6D pose of the object from
the camera center. In this section, we describe the detailed
steps of camera trajectory annotation precisely.

Hand-Eye-Calibration In our scenario, Hand-Eye-
Calibration obtains the transformation between the tracker
marker body and the center of the camera image sensor. The
most common way to perform Hand-Eye-Calibration [55]
is detecting the checkerboard multiple times via camera
while tracking the camera body from an external source and
optimizing both checkerboard base from the tracker system
base Tpp_,rp and camera base from the marker body
base Th/p—cp (hand-eye-calibration). In comparison,
[61] proposes a way to use the measurement tip to measure
Tpp—rp and form a close form solution with a single
checker board detection to obtain T);p_.cp. However,
we found that the accuracy of the closed-form solution
is often unreliable. To solve this, we propose a new
hand-eye calibration, which takes into account multiple
image captures (Fig. 4). We capture multiple static images
from different locations to form two trajectories - one
from the camera and one from the tracking body and
extract a fixed offset matrix by applying Horn’s alignment
method [29], which is the hand-eye-calibration matrix.
Once the calibration Th;p_,cp is obtained, we align the
two trajectories and compare the errors to the calibration
accuracy. The RMSE for this calibration is measured as
0.27 mm for the translation and 0.42° for the rotation.

Camera to Tracker Time Synchronization Another im-
portant aspect of using the external IR tracking system is the
timestamp calibration between the tracking system and the
camera image acquisition time. It can cause severe offset on
poses depending on the movement of the camera. A com-
mon practice to synchronize the timestamp difference is to
measure the trajectory of the camera from two modalities
via image and tracking system, along with their timestamp,
and maximize the similarity between the trajectories. This
brings the best timestamp offset [18, 30]. In our case, we
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Figure 6. Grasp Annotations. After inspection of grasps, we an-
notate successful grasps (here coloured in green) and failed grasps
(here red). We downsample the amount of annotated grasps for

better visualization.
Table 2. Accuracy Comparison Against Existing Datasets.

While RGBD-based datasets are limited by sensor standard de-
viation [40], multi-view setups [39, 40] offer improvements. Our
dataset annotation quality, though not as high as robotic acquisi-
tions [61], surpasses checkerboard-based datasets [40], and excels
in terms of viewpoint coverage and annotation accuracy.

Dataset RGBD based TOD [39]  StereOBJ [40] PhoCal [61] Ours
3D Labeling Depth Map ~ Multi-View ~ Multi-View Robot IR tracker
Point RMSE [mm] >17 3.4 2.3 0.80 135 <e<1.73

use ICP-based trajectory alignment to find the best times-
tamp offset instead of using a similarity measure. We empir-
ically find it is more robust to noise and able to synchronize
two trajectories with arbitrary frequency without any inter-
polation to match the frequency. For the camera timestamp,
we use the hardware trigger timestamp. We evaluate the
synchronization by simulating signals with measured noise.
One with the tracking system error (Sec. 3.1) and one with
a detection-based error (Sec. 3.3). The simulated error is
measured as 0.03 sec.

Pose Refinement Although time synchronization im-
proves the quality of the camera pose, the motion-induced
pose error cannot be obliterated as the time synchroniza-
tion is imperfect due to noise in the checkerboard detec-
tion during calibration [30] as well as the difference in
individual camera image acquisition time due to its hard-
ware condition. This effect can be observed when cam-
era motion involves large displacement between consecu-
tive frames (Fig. 5, (a)). To tackle this, we use the RGB in-
put to minimize the reprojection error with multi-view im-
ages. We use structure from motion [50, 51] with given
initial poses and carefully selected fixed frames. The ini-
tial poses are used for initial feature matching and structure
reconstruction. The fixed frames are excluded in the later
bundle adjustment stage. These frames are manually picked
upon careful inspection of the frame with the largest IoU be-
tween rendered object masks on the RGB image given the
pose annotation. We show the improvement in Fig. 5, (b).

3.4. Grasp Annotation

To facilitate downstream robotic manipulation tasks, e.g.,
robotic pick and place, we endow HouseCat6D with feasi-

ble 6D grasping poses for every object under each frame
for a subset of collected sequences, following the well-
established pipeline introduced in [19, 21]. Taking the
annotation process for one object as an example: Firstly,
we use antipodal sampling with an inspection of Isaac
Gym [41] to distinguish the successful grasps G,; from
failed ones Gp'* to generate grasp candidates Gep; =
{G5y;» Gopy'} for the object mesh. Then we use the ob-
tained object pose under the tracker base Ty, 7 p to trans-
form Gy, to the tracker frame where we also reconstruct
and amend the background. Finally, we perform collision
checking and prune grasping labels in the whole environ-
ment and reproject remaining grasps G to each camera
frame in the whole sequence according to the transforma-
tion from the tracker base to each camera base Irp_.¢cB.
An annotated example is shown in Fig. 6. More details
about the annotation pipeline and parameters can be found
in the supplementary material.

3.5. Pose Annotation Quality Evaluation

For the evaluation of the annotation quality of object poses,
we report the point-wise RMSE between objects and the
camera center with and without the consideration of three
systematic errors: tracking system error (Sec. 3.1), pose
annotation error (Sec. 3.2) and hand-eye-calibration error
(Sec. 3.3). As the accuracy gain from the structure-from-
motion cannot be directly quantified, we report the RMSE
with upper- and lower bounds. In the upper bound, we re-
port the number with the object annotation error and the
static tracking error, assuming no synchronization error. In
the lower bound, we include all three mentioned system-
atic errors, including dynamic tracking error as the tracking
system error. We report our annotation quality compared to
recent datasets in Tab. 2. Our method achieves a low RMSE
of 1.35 mm to 1.73 mm.

3.6. Scene Statistics

HouseCat6D features 41 large-scale scenes with 194 ob-
jects in 10 categories with grasping labels for 16 scenes. It
comprises 34 training scenes with 124 objects, 5 test scenes
with 50 objects, and 2 validation scenes with 20 objects for
object pose estimation tasks. For the 34 training scenes, a
total of 20k frames are recorded. Each training scene con-
tains, on average, 6 objects of different categories. The 5
test scenes and 2 validation scenes consist of 3k and 1.4k
frames. They are composed of 10 unseen objects per scene
with different categories. Compared to other category-level
datasets, HouseCat6bD covers the most diverse number of
instances and categories. For robotic grasping, we provide
14 training, 1 validation, and 1 test scene. Nonetheless, all
16 scenes can serve to train a real grasping pipeline, as the
test would be performed in a real-world setup where success
rate serves as the main grasping metric.
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Figure 7. Pose Distribution. The pose distribution for category-level datasets NOCS [59] (Test), StereOBJ-1M [40] (Val), PhoCal [61]
(Train), two categories of Wild6D [22] and Ours is plotted as the Mollweide projection of the spherical histogram, to exemplify the density
and pose variation. Ours shows larges diversity of poses around objects, also for the lower hemisphere, and denser overall distribution.

Figure 8. Pose Distribution per Category. We compare the pose distribution of HouseCat6D (green) against PhoCal [61] dataset (blue),
for the categories included in both of them. The trajectory visualization (top) verifies the much larger and better distributed pose coverage
of our HouseCat6D dataset. Compared is further the rotational pose coverage as a spherical histogram plotted as Mollweide projection
(center) and the object-to-camera distance as a histogram with relative frequency against the distance in cm (bottom).

Table 3. Quantitative Benchmark Comparisons. Class-wise evaluation of 3D IoU (at 25%, 50%) for NOCS [59], FS-Net [8], VI-Net [38]
and GPV-Pose [14] on the test split of HouseCat6D. Best results on the full set are reported in bold.

Approach ‘ 3Dy5 / 3D50 ‘ Bottle Box Can Cup Remote Teapot Cutlery Glass Tube Shoe
NOCS [59] 50.0/21.2 419/50 433/65 819/624 688/20 81.8/59.8 243/0.1 147/6.0 954/49.6 21.0/4.6 264/16.5
FS-Net [8] 749/48.0 | 653/450 31.7/12 983/738 964/68.1 656/468 69.9/59.8 71.0/51.6 99.4/324 79.7/46.0 71.4/554
GPV-Pose [14] | 749/50.7 | 66.8/45.6 31.4/1.1 98.6/752 96.7/69.0 657/469 754/61.6 709/52.0 99.6/62.7 769/424 67.4/50.2
VI-Net [38] 80.7/564 | 90.6/79.6 44.8/12.7 99.0/67.0 96.7/72.1 549/17.1 52.6/473 89.2/764 99.1/93.7 949/36.0 85.2/62.4

Table 4. Sensor Depth Issues and Pose Coverage Influence. Class-wise evaluation of 3D IoU (at 25%, 50%). NOCS* denotes using
ground truth NOCS maps and sensor depth for lifting. VI-Net* [38] denotes a reduced training set. VI-Net is the best baseline.

Approach ‘ 3Dg5 / 3D50 ‘ Bottle Box Can Cup Remote Teapot Cutlery Glass Tube Shoe
VI-Net [38] 80.7/56.4 | 90.6/79.6 44.8/12.7 99.0/67.0 96.7/72.1 549/17.1 52.6/473 89.2/764 99.1/93.7 94.9/36.0 85.2/62.4
NOCS* [59] 96.7/93.6 | 99.8/98.2 98.3/958 100.0/99.0 100.0/99.0 100.0/97.3 99.9/86.1 100.0/99.9 80.0/68.0 89.1/29.1 99.7/83.9
NOCS [59] 50.0/21.2 419/5.0 433/6.5 81.9/62.4 68.8/2.0 81.8/59.8 24.3/0.1 147/6.0 954/49.6 21.0/46 264/165
VI-Net [38] 80.7/56.4 | 90.6/79.6 44.8/12.7 99.0/67.0 96.7/72.1 549/17.1 52.6/47.3 89.2/764 99.1/93.7 949/36.0 85.2/62.4
VI-Net* [38] | 68.4/31.3 | 91.1/67.7 44.1/102 97.7/629 91.8/39.0 43.0/156 228/58 80.7/41.4 93.7/492 822/63 36.5/145

3.7. Viewpoint Coverage

Established datasets in 6D pose estimation lack well-
distributed and dense camera pose coverage around the ob-
ject. They usually focus on the upper hemisphere, even for
large-scale dataset variants like SterOBJ-1M [40]. In con-
trast, HouseCat6D provides very dense and well-distributed
poses (cf. Fig. 7). In terms of category level, we compare
our trajectories for mutual classes against the recent Pho-
Cal [61] dataset, which provides very accurate annotations

but is limited in the range of motion by the robotic arm used
for acquisition (cf. Fig. 8).

4. Benchmark and Experiments

Object Pose Estimation In 6D pose estimation, RGB-
D input is often used. RGB data aids in classifying ob-
jects amidst high intra-class variability. Initially, RGB im-
ages identify objects, followed by depth maps for shape
and boundary information. NOCS [59] generates 2D
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NOCS maps, integrating depth data and ICP for 3D pre-
diction. GPV-Pose [14] segments objects in RGB, then
back-projects the depth map for 3D pose prediction through
geometry-guided voting. FS-Net [8] derives 3D point
clouds from depth images post RGB detection, extracting
features via a residual network for size and translation es-
timation. VI-Net [38] simplifies this task, decoupling the
rotation into viewpoint and in-plane rotations, learned sep-
arately. Our experiment employs Di et al.’s implementation
of FS-Net.

We report IoU results with 25% and 50% thresholds
in Tab. 3 (cf. supp. mat. for additional metrics). The
geometry-guided methods GPV-Pose and FS-Net outper-
form the 2D lifting approach, with VI-Net achieving the
best results at both thresholds. GPV-Pose and FS-Net ben-
efit from precise 2D detection training in HouseCat6D, aid-
ing in detailed object localization. In contrast, NOCS of-
fers a single-stage approach, lifting results from 2D to 3D.
Compared to the NOCS [59], our dataset features cluttered
scenes leading to occlusions and closely situated objects (cf.
Fig. 9). While current methods often overlook occlusions,
our initial evaluations suggest significant potential for im-
provement. The supplementary material details occlusion
ratios per category and comparisons with the NOCS dataset.
Although VI-Net handles clutter and occlusions better than
others, there remains considerable scope for enhancement.

Further, an experiment using NOCS with ground truth
predictions but sensor depth alignment reveals inaccuracies
in 3D lifting, impacting results as reported in Tab. 4 (top).
This is reflected in a significant decline to 22.6% at the
mean IoU at 75% as also shown in Fig. 9. The categories
glass and tube suffer especially from the sensor depth. For
these, the trained VI-Net even outperforms the ground truth
to sensor depth lifting approach. To demonstrate the im-
portance of extensive pose coverage, we trained VI-Net* on
a data subset similar to the pose coverage of PhoCaL (cf.
Tab. 4 (bottom). Results indicate that our scene coverage
notably enhances prediction accuracy.

Grasp Pose Estimation KGN [10] processes an RGB-
D image to estimate gripper keypoints and employs PnP
to align 3D keypoints in the gripper frame with 2D cam-
era frame keypoints, solving for 6D grasp poses. We have
retrained both the complete KGN model and a simplified
version without keypoint offset refinement on HouseCat6D
data.

Following the metrics from the original study [10], we
report grasp coverage rate (GCR) and object success rate
(OSR) in Tab. 5a (cf. [12, 47, 64]). Real-world experiments
were conducted using a 7-DoF Franka robot, with grasp
success rates detailed in Tab. 5b, in line with the approach
in [68] of calculating successful trial percentages over 15
runs per object. Notably, Tab. 5b demonstrates the method’s

Figure 9. Sensor Depth Issues. Comparison of NOCS predic-
tion (left) and using the NOCS ground truth map but sensor depth
(small, center). Even with perfect NOCS maps, the lifting from
2D to 3D suffers under the noisy sensor depth map (right).

Table 5. Grasping Results. KGN [10] without / with keypoint
refinement, respectively.

(a) Grasp coverage rate and object success rate on the test set.

Metric Bottle Can Cup Glass Remote Tube

GCR (%) 17.4/24.1 354/583 326/341 163/408 643/645 47.3/61.1
OSR (%) 97.8/99.8 752/87.6 100/100  100/100 92.1/94.8 100/100

(b) Real-world grasp success rate.

Metric Box Cup Glass Remote Unknown

GSR (%) 80.0/80.0 66.7/66.7 66.7/73.3 53.3/33.3 53.3/60.0

generalization to unseen objects across different categories.
A surprising finding is KGN’s efficacy in grasping transpar-
ent objects (Glass) post-training on HouseCat6D, both in
tests and real-world settings. This contrasts with the origi-
nal method’s limited performance on photometrically chal-
lenging objects due to its synthetic training.

5. Conclusion

HouseCat6D is introduced as a comprehensive 6D pose
dataset, acquired using a multi-modal camera rig and an
external tracking system, offering highly accurate pose an-
notations. This dataset addresses the limitations of existing
datasets by featuring realistic, marker-free scenes with well-
distributed object poses. It includes photometrically chal-
lenging objects lacking texture and those made of translu-
cent materials, alongside precise robotic grasping annota-
tions. HouseCat6D, with its quality and breadth, advances
research in categorical pose estimation, setting a new stan-
dard for applications in everyday household environments
and other areas.
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