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Abstract

Adversarial robustness of the neural network is a sig-
nificant concern when it is applied to security-critical do-
mains. In this situation, adversarial distillation is a promis-
ing option which aims to distill the robustness of the teacher
network to improve the robustness of a small student net-
work. Previous works pretrain the teacher network to make
it robust against the adversarial examples aimed at itself.
However, the adversarial examples are dependent on the
parameters of the target network. The fixed teacher net-
work inevitably degrades its robustness against the unseen
transferred adversarial examples which target the param-
eters of the student network in the adversarial distillation
process. We propose PeerAiD to make a peer network learn
the adversarial examples of the student network instead of
adversarial examples aimed at itself. PeerAiD is an ad-
versarial distillation that trains the peer network and the
student network simultaneously in order to specialize the
peer network for defending the student network. We ob-
serve that such peer networks surpass the robustness of the
pretrained robust teacher model against adversarial exam-
ples aimed at the student network. With this peer network
and adversarial distillation, PeerAiD achieves significantly
higher robustness of the student network with AutoAttack
(AA) accuracy by up to 1.66%p and improves the natu-
ral accuracy of the student network by up to 4.72%p with
ResNet-18 on TinyImageNet dataset. Code is available at
https://github.com/jaewonalive/PeerAiD.

1. Introduction

Deep learning is undoubtedly an irreplaceable tool in many
domains such as images [11, 17, 27], natural language pro-
cessing [5, 9, 35], voice recognition [4, 15], and many
real-life scenarios. However, it has been found that DNNs
are vulnerable to an imperceptible noise crafted by attack-
ers [14, 28], and this severely raises concerns about deploy-
ing DNNs in critical domains, e.g., autonomous driving [29]
and healthcare [44]. Though [28] found that a large model
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Figure 1. Test robust accuracy of a pretrained robust teacher and
a peer network trained from scratch. x∗S , x∗T and x∗P denotes the
adversarial examples generated from the student, teacher, and peer
model, respectively. Results on CIFAR-10 (left) and CIFAR-100
(right) show that the peer sustains increasing robustness for the
student not provided by the pretrained teacher.

has better robustness than a smaller neural network, a large
model is not always applicable to all circumstances, espe-
cially in an edge device which has a small size of memory
and limited computational capability. Currently, the only
defense technique known to be effective is a variant of ad-
versarial training [14, 28], which essentially trains a model
from attacked samples to gain robustness. Even though the
training samples are adversarially perturbed, guiding the
training with the correct label allows the model to learn fea-
tures that are not fooled by similar perturbations.

Among the adversarial training family, one promising
and popular way to enhance robustness of the small stu-
dent network is adversarial distillation (AD), which uses a
robustly pre-trained teacher to guide the student. In an ex-
tenstion of knowledge distillation [18] which uses the pre-
trained teacher to approximate the label distribution of the
data, many AD methods [19, 45, 46] use the pretrained ro-
bust teacher network which approximates the label distribu-
tion of adversarial examples aimed at the student network.

For such AD methods, an underlying assumption is that
the robustness contained within the pretrained teacher is
maintained along the adversarial distillation process. In
other words, we expect the teacher to provide a defense
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for the adversarial examples produced by the student model
during adversarial training. However, such an assumption
does not hold in adversarial distillation, especially as the
student is trained for several epochs toward convergence.

In Fig. 1, we test if such an assumption holds in actual
training. Over 200 epochs of AD training, we attack the stu-
dent network to create perturbed samples using Projected
Gradient Descent (PGD) [28]. With the blue curves, we
plot the robust accuracy the teacher achieves against those
samples (attacked with students). Initially, the teacher pro-
vides a good defense against the student-attacked samples,
whose prediction could be a reliable guide to the student
[45]. However, the robustness quickly drops as the student
is trained, and further reduces at the learning rate step. In
fact, similar phenomena have been reported in other liter-
ature [45]. IAD [45] partially trusts the teacher network
depending on its reliability. AKD2 [7] uses the naturally
trained teacher together with the pre-trained robust teacher.
MTARD [43] also employs both teachers, balancing their
influence based on how much students converge towards
each teacher. However, while these approaches are effective
to some degree, they are limited in that they do not improve
the guidance of the teacher, but only reduce the effect of
some bad guidance.

In such a regard, the orange curves in Fig. 1 show an in-
triguing observation. We use the same teacher model but
is randomly initialized and trained from scratch as a peer
against the student-attacked samples. While it is within the
expectation that the robust accuracy goes up, the robust ac-
curacy against transferred adversarial examples x∗S from the
student network reaches much higher than that of the ro-
bustly pretrained teacher. However, the peer has almost no
defense (close to 0%) against adversarial samples x∗P that at-
tack itself (i.e., peer-attacked samples). This states that the
peer is specialized at defending against attacks on a student,
instead of being a general robust model.

From these, we propose PeerAiD, a new AD method that
achieves much higher adversarial robustness from training
a peer tutor of the target student model. The method con-
tains the structure to train a peer model for AD, in addition
to a novel loss function to train the student to take better
guidance from the peer. Our contributions are summarized
as follows:
• We observe that training a peer model from the student-

attacked sample can build a peer tutor with better guid-
ance for adversarial distillation.
• We propose PeerAiD that trains a peer using adversarial

examples aimed at the student and uses it for AD.
• We propose a loss function that is suitable for peer-

tutored adversarial distillation.
• An extensive set of experiments show that PeerAiD gains

significantly higher robust accuracy over the prior art in
several models and datasets.

2. Related Work

2.1. Adversarial Training

Adversarial Training (AT) [14, 28] is an effective method
that defends against many white-box and black-box attacks
[8, 14, 28]. Adversarial training is a robust optimization
problem and consists of inner maximization and outer min-
imization. Mathematically, adversarial training can be for-
mulated as follows.

min
θ

Lmin( f (θ, x∗i ), yi) (1)

where x∗i = arg max
x̃i∈B(xi,ϵ)

Lmax( f (θ, x̃i), yi)

{(xi, yi)}Ni=1 is a training dataset with N samples of input xi

and label yi. f is a neural network with the parameter θ.
Lmax is a loss which is used to find the adversarial examples
which increases the loss of the neural network. The parame-
ter of the neural network is optimized by the Lmin toward the
direction which reduces this Lmin. B(xi, ϵ) is a ball which re-
stricts the distance between the adversarial example x̃i and
the original data xi. Popularly used constraint involves l∞

norm and B(xi, ϵ) = {x̃i | ∥xi − x̃i∥∞ ≤ ϵ} is widely used
in adversarial training. FGSM [14] proposes a single-step
attack that uses only one iteration of getting gradients of
inputs and taking the sign of the gradients to solve the in-
ner maximization. PGD [28] was developed to iteratively
solve the inner maximization problem. After that, many
works [41, 46] adopted Kullback-Leibler (KL) divergence
loss in inner maximization to find a better solution for the
inner maximization problem to improve the quality of ad-
versarial examples. The outer minimization problem is to
find model parameters that reduce classification loss (e.g.,
Cross Entropy ) given adversarial examples. The model pa-
rameters solved by outer minimization in adversarial train-
ing give higher robust accuracy than the model parameters
found by standard training.

2.2. Adversarial Distillation

Many researchers studied adversarial distillation to trans-
fer the robustness of a large teacher network to the student
network. ARD [13] adopts the idea of standard knowledge
distillation. It used the prediction of the robust teacher net-
work on natural data to guide the student network. AKD2[7]
show that adversarial distillation and weight averaging [20]
could prevent robust overfitting problem [1, 10]. IAD [45]
focuses on the reliability of teacher networks during adver-
sarial distillation. It claims that adversarial samples gen-
erated from a student network become challenging in later
epochs, so this makes the student network more trustable
itself, while the teacher becomes more unreliable on ad-
versarial training data generated from the student network.
RSLAD [46] finds that the inner maximization process of
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Figure 2. The adversarial distillation procedure overview of baselines [45, 46] and PeerAiD. (a) describes inner maximization to generate
adversarial examples from the student model. Baselines use hard labels or pretrained teachers for this. On the other hand, PeerAiD uses a
peer model. (b) illustrates the outer minimization procedure to optimize model parameters. Baselines only train the student models with
the prediction of the pre-trained teachers, but PeerAiD trains both peer and student models simultaneously.

generating adversarial samples could be improved by re-
placing the hard label with the soft label produced by a
robust teacher network on the natural data. AdaAD [19]
presents that maximizing prediction discrepancy between
a student network and a robust teacher network could im-
prove the inner maximization process of adversarial train-
ing. CAT [25] proposes to simultaneously train multiple ro-
bust student networks and exchange their adversarial exam-
ples among themselves. CAT aligns with online knowledge
distillation [16, 30, 39, 42] which trains multiple student
networks simultenously in standard training.

3. Proposed Method
3.1. Preliminary

Adversarial distillation usually pretrains the robust teacher
with the adversarial training following Eq. (1). The pre-
trained teacher T (·) is used to produce soft label with natural
data xi or adversarial examples x∗i,S of a student model S (·).
In adversarial distillation, T (xi) and T (x∗i,S ) replace the hard
label yi in the outer minimization of Eq. (1). The KL diver-
gence loss is popularly chosen as Lmin. RSLAD [46] found
that replacing the hard label yi with the soft label produced
by the pretrained robust teacher in the inner maximization
improves the robust accuracy in adversarial training. It re-
gards a prediction of the pretrained robust teacher on natural
data as a fixed target and chose KL(T (xi)||S (x̃i)) as Lmax.

3.2. Peer Tutoring

We suggest peer tutoring to use online knowledge distilla-
tion in an adversarial distillation setting. Peer tutoring trains
the peer model P with the student model S from scratch
while making the peer model robust to the adversarial ex-
amples aimed at the student model. The peer model pro-
vides reliable guidance with peer tutoring because it be-
comes much more robust to the adversarial examples gen-
erated from the student model.

Inner maximization. As illustrated in Fig. 2(a), previ-
ous approaches for inner maximization can be categorized
into two ways. The former [7, 45] uses the hard label y only.
The latter [19, 46] uses the prediction of the adversarily
pre-trained teacher to generate adversarial examples of the
student network. However, each approach has an obvious
limitation. First, using only hard labels loses the chance to
learn the probability distribution of non-target classes from
other networks. Second, the fixed pre-trained robust teacher
network has a limitation on the natural accuracy, which in-
dicates how well the teacher network approximates the true
label distribution of the natural samples x. This trade-off
between robustness and the natural accuracy is theoretically
studied [36, 41] and empirically observed phenomenon [31]
in many works.

Instead, PeerAiD uses the prediction of a peer network
which interactively learns with the student network to gen-
erate adversarial examples x∗S of the student network S as
depicted in Fig. 2(a). The adversarial examples x∗S are
generated with PGD [28] by finding the gradients of input
which increases the KL divergence between the prediction
of the peer model and the student model on the training
data. With peer tutoring, the peer model provides the ap-
proximated label distribution to the student model. The la-
bel distribution provides information on non-target classes
which is not contained in the hard label. The peer model
also does not suffer from the degradation in the natural ac-
curacy, which will be discussed in Sec. 4.4.

Outer minimization. Previous approaches [19, 45, 46]
used the prediction of pre-trained teachers to distill better
robustness. However, the teacher models are adversarially
pretrained with adversarial examples aimed at themselves.
The teacher model has never seen adversarial examples of
the student network during the pretraining process.

On the other hand, PeerAiD trains the peer network and
the student network simultaneously with the same adversar-
ial examples x∗S generated from the student network as illus-
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trated in Fig. 2(b). The main reason PeerAiD uses the adver-
sarial examples x∗S generated from a student network is to
make peer network robust to the adversarial examples of the
student network. Though many previous works focused on
the transferability of the adversarial examples among neu-
ral networks, we found that it is not necessarily true that
adversarial examples have large similarities and small dis-
tances. Therefore, we can build the peer network which is
specialized in being robust to the adversarial examples of
the student network while not being robust to the adversar-
ial examples of itself. We further describe this in Sec. 4.4.
Note that the ultimate goal of our novel outer minimization
process is to build a robust student network and not a robust
peer network. Surprisingly, we find that the peer network
is not robust at all to the adversarial examples aimed at it-
self while being robust to the adversarial examples of the
student network.

Loss function. To provide the soft label in inner max-
imization, we use the prediction of the peer model on the
natural samples. KL divergence loss is used to find the ad-
versarial examples maximizing the discrepancy between the
prediction of the peer model on natural images and the pre-
diction of the student model on the adversarial examples :

Lmax = KL(Pt(x)||S t(x̃)) (2)

where P(·) and S (·) denote the prediction output of a peer
model and a student model, respectively. We use the sub-
script t to denote the training iteration and highlight the peer
network is not fixed in the process of adversarial distillation
compared to other baselines. x̃ is the adversarial examples
which should satisfy the constraint on the magnitude of the
perturbation as described in Eq. (1).

In outer minimization, the loss of the peer model consists
of Cross Entropy (CE) loss and KL divergence loss.

Lpeer = γ1 ∗H(y, Pt(x∗S ))+γ2 ∗τ
2 ∗KL(S τt (x∗S )||Pτt (x∗S )) (3)

where τ is a temperature parameter that smooths the out-
put of a softmax layer. The key aspect is that the peer is
trained using samples adversarial to the student (x∗S ). The
cross-entropy (CE) loss H is intended to make the peer
model learn the label distribution of adversarial examples
x∗S with the hard label, which provides the consistent guid-
ance. The KL divergence loss of a peer model is to distill the
knowledge of a student model, which provides the learned
probability distribution of non-target classes by the student
model.

The loss of the student model also consists of the cross
entropy loss and KL divergence loss. However, it also has
an additional regularization term which prevents the large
discrepancy between the prediction on natural images and
adversarial examples [41]. The soft label provided by the
peer model is treated as the constant soft target in the loss
of the student model.

Lstudent = λ1 ∗ H(y, S t(x∗s))

+ λ2 ∗ τ
2 ∗ KL(Pτt (x∗s)||S

τ
t (x∗s))

+ λ3 ∗ τ
2 ∗ KL(S τt (x)||S τt (x∗s))

(4)

Then, Lmin is the sum of Lpeer and Lstudent. The parame-
ters of the two models are optimized simultaneously.

Lmin = Lpeer + Lstudent (5)

4. Experimental Results
4.1. Experiment Settings

CIFAR-10 and CIFAR-100 [22]. For all the baselines [7,
19, 25, 28, 41, 45, 46] results, we trained the baselines
following their original settings. For PeerAiD results, we
followed the training setting of [46]. In detail, we trained
PeerAiD for 300 epochs and the training batch size is 128.
The learning rate is 1e − 1 and it decays at epochs of 215,
260, and 285 by a factor of 10. The weight decay is 2e − 4.
We applied weight averaging to PeerAiD and AKD2 follow-
ing [7] for a fair comparison. The detailed hyperparameters
can be found in the supplementary materials.

TinyImageNet [23]. We follow the hyperparameters of
[7, 45] for the baselines. For PeerAiD, we trained ResNet-
18 [17] with 200 epochs and WideResNet34-10 [40] with
100 epochs. The total batch size is 128. We use the SGD
optimizer with 0.9 momentum and the weight decay 2e− 4.
The initial learning rate is set to 1e − 1 and decays at epoch
100 and 150 for ResNet-18, and at epoch 50 and 80 for
WideResNet34-10 by a factor of 10. We applied weight av-
eraging to PeerAiD and AKD2 following [7] for a fair com-
parison. For more details, please refer to the supplementary
materials.

Evaluation metrics. We tested the white-box robustness
of the baselines and PeerAiD. We report the best robust ac-
curacy validated by PGD-10 [28] with a step size of 2/255
and a perturbation budget of ϵ = 8/255. Only the non-
robust model, which is denoted by Natural was chosen by
the best natural accuracy because it is not robust at all in
the course of training. PGD-20 attack was conducted with a
step size of 2/255 and a perturbation budget of ϵ = 8/255.
FGSM [14] attack also used the same perturbation budget as
PGD. However, these attacks are not perfect for checking
the robustness of a model because it is vulnerable to gra-
dient obfuscation [3]. AutoAttack (AA) [8] is prevalently
regarded as the strongest attack. It includes targeted, untar-
geted PGD attacks and black-box score-based attacks [2].

Teacher models of baselines. In adversarial distilla-
tion, the performance of the student model also depends
on the teacher model. The larger models usually show bet-
ter robustness than the smaller ones [28], so we used the
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Dataset Method ResNet-18 WideResNet34-10
Clean FGSM PGD-20 AA Clean FGSM PGD-20 AA

CIFAR-10

Natural 95.42 35.74 0.00 0.00 96.08 45.92 0.00 0.00
PGD-AT 84.21 56.93 49.71 46.79 86.27 57.69 49.94 48.07
TRADES 81.47 57.75 52.92 49.35 84.48 60.07 54.33 51.88
AKD2 83.99 59.52 53.72 50.12 87.83 64.14 56.68 54.25
RSLAD 81.00 58.65 54.40 51.03 83.80 61.48 55.25 52.37
IAD 80.63 58.13 53.43 49.88 83.51 60.91 54.33 51.89
CAT 82.40 58.56 53.39 50.06 86.40 63.66 56.77 54.17
AdaAD 81.41 57.45 53.51 50.08 84.49 60.65 55.98 53.38
PeerAiD 85.01 61.28 54.36 52.57 85.64 63.40 56.81 55.21

CIFAR-100

Natural 75.48 8.70 0.00 0.00 79.68 12.58 0.04 0.00
PGD-AT 57.30 28.47 24.15 21.84 59.57 30.17 25.73 23.99
TRADES 54.90 30.93 28.29 23.69 55.70 32.53 30.02 26.07
AKD2 58.84 33.07 30.33 25.83 61.83 36.40 33.20 28.88
RSLAD 55.45 33.11 30.78 25.96 57.42 33.95 30.75 27.20
IAD 54.98 32.87 30.28 25.44 57.92 34.30 31.47 27.55
CAT 57.81 33.94 31.44 25.93 61.68 36.82 32.95 28.39
AdaAD 56.08 31.79 29.76 25.03 57.99 34.03 31.89 27.88
PeerAiD 59.35 34.41 29.69 27.33 61.33 37.08 32.39 30.06

TinyImageNet

Natural 64.74 1.65 0.02 0.00 68.81 2.32 0.02 0.00
PGD-AT 46.25 24.47 22.53 17.80 51.10 27.50 24.83 20.57
TRADES 48.87 24.64 22.31 16.90 52.49 27.61 25.36 19.67
AKD2 50.47 27.25 25.12 20.01 54.82 31.83 29.33 24.09
RSLAD 43.19 24.61 22.92 17.17 51.06 30.28 28.35 22.80
IAD 47.67 26.11 23.86 18.88 45.96 27.15 25.72 20.80
CAT 40.66 23.19 22.06 15.19 40.85 24.78 23.20 16.76
AdaAD 49.97 25.79 23.98 18.16 52.22 28.32 26.53 21.13
PeerAiD 55.19 29.42 26.10 21.67 58.07 33.04 29.51 24.82

Table 1. The white-box robustness under various attack methods.

same or larger teacher network than a student in the evalua-
tion. Without mention, the same architecture of the teacher
model is used for AD as a default. We adversarially trained
the robust teacher model using TRADES [41] as the teacher
model because it shows better robustness than PGD Adver-
sarial Training (PGD-AT) [28]. We mainly evaluated with
ResNet-18 [17] and WideResNet34-10 [40], which are rep-
resentative models in the adversarial robustness community.

4.2. Adversarial Robustness Result

Tab. 1 reports the white-box robustness of various baselines
and PeerAiD. AutoAttack [8] is the most reliable metric
because many gradient-based attacks (FGSM and PGD at-
tacks) are vulnerable to gradient obfuscation and give a false
sense of security [3]. PeerAiD shows higher AutoAttack ac-
curacy than all the baselines from 0.73%p to 1.66%p, and
surpasses the clean accuracy of the other adversarial dis-
tillation baselines by up to 4.72%p. The improvement in
PeerAiD is more significant with ResNet-18 compared to
WideResNet34-10. This is a favorable result in adversar-
ial distillation settings because the distillation is often con-
ducted to improve the robustness of a small model. Overall,
PeerAiD provides a much better trade-off between the clean
accuracy and the robust accuracy than the other adversarial
distillation baselines. The effect of PeerAiD is not limited
to small-scale datasets and small models because PeerAiD
also improves the result of large-scale dataset TinyImagenet
with WideResNet34-10. In Sec. 4.5, we conduct an ablation
on weight averaging which is applied to AKD2 and PeerAiD
by applying it to the other baselines. We include the results

of the transfer-based attack and gradient obfuscation tests in
Sec. 4.7 to exclude the possibility of gradient obfuscation.

4.3. Effectiveness of Peer Tutoring

In Fig. 3, we plotted the training and test robust accuracy
curves of each model against the adversarial examples x∗s
generated from a student model to show the effectiveness of
peer tutoring. The pretrained teacher model is adversarially
trained beforehand with PGD-10. The peer model is simul-
taneously trained with the student model with the loss of
Eq. (3). For an ablation study, we applied the same training
loss to the student model with Eq. (4) regardless of whether
it is distilled by the pretrained robust teacher or the peer
model.

There are distinct patterns with peer teaching com-
pared to the training with the pretrained teacher model.
In Fig. 3(a), the test robust accuracy of the peer network
against x∗S (orange) jumps up at the early epoch of adversar-
ial distillation. Then it experiences an additional jump right
after the learning rate decay at epoch 215. However, the test
robust accuracy of the pretrained model against x∗S (green)
keeps decreasing after the initial epoch of the training. This
degradation in the robust accuracy of the pretrained teacher
model is due to the increasing complexity of the adversar-
ial examples generated from a student model as the student
model becomes robust along the adversarial training [45].

The improvement that comes from peer teaching can be
explained by the empirical robustness that the peer model
attained during the adversarial distillation. In Fig. 3(b), the
train robust accuracy of the peer model with the adversar-
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(b) Train robust accuracy with student-generated adversarial examples.

Figure 3. Robust accuracy against student-generated adversarial examples x∗s . Test (a) and train (b) robust accuracy are presented. ResNet-
18 is used to measure the robust accuracy with CIFAR-100.

f Clean f (x) Rob f (x∗f ) Rob f (x∗S ) RobS (x∗S ) cos( f (x), f (x∗S )) cos( f (x∗S ), f (x∗f )) cos( f (x), f (x∗f ))

Peer tutor (ours) 75.63 0.00 69.19 29.69 0.95 0.37 0.35
Pretrained robust teacher 57.30 24.15 39.46 24.48 0.96 0.97 0.96

Naturally pretrained teacher 75.48 0.00 43.05 14.39 0.80 0.47 0.41

Table 2. The relationship between the cosine similarities of the penultimate layer representation measured with ResNet-18 on CIFAR-100.
Rob f (·) denotes the robust accuracy of f . S denotes the student network. Clean f (x) means the clean accuracy of f on natural samples.

ial examples x∗S (orange) increases because the peer model
learns x∗S directly and the weak part of the student model.
After the first learning decay at epoch 215, the train ro-
bust accuracy of the student keeps increasing. However,
the pretrained teacher suffers from the distribution shift be-
tween the adversarial examples it learned during adversarial
training and the transferred adversarial examples x∗S in the
process of the adversarial distillation. Therefore, the train-
ing robust accuracy of the pretrained teacher model on x∗S
(green) keeps decreasing as illustrated in Fig. 3(b).

4.4. Robustness of Peer Network

In PeerAiD, the peer model plays the role of guiding stu-
dent models in both the inner maximization and outer min-
imization process. As shown in Tab. 2, we found that this
peer model is specialized in defending the attack samples
x∗S generated from the student model. This peer model has
higher robust accuracy against x∗S (Rob f (x∗S )) than the pre-
trained robust model. However, notably, this peer network
is not robust at all, and its robust accuracy against itself with
PGD-20 (Rob f (x∗f )) is 0% as illustrated in Tab. 2.

In Tab. 2, we also measured the cosine similarity be-
tween adversarial examples and natural examples in the fea-
ture space. We intend to find how the peer model can pro-
vide reliable guidance to the student model while it is not
robust at all against the adversarial examples aimed at it-
self. The peer model shows a comparable cosine similarity
between natural samples x and x∗S in the features space com-
pared to the pre-trained robust teacher. It embeds x∗S around
x and this is the desirable property of the robust model be-
cause the robust model is expected to make the prediction
on the adversarial examples equal to the natural samples.

Method Clean FGSM PGD-20 AA

Natural+SWA 67.42 2.22 0.04 0.00
PGD-AT+SWA 49.10 26.32 23.95 19.46
TRADES+SWA 50.22 26.10 23.79 18.47
RSLAD+SWA 42.13 24.33 22.99 17.32
IAD+SWA 48.70 26.94 24.88 19.62
CAT+SWA 38.13 22.13 20.99 14.53
AdaAD+SWA 50.41 25.81 24.20 18.43
PeerAiD w/o SWA 54.01 28.21 25.13 20.00
PeerAiD 55.19 29.42 26.10 21.67

Table 3. Ablation of SWA with ResNet-18 on TinyImageNet

However, the peer model has much higher natural accu-
racy which even slightly surpasses the naturally pretrained
teacher. The peer model achieves a natural accuracy of
75.63%, significantly higher than the 57.30% achieved by
the pretrained teacher model. This superior performance the
peer model shows with natural examples and x∗S implies that
it is a better approximator for the label distribution of natu-
ral samples and x∗S than the pretrained robust teacher model.
The pretrained robust teacher inevitably suffers from the
degradation in the natural accuracy compared to the stan-
dard training due to the trade-off between the clean accu-
racy and the robust accuracy [31, 36, 41], whereas the peer
model does not experience this trade-off.

4.5. Ablation on Weight Averaging

We include the ablation of Stochastic Weight Averaging
(SWA) to check the effectiveness of PeerAiD without SWA.
In Tab. 3, PeerAiD without SWA shows the higher clean
accuracy than adversarial training baselines which incorpo-
rate SWA by up to 3.6%p, while also exhibiting superior
robust accuracy with ResNet-18 on TinyImageNet. We ap-
plied weight averaging to the baselines following [7], which
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Method Clean FGSM PGD20 AA
AKD2 57.33 32.89 30.26 25.69
RSLAD 55.39 32.21 29.29 24.49
IAD 55.51 31.44 28.54 24.41
CAT 56.61 34.06 31.16 25.50
AdaAD 56.72 31.95 29.01 24.86
PeerAiD 57.63 34.33 30.17 26.99

Table 4. CIFAR-100 robust accuracy of ResNet-18 with WRN34-
10 teacher (peer) model.

Method Clean FGSM PGD20 AA
AKD2 82.75 57.03 52.68 48.45
RSLAD 79.91 57.25 53.54 49.85
IAD 80.15 57.97 53.23 49.10
CAT 77.22 53.13 49.37 45.17
AdaAD 79.81 54.81 51.21 47.59
PeerAiD 82.41 57.43 52.00 50.02

Table 5. CIFAR-10 Robust accuracy of MobileNetV2.

applies SWA from the epoch of the first learning rate decay
to the last epoch. SWA also increases the robust accuracy
of the adversarial training baselines except for CAT. The re-
sults in Tab. 3 indicate that SWA is not an essential part of
PeerAiD but complements it.

4.6. Teacher Sensitivity

Some works [7, 25, 45] assume a situation where a teacher
model and a student model have the same capacity. How-
ever, other approaches [19, 46] chose a larger teacher model
than a student model to measure its effectiveness. For a
fair comparison, we also tested the effectiveness of PeerAiD
with the large teacher (peer) model on CIFAR-100 dataset.
In Tab. 4, the teacher (peer) model is WideResNet34-10,
and the student model is ResNet-18.

We observed that the student model trained with
PeerAiD still maintains improved performance compared to
the baselines with a large teacher model. These results sup-
port the proposed method of PeerAiD is not limited to the
case when the peer network has to be the same architecture.
In Tab. 5, we also tested the effectiveness of PeerAiD with
MobileNetV2 [33] on CIFAR-10, a widely used neural net-
work in distillation settings. PeerAiD also shows the high-
est AutoAttack accuracy and better tradeoff between the ro-
bustness and the clean accuracy with MobileNetV2.

4.7. Gradient Obfuscation Test

It has been highlighted that any robust model should be se-
cure against transfer-based attacks [3, 6, 32]. Therefore, it
must be checked whether PeerAiD shows robustness against
transfer-based attacks. Here, we train two surrogate mod-
els, which are ResNet-34 [17] and MobileNetV2 [33] with
PGD-10 adversarial training [28]. The training setting is
the same as the PGD-AT baseline in Sec. 4.1. We trans-
ferred the adversarial examples generated from these two

Surrogate ResNet-34 MobileNetV2
Method FGSM PGD20 FGSM PGD20

PGD-AT 38.54 37.11 38.62 37.08
TRADES 38.84 38.02 38.16 37.34
AKD2 40.95 39.77 38.89 37.88
RSLAD 40.12 39.29 38.85 37.82
IAD 39.63 38.81 39.16 37.97
CAT 42.38 41.66 39.46 38.42
AdaAD 39.24 38.30 38.60 37.27
PeerAiD 44.23 43.61 42.15 40.73

Table 6. Checking gradient obfuscation by measuring the ro-
bust accuracy of ResNet-18 on CIFAR-100 dataset under transfer-
based attacks.

Dataset Model PGD-10 PGD-1K ϵ = ∞

CIFAR-10 ResNet-18 55.54 53.94 0.00
WRN34-10 57.89 56.43 0.00

CIFAR-100 ResNet-18 30.66 29.36 0.00
WRN34-10 33.24 31.99 0.00

TinyImageNet ResNet-18 26.34 25.86 0.00
WRN34-10 29.99 29.34 0.00

Table 7. Obfuscated gradient test results proposed in [3].

surrogate models to ResNet-18 which is trained by each
method. FGSM and PGD-20 were used to create adversar-
ial examples and the robust accuracy of models trained by
each method are described in Tab. 6 It shows that PeerAiD
is more robust than baselines against transfer-based attacks.

It is also known that previous works on adversarial train-
ing actually rely on the obfuscated gradient, giving a false
sense of security [3]. We conducted the gradient obfus-
cation test mentioned in [3]. First, the robust accuracy of
PeerAiD against PGD-10 is similar to the robust accuracy
against PGD-1K in Tab. 7. Second, the unbounded attack on
PeerAiD successfully reaches 0% robust accuracy in Tab. 7.
Third, Tab. 1 shows that the success rate of a one-step at-
tack is lower than PGD-20 with PeerAiD. It implies that
the inner maximization process is not stuck in a local solu-
tion. Lastly, AutoAttack [8] includes SQUARE attack [2],
a black-box score-based attack. Therefore, the above results
exclude the possibility of gradient obfuscation in PeerAiD.

4.8. Loss Landscape Visualization

Prior works [38] found that a flat loss landscape is favor-
able to the generalization of neural networks. [12] showed
that a sharp loss landscape causes a big difference between
training and test distribution. Especially in the context of
adversarial robustness, previous works [7] showed that a
flatter loss landscape helps to mitigate robust overfitting. In
this regard, many previous works about adversarial robust-
ness [7, 19, 21, 26, 38] showed that their method makes the
loss landscape flatter as expected. The loss landscape of
PeerAiD also coincides with these arguments. In Fig. 4, we
visualize the loss landscape in weight space. Compared to
PeerAiD, the loss landscape of PGD-AT and TRADES is
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(a) PGD-AT (b) TRADES (c) PeerAiD (Ours)

Figure 4. Comparison of weight loss landscape visualization [24]
between baselines [28, 41] and PeerAiD. The WRN34-10 [40]
model trained with CIFAR-100 by each method is perturbed along
a random direction within the range of [−0.75, 0.75]. The vertical
axis z denotes the loss value.

Figure 5. t-SNE results of the penultimate layer representation
with the pretrained robust teacher model and PeerAiD.

sharper than the one of PeerAiD. The flat loss landscape of
PeerAiD explains the generalization ability and the adver-
sarial robustness of the student network against the adver-
sarial examples generated from the unseen test dataset.

4.9. Visualization of Feature Representation

In Fig. 5, we visualize the feature representation of the
teacher (peer) model with the adversarial examples x∗S gen-
erated from the student model. Two ResNet-18 are ad-
versarially pretrained with PGD-AT and TRADES, respec-
tively. Three classes from CIFAR-10 are randomly chosen
for better visualization. The peer model trained by PeerAiD
has a better ability to embed the natural examples and trans-
ferred adversarial examples x∗S because it clearly separates
one class from other classes in Fig. 5, which is consistent
with Sec. 4.4. On the other hand, the feature representation
of the pre-trained robust teacher model shows more over-
laps among classes.

4.10. Visualization of Semantic Gradients

It is generally perceived that adversarially robust models
show semantic or interpretable gradient with respect to in-
puts ∇xL [31, 34, 36]. We observe the same phenomenon
with the student model trained by PeerAiD in Fig. 6. We
visualized the semantic gradient of three models (student,
peer, and non-robust model) to find distinct patterns among
models with TinyImageNet dataset and ResNet-18.

In the second column of Fig. 6, pixels along the edge of
the objects in the pictures have a large magnitude of gradi-
ents with respect to input with the student model. It indi-

Natural
Image

Student
Model

Peer
Model

Naturally
Trained Model

Figure 6. Visualization of semantic gradients. We attack each
model and get gradients ∇xL. Within the same attacked model, we
clip pixels to ±3 standard deviations and sum the absolute pixel
values across channels. We scale the values to [0,1].

cates that the edge or unique pattern of the object needs to
be attacked to fool the robust student model [37]. In con-
trast, the last column shows that the high-magnitude gra-
dients are spread across broad regions, showing that non-
robust models can be easily fooled by attacking any pixels.
Note that the values in Fig. 6 are normalized individually
within each column of the same model, and their bright-
ness cannot be directly compared between columns. In the
third column of Fig. 6, we also observe an interesting pat-
tern of the gradient of inputs with the peer model trained
with PeerAiD. Although the peer model is not robust at all
against the adversarial examples aimed at itself as illustrated
in Tab. 2, the gradient of input coming from the peer model
also exhibits a similar pattern to the student model. This
can be interpreted as the peer model has some knowledge
of defense similar to the student model.

5. Conclusion
We propose a novel online adversarial distillation method
PeerAiD which significantly boosts the robust accuracy. We
found that it is possible to build a peer model not being ro-
bust at all against the white-box attack while being much
more robust to the attack examples of the student network.
The peer network is specialized in defending the attack sam-
ples of the student network and this leads to the more reli-
able guidance of the peer network than the pretrained robust
model used in conventional methods. With peer tutoring,
we improved both the robust accuracy and natural accuracy
of the student network compared to various baselines.
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