
SPOT: Self-Training with Patch-Order Permutation for
Object-Centric Learning with Autoregressive Transformers

Ioannis Kakogeorgiou1 Spyros Gidaris2 Konstantinos Karantzalos1 Nikos Komodakis3,4,5

1National Technical University of Athens 2valeo.ai
3University of Crete 4IACM-Forth 5Archimedes/Athena RC

Figure 1. SPOT: Our novel framework enhances unsupervised object-centric learning in slot-based autoencoders using self-training and
sequence permutations in the transformer decoder. It improves object-specific slot generation, excelling in complex real-world images.

Abstract

Unsupervised object-centric learning aims to decom-
pose scenes into interpretable object entities, termed slots.
Slot-based auto-encoders stand out as a prominent method
for this task. Within them, crucial aspects include guid-
ing the encoder to generate object-specific slots and ensur-
ing the decoder utilizes them during reconstruction. This
work introduces two novel techniques, (i) an attention-
based self-training approach, which distills superior slot-
based attention masks from the decoder to the encoder, en-
hancing object segmentation, and (ii) an innovative patch-
order permutation strategy for autoregressive transform-
ers that strengthens the role of slot vectors in reconstruc-
tion. The effectiveness of these strategies is showcased
experimentally. The combined approach significantly sur-
passes prior slot-based autoencoder methods in unsuper-
vised object segmentation, especially with complex real-
world images. We provide the implementation code at
https://github.com/gkakogeorgiou/spot.

1. Introduction
Decomposing a scene into separate objects is crucial for AI
progress. While current AI methods often use labeled seg-
mentations or diverse signals like text, video, motion, or
depth, humans can typically achieve scene decomposition

with visual cues alone. Unsupervised object-centric learn-
ing, inspired by human abilities and utilizing abundant un-
labeled image data, seeks to represent a scene as a compo-
sition of distinct objects using only visual information.

Auto-encoding-based frameworks stand at the forefront
of object-centric learning approaches [6, 14, 15, 17, 32, 34,
36, 37, 44]. Here, the emergence of object-centric repre-
sentations is enabled due to architectural inductive biases
such as the use of bottleneck modules that force the network
to prioritize the encoding of salient object features. Their
simple design, combined with the ability to operate unsu-
pervised, makes them a standout choice. One notable ad-
vance in this regard involves approaches employing ‘slot’-
structured bottlenecks [34, 41, 44]. These auto-encoders,
characterized by their slot-based architecture, consist of two
core components. First is the encoder, responsible for trans-
forming input data into a set of latent vectors referred to
as ‘slots’, each intended to represent an individual object
within an image. The second is the decoder, burdened with
the challenging task of reconstructing the input based on
information derived from the extracted slots, guiding the
learning of object-centric representations.

To advance this paradigm, our work introduces SPOT – a
dual-stage strategy designed to elevate object-centric learn-
ing so as to more effectively handle complex real-world
images, which is one of the pivotal challenges in this do-
main [65]. SPOT aims to refine both components of slot-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22776

based auto-encoders, enhancing both the encoder’s preci-
sion in generating object-specific ‘slots’ and the decoder’s
ability to utilize these slots during reconstruction. To that
end, it makes two key technical advancements.

Improving slot generation through self-training. The
encoding of object-specific information into the slots is
achieved through an iterative attention mechanism that
forces slots to compete over image patches. This compe-
tition leads to the generation of slot-based attention masks
that indicate the association of each image patch with a spe-
cific slot [34, 41]. Besides the encoder, slot-based attention
masks are also generated at the decoder side. For autore-
gressive transformer decoders [41, 44], these are produced
by the cross-attention module between each output patch
and the extracted slots. Empirically, we observe that masks
produced during decoding demonstrate superior object de-
composition, i.e., better object segmentation, compared to
those from encoding [41]. Building on this insight, we pro-
pose a self-training scheme that distills slot-based attention
masks from the decoder to the encoder, thereby enhancing
the object segmentation information captured by the slots.

Enhanced autoregressive decoders with sequence
permutations. Object-centric models commonly utilize
weak slot-wise MLP decoders [54]. Drawing inspiration
from large language models [5], Singh et al [44] propose
the adoption of more expressive autoregressive transformer
decoders in the context of object-centric learning [44, 45],
surpassing the performance of MLP-based counterparts.
Moreover, multiple studies have underscored the impor-
tance of increasing decoder capacity to effectively apply
object-centric learning to complex scenes [8, 22, 24, 41, 46,
59, 60]. However, autoregressive transformer models may
face overfitting challenges, particularly when accustomed
to teacher-forcing training [58], relying excessively on past
ground-truth tokens. This tendency leads them to neglect
slot vectors, offering weaker and less robust supervisory
signals for their learning. To mitigate this, we propose the
introduction of sequence permutations, altering the autore-
gressive transformer’s prediction order. This modification
amplifies the role of slot vectors in the reconstruction pro-
cess, resulting in improved object-centric representations.

In summary, our contributions are threefold: (1) We en-
hance unsupervised object-centric learning in slot-based au-
toencoders by introducing self-training. This involves dis-
tilling slot-attention masks from the initially trained teacher
model’s decoder to the slot-attention module of the student
model, thereby improving precision in generating object-
specific slots. (2) We amplify the role of slot vectors in
the reconstruction process by introducing sequence permu-
tations that alter the prediction order of the autoregressive
transformer decoder. This modification leads to a more ro-
bust supervisory signal for object-centric learning. (3) Em-
pirical evidence demonstrates the synergistic effectiveness

of the above strategies. The combined approach forms the
SPOT framework, significantly outperforming prior slot-
based autoencoder methods in unsupervised object segmen-
tation, particularly with complex real-world images.

2. Related work

Unsupervised object-centric learning aims to decom-
pose multi-object scenes into meaningful object entities.
Previous studies utilize auto-encoding frameworks [6, 14,
15, 17, 32, 34, 36, 37, 44], with slot-attention bottle-
necks [34] emerging as a prominent paradigm. Despite their
notability, early object-centric models struggle with com-
plex (real-world) scenes [25, 65]. To address this, some
methods focus on improving precision and stability of the
encoder’s slot-attention module [8, 23, 26, 29, 47], em-
ploying bi-level optimization [8, 23], architectural modi-
fications [26, 29], or regularization losses [47]. Another
line of work focuses on designing a decoder that supports
good decomposition [24, 44, 60], where SLATE [44] uti-
lizes an autoregressive transformer decoder, and others pro-
pose diffusion-based methods [24, 60]. DINOSAUR [41]
uses self-supervised pre-trained features as reconstruction
targets, proving more effective in complex scenes. Ad-
ditionally, some works extend slot-based auto-encoders to
exploit video data [1, 28, 45, 49, 56, 67], motion [3, 4],
depth [13], or text [61]. Our work also aims at improving
the effectiveness of object centric learning in handling com-
plex real-world data but does so using static images and is
thus complementary to the above approaches.

Furthermore, object-centric learning has been explored
through contrastive frameworks [2, 20, 21, 35, 57], primar-
ily for pre-training representations.

Autoregressive transformer decoders [52] excel in natu-
ral language processing [5, 48, 66] and have recently proven
effective in computer vision, exemplified by models like
iGPT [9]. Notably, SLATE [44] and STEVE [45] have ap-
plied them to object-centric learning, highlighting their ef-
ficacy in handling intricate visual scenes. However, despite
their success, autoregressive transformers face training sta-
bility challenges in object-centric learning, potentially due
to their high capacity [41]. They tend to overly depend on
past ground-truth tokens, neglecting input from the encoder,
as observed in pretraining image encoders with image cap-
tion tasks [50]. In our analysis, we validate this issue in
the context of object-centric learning and propose a simple
patch-order permutation strategy, which is very easy to in-
tegrate with existing autoregressive transformer models.

Self-training approaches refine models using their own
predictions on unlabeled data, enhancing the training set.
They are widely used in semi-supervised learning for
tasks like image classification [55, 62], semantic segmen-
tation [12, 63, 68], and object detection [39, 51, 64], as

22777

well as in unsupervised domain adaptation [33, 38, 69]
and unsupervised localization [42, 43, 53]. Additionally,
they enhance performance in supervised classification. This
work introduces self-training to the domain of unsupervised
object-centric learning, demonstrating its notable effective-
ness in this specific context.

3. Method

Slot-based auto-encoders. Following the common prac-
tice in object-centric learning, we use a slot-based auto-
encoding framework [34]. This framework’s encoder con-
sists of two modules: an image encoder extracting n patch-
wise features from image X and a slot-attention module
that groups these features into k < n latent vectors U =
(u1; . . . ;uk) ∈ Rk×du referred to as ‘slots’, each represent-
ing an object in the image. The decoder aims to reconstruct
a target signal, such as the original image X , from these slot
vectors. Here, following DINOSAUR [41], we employ self-
supervised pre-trained feature encoders (e.g., DINO [7]) for
instantiating the image encoder as well as extracting the re-
construction targets. Defining Y, Ŷ ∈ Rn×dy as the target
features and the predicted reconstructions, respectively, the
model is trained by minimizing the reconstruction loss:

LREC =
1

n · dy
||Y − Ŷ ||22. (1)

Defining the reconstruction task with high-level features
provides a valuable training signal for learning object-
centric representations from real-world data [41].
Auto-regressive transformer decoders. A crucial el-
ement in slot-based auto-encoders is the decoder’s de-
sign [24, 44, 45, 60]. Here, we employ an autoregressive
transformer [52] as our decoder. Autoregressive transform-
ers predict the feature ŷi at position i based on prior tar-
get features Y<i and slots U . This prediction is jointly per-
formed for all token positions using teacher-forcing1:

Ŷ = DECODER(Y<;U), (2)

where Y< ∈ Rn×dy is the decoder’s input, consisting of
target features Y right-shifted by one position (excluding
the last token), with a learnable Beginning-Of-Sentence
([BOS]) token prepended: Y< = (y[BOS];y1; . . . ;yn−1).
The decoder is composed of a sequence of transformer
blocks [52], each incorporating a causal self-attention layer
(to avoid attending to ‘future’ tokens), a patch-to-slot cross-
attention layer allowing to utilize information from slot vec-
tors U , and a feed-forward layer (see Fig. 5).
Objective. The primary objective of slot-based auto-
encoders is to decompose the input image into its individ-
ual objects. This is typically evaluated by examining masks

1While joint prediction is typically a training-only practice, in our con-
text, is extended to testing due to the availability of target features.

linked to each slot, indicating the association of each im-
age patch with a specific slot / object. These masks, called
slot-attention masks, can be derived from either the slot-
attention module or the employed decoder.

In this work, we present SPOT, a novel two-stage train-
ing method that enhances object-centric learning on real-
world data through self-training (Sec. 3.1) and sequence
permutation in the autoregressive decoder (Sec. 3.2).

3.1. Self-training via slot-attention distillation

We use the matrix A ∈ [0, 1]n×k to denote slot attention
masks. Each row of A is a probability distribution in a k-
dimensional simplex, indicating the assignment of each im-
age patch to k slots. As previously outlined, we can derive
slot-attention masks from two places:

Slot-attention module. This module employs an iterative
attention-based approach that begins with the initial
query slot vectors Ũ to produce the output slot vectors
U . At its core, the module incorporates a modified slot-
to-patch cross-attention layer. The slot attention mod-
ule’s matrix A is derived from this layer, specifically
from the last iteration’s cross-attention map

ASLOT = SOFTMAX

(
QEK

⊤
E√

dp

)⊤

∈ Rn×k, (3)

where KE ∈ Rn×dp are keys computed from the patch-
wise features extracted by the image encoder from the
input image X , and QE ∈ Rk×dp are queries com-
puted from slot vectors of the previous iteration. The
SOFTMAX is applied along the slots dimension to en-
force competition. The initial slots vectors Ũ are ei-
ther independently sampled from a Gaussian distribu-
tion [34] or are trainable parameters [23].

Decoder module. As mentioned earlier, transformer-based
decoders incorporate patch-to-slot cross-attention layers
for leveraging information from slot vectors U . Here the
attention masks A, denoted as ADEC ∈ Rn×k, are com-
puted as the average (across H heads) of patch-to-slot
cross-attention maps from the final transformer layer:

ADEC =
1

H

H∑
j=1

SOFTMAX

(
QjK

⊤
j√

dh

)
, (4)

where Kj ∈ Rk×dh are keys computed from the slots
U , and Qj ∈ Rn×dh are queries computed from the
transformed (from previous layers) decoder input Y<.
The SOFTMAX is applied along the dimension of slots.

In our empirical analysis of the attention masks from
these two modules (see Tab. 1 entry (a) in Sec. 4), we
note that the decoder masks exhibit superior performance

22778

Encoder
Image

Slot
Attention Decoder

STUDENT

TEACHER

Encoder
Slot

Attention Decoder

Hungarian
matching

Scene
decomposition

Figure 2. Enhancing unsupervised object-centric learning via self-training. Our two-stage approach starts with exclusive training in the
initial stage (not depicted) using the reconstruction loss LREC. In the following stage, shown here, a teacher-student framework is applied.
The teacher model, trained in the first stage, guides the student model with an additional loss LATT, distilling attention masks ADEC from
the teacher’s decoder to the slot-attention masks ASLOT in the student’s encoder.

in grouping patches into object-centric slots. This observa-
tion aligns with the findings reported by Seitzer et al. [41].

Two-stage training with slot-attention distillation. Mo-
tivated by this observation, we propose to improve the
slot-attention module with a self-training scheme depicted
in Fig. 2. Our training approach involves two stages. In
the initial stage, the model is trained exclusively using the
LREC loss. In the second stage, we employ a teacher-
student framework. The pre-trained model serves as the
teacher, guiding the training of a new model (referred to
as the student) with an additional loss LATT that distills at-
tention masks ADEC from the teacher’s decoder, denoted as
AT , to the attentions masks ASLOT of the student’s encoder,
denoted as AS .

This distillation enhances the grouping capability of the
student’s slot-attention module, resulting in improved slot
representations.

Slot-attention distillation loss LATT. To distill the
teacher’s attention masks AT to the student, we first con-
vert them from soft to hard-assignment masks by applying
row-wise to AT the argmax and one-hot operators:

A′
T = one-hot(argmax(AT)) ∈ {0, 1}n×k. (5)

Then, we use Hungarian matching [30] to map the k slots
in the teacher’s masks A′

T with the k slots in the student’s
masks AS , using the IoU between the masks as cost func-
tion. The matching process results in the A′′

T masks. Fi-
nally, we apply the cross-entropy loss between A′′

T and AS :

LATT =
1

n
⟨A′′

T , log(AS)⟩F , (6)

where ⟨·, ·⟩F denotes the Frobenius inner product.
The total training loss in the second training stage is

L = LREC + λLATT, (7)

where λ is the loss weight of the distillation objective.
Stabilizing image encoder training with LATT. We em-
ploy self-supervised pre-trained Vision Transformer [11]
(ViT) models as image encoders, empirically shown to
achieve superior object-centric learning results [41]. During
the first training stage, it is crucial, as emphasized in [41],
to keep the ViT image encoder frozen for training stability
to achieve good results. Our analysis in Sec. 4.2 reveals an
additional advantage of the self-training loss: serving as a
stabilization factor, it facilitates fine-tuning of ViT in the
second training stage, maximizing its learning capacity. We
attribute this stabilizing effect to the self-training loss ex-
plicitly guiding the encoder to generate object-specific slot
masks, in contrast to the reconstruction loss LREC.

3.2. Autoregressive transformer decoder with se-
quence permutations

Autoregressive transformer decoders outperform simpler
MLPs with spatial-broadcasting decoders [41], thanks to
their effectiveness in ensuring global consistency in predic-
tions. However, their high representational capacity, as dis-
cussed in [50], may limit the encoder’s effective learning
by diminishing the strength of the supervisory signal back-
propagated to it. This is manifested as follows: initial patch
tokens heavily rely on slot vector information due to limited
context from ‘past’ tokens. As decoding progresses, de-
pendence on features of earlier tokens grows, reducing the
significance of slot vector information. Consequently, later
tokens provide a weaker supervisory signal for learning slot
vectors in the encoder. Fig. 4(a) illustrates this variability in
signal strength based on token location. In this figure, the
magnitude of the LREC loss gradient with respect to slots
(averaged over data samples) is presented, highlighting that
tokens in the first row and column contribute significantly
higher magnitude gradients during backpropagation to slots
compared to their later counterparts.

22779

(a) Left to right (b) Top to bottom (c) Top to bottom (d) Right to left (e) Bottom to top (f) Right to left (g) Bottom to top (h) Left to right (i) Spiral
Top to bottom Left to right Right to left Top to bottom Right to left Bottom to top Left to right Bottom to top

Figure 3. Sequence permutations in SPOT. The sequence of patches used for autoregressive-based decoder predictions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

(a) Decoder w/o permutations (b) Decoder with permutations
grads. of default perm. grads. of random perm.

Figure 4. L1 gradients norms for each patch’s reconstruction loss
with respect to the decoder’s input slots (aggregated across all the
slots, four decoder blocks, and the entire COCO validation set).
Subplots show gradients with: (a) default permutation and (b) ran-
domly sampled sequence permutations.

Autoregressive decoding with permuted sequences. To
tackle this issue, we propose introducing sequence permu-
tations to alter the order in which the autoregressive trans-
former predicts, based on a predefined set of permutations.
In essence, employing a sequence permutation requires the
transformer to make predictions not only in the traditional
left-to-right and top-to-bottom patch-order (as depicted in
Fig. 3(a)), but also with additional patch-orderings shown
in Fig. 3(b-i). The set of sequence permutations comprises
eight ordering variations, each associated with a distinct
starting patch and direction (horizontal/vertical), comple-
mented by an additional spiral permutation originating from
a patch at the center of the image.

During each training step, we randomly select one se-
quence permutation from the set to guide predictions by the
autoregressive transformer. This introduces variability in
token positions, as tokens later in the sequence in the default
order may now occupy initial positions in the permuted se-
quence. Consequently, these tokens must rely more on slot
information, offering stronger supervisory signal to the en-
coder after the permutation. This improvement is evident
in Fig. 4(b), where the magnitudes of the gradients w.r.t.
the slots of the model that use sequence permutations in the
decoder are less sensitive w.r.t. the token location they are
coming from (as opposed to the model without permuta-
tions Fig. 4(a)). Thus, the model trained with sequence per-
mutations benefits from a more uniform reliance on the slots
across all token positions. Further discussion on the autore-
gressive transformer is in the supplementary material.

We illustrate the workflow of our autoregressive decoder
with sequence permutations in Fig. 5. To enable the decoder

Permute with

FFN x L

CROSS-ATTENTION

CAUSAL SELF-ATTENTION

Slots

V K Q

QKV

Permute with and right-shift

1 2 3 4 5 6 7 8 9

123 45 68 9

123 45 68 9

7

1 2 3 4 5 6 7 8 9

Figure 5. Autoregressive (AR) decoding via sequence permuta-
tions. Violet boxes indicate differences from typical AR decoder.

to recognize the current sequence ordering and thus what is
the next-patch that it must predict, a different [BOS] token
is used for each different permutation. More formally, we
define 9 different sequence permutations σj : {1, . . . , n} →
{1, . . . , n}, j = 1, . . . , 9. For each permutation j, the per-
muted input to the autoregressive transformer is

Y<σj
= (y[BOS]j ;yσj(1); . . . ;yσj(n−1)), (8)

where y[BOS]j is the [BOS] token for the j permutation.
The decoder produces predictions Ŷσj for this j permutation

Ŷσj
= (yσj(1); . . . ;yσj(n)) = DECODER(Y<σj

;U), (9)

which are then re-ordered to Ŷ using the inverse permuta-
tion σ−1

j , followed by applying the LREC loss.
Therefore, in our decoder, the sole modifications involve

permuting the inputs and outputs and introducing multiple
[BOS] tokens (one per permutation) instead of a single one.
Other than that, the core architecture of the decoder remains
unchanged. During training, a single randomly sampled
permutation per training step is employed, maintaining the
training cost. At inference, we simply use the default per-
mutation (Fig. 3(a)) preserving the same inference cost. Al-
ternatively, computing attention masks ADEC for each per-

22780

SP ST ENS EPOCHS
DECODER SLOT ATTENTION MAX(DEC, SLOT ATT)

MBOi MBOc MIOU FG-ARI MBOi MBOc MIOU FG-ARI MBOi MBOc MIOU FG-ARI

(a) 50 32.0±0.1 41.4±0.3 30.0±0.1 32.3±0.6 30.0±0.2 38.9±0.4 28.1±0.2 29.5±0.6 32.0±0.1 41.4±0.3 30.0±0.1 32.3±0.6

(b) ✓ 50 32.7±0.2 40.9±0.5 30.8±0.1 35.6±0.5 31.1±0.1 38.9±0.3 29.4±0.1 33.4±0.4 32.7±0.2 40.9±0.5 30.8±0.1 35.6±0.5

(c) ✓ ✓ 50 32.9±0.2 41.2±0.5 31.0±0.1 36.0±0.5 31.1±0.1 38.9±0.3 29.4±0.1 33.4±0.4 32.9±0.2 41.2±0.5 31.0±0.1 36.0±0.5

(d) 100 32.3±0.3 42.1±0.2 30.2±0.3 31.8±0.9 30.5±0.2 39.8±0.1 28.5±0.3 30.0±0.7 32.3±0.3 42.1±0.2 30.2±0.3 31.8±0.9

(e) ✓ 50+50 30.1±0.5 38.2±1.0 28.3±0.4 22.5±1.6 33.2±0.1 43.6±0.2 31.1±0.0 34.4±0.5 33.2±0.1 43.6±0.2 31.1±0.0 34.4±0.5

(f) ✓ ✓ 50+50 34.7±0.1 44.3±0.3 32.7±0.1 36.6±0.3 33.7±0.1 43.1±0.4 31.8±0.1 37.8±0.5 34.7±0.1 44.3±0.3 32.7±0.1 37.8±0.5

(g) ✓ ✓ ✓ 50+50 35.0±0.1 44.7±0.3 33.0±0.1 37.0±0.2 33.7±0.1 43.1±0.4 31.8±0.1 37.8±0.5 35.0±0.1 44.7±0.3 33.0±0.1 37.8±0.5

Table 1. Ablation study on COCO. Results for slot masks generated by DECODER, SLOT ATTENTION, and their max (MAX(DEC, SLOT

ATT)) using mean and std over 3 seeds. SP: sequence permutation, ST: self-training, ENS: ensembling of nine permutations at test-time.

mutation and averaging them (i.e., test-time ensembling us-
ing the permutations), as explored in Sec. 4, yields a slight
performance improvement.

3.3. Incorporating permutations into self-training

We employ sequence permutation to enhance the trans-
former decoder in both training stages. This improves the
1st-stage decoder, which thus serves as a better teacher for
the 2nd self-training stage. In the 2nd stage, beyond the
student, we also incorporate random sequence permutations
in the teacher’s decoder when generating the target slot-
attention masks for the self-training loss.

For the 1st-stage training, we use as initial slots indepen-
dently sampled vectors from a Gaussian distribution, fol-
lowing [34, 41]. For the 2nd stage, we initialize slots as
learnable vectors employing bi-level optimization [8, 23].

4. Experiments
4.1. Setup

Datasets. We utilized the MS COCO 2017 [31] dataset
for its diverse collection of real-world images, each fea-
turing multiple co-occurring objects. This dataset poses
a significant challenge for object-centric learning models
due to the complexity of the scenes. We also considered
the PASCAL VOC 2012 [16] dataset, which comprises im-
ages often containing a single or just a few salient objects,
offering a comparatively more straightforward evaluation.
Furthermore, we used the synthetic datasets MOVi-C and
MOVi-E [18], which contain approximately 1000 realistic
3D-scanned objects. MOVi-C includes scenes with 3-10 ob-
jects, whereas MOVi-E contains scenes with 11-23 objects
per scene. Although MOVi-C/E are originally video-based,
we adapt them by selecting random frames following [41].
Metrics To assess object-centric learning, we use Mean
Best Overlap at the instance (MBOi) and class (MBOc)
levels, Foreground Adjusted Rand index (FG-ARI), and
mean Intersection over Union (MIOU). MBOi identifies the
best overlap for each ground truth mask, while MIOU em-
ploys Hungarian matching for a one-to-one correspondence

between predicted and ground truth segments. Our main
focus is on MBO and MIOU metrics because they con-
sider background pixels, comprehensively evaluating how
closely masks fit around objects. In contrast, FG-ARI,
a cluster similarity metric, exclusively focuses on fore-
ground pixels, potentially giving a misleading impression
of segmentation quality by ignoring the fidelity of predicted
masks while also promoting over-segmentation. While we
report FG-ARI, it is not our primary focus, aligning with
concerns raised in other studies [14, 25, 40, 60].

Implementation details. We employ the Adam opti-
mizer [27] with β1 = 0.9, β2 = 0.999, no weight decay,
and a batch size of 64. For each training stage on COCO and
PASCAL, we use 50 and 560 training epochs, respectively.
For MOVi-C/E experiments, we use 65 and 30 epochs for
the first and second stages, respectively.

We implement our SPOT models using ViT-B/16 [11]
for the encoder (by default initialized with DINO [7]) and 4
transformer layers in our decoder. Unless stated otherwise,
loss weight λ is 0.005. Following [41], on COCO, PAS-
CAL, MOVi-C, and MOVi-E we use 7, 6, 11, and 24 slots,
respectively. All models are trained on a single GPU with
24 Gbytes. We provide learning rate schedules and further
implementation details in the supplementary material.

4.2. Analysis

In this section, we analyze our approach, emphasizing the
impact of self-training and sequence-permutation in the au-
toregressive decoder, along with related design choices.
Our primary experimentation focuses on the challenging
COCO dataset, complemented by evaluations on MOVi-C.

(A) Sequence-permutation impact. Tab. 1 evaluates
the influence of sequence-permutation with and without
self-training. Without self-training, sequence permutations
(Tab. 1 (a)→(b)) enhances instance-specific metrics (MBOi,
MIOU, FG-ARI) on both the decoder and slot-attention.
The class-specific metric MBOc remains stable (within std).

When self-training is enabled, the significance of se-
quence permutations becomes even more evident (Tab. 1
(e)→(f)). Omitting them results in a notable performance

22781

(a) LOSS WEIGHT λ (b) PERMUTATIONS (c) ENC. FINE-TUNING

0 0.002 0.005 0.01 0.02 DEFAULT RANDOM ✗ ✓

30.7±2.2 34.6±0.3 34.7±0.1 34.1±0.5 33.4±1.5 34.6±0.2 34.7±0.1 32.4±0.2 34.7±0.1

Table 2. Analysis of self-training hyper-parameters on COCO. Results are the mean and standard deviation of the decoder’s MBOi over 3
seeds. Section (a) studies the impact of the loss weight λ, section (b) the impact of using random or the default permutation for generating
the target mask AT with the teacher model, and section (c) the impact of fine-tuning the image encoder during the self-training stage.

DECODER MBOi MIOU FG-ARI

TRANSFORMER 32.0 30.0 32.3
TRANSFORMER W/ PA 27.8 26.5 35.3
TRANSFORMER W/ SP 32.7 30.8 35.6

Table 3. Autoregressive decoder comparison on COCO. Evalua-
tion metrics for slot masks generated by the autoregressive trans-
former decoder trained conventionally (Transformer), with se-
quence permutation during training (TRANSFORMER W/ SP), or
parallel prediction for 25% of training iterations (TRANSFORMER

W/ PA), as discussed in [50]. No self-training is employed.

drop across all metrics, especially impacting decoder-
specific ones (DECODER cols.). Notably, without sequence-
permutations, self-training boosts the slot-attention mod-
ule (SLOT ATTENTION cols.) but hampers decoder perfor-
mance (DECODER cols.). This discrepancy highlights the
autoregressive decoder’s susceptibility to neglecting slot in-
put during reconstruction tasks. An overfitting behavior of
this type may be attributed to the accelerated learning dy-
namics of slot vectors during training, caused by the self-
training loss LATT applied to them, making it challenging
for the autoregressive decoder to effectively leverage them.
Sequence permutations play a crucial role in compelling the
decoder to prioritize slots, underscoring their importance in
autoregressive decoders for slot-centric learning.

Test-time ensembling of permutations. Comparing
models (b) to (c) and (f) to (g) in Tab. 1, we observe a slight
performance gain by using test-time ensembling of permu-
tations. However, this comes at the expense of increased
inference time. Nonetheless, our method demonstrates very
robust performance even without test-time ensembling, em-
phasizing that the core influence of sequence-permutation
lies in enhancing the effectiveness and stability of training
slot-based auto-encoders with autoregressive decoders.

Comparison to other AR training approaches. Moti-
vated by CapPa [50], we explored employing a training
procedure that switches between autoregressive and parallel
non-autoregressive decoding2, with the latter being used at
25% of training steps, as an alternative to sequence permu-
tations for enhancing the autoregressive decoder. Our find-
ings, outlined in Tab. 3, reveal that, in the context of object-
centric learning, parallel decoding during training does not
help, unlike our sequence permutation approach.

Last, the positive impact of sequence permutations is

2Here, given as input position embeddings, the transformer predicts at
all positions in parallel without causal masking in self-attention.

DECODER ST MBOi MBOc MIOU FG-ARI

MLP
✗ 26.7 30.3 25.6 38.7
✓ 28.4 32.4 27.0 42.5

Table 4. Self-training with MLP decoder on COCO. Evaluation
metrics for slot masks generated by the decoder. ST: self-training.

also demonstrated in MOVi-C (results in supplementary).

(B) Self-training impact. Comparing entries (f) to (b)
in Tab. 1, we see that self-training yields significant gains.
It also helps the max performance (columns MAX(DEC,
SLOT ATT)) in the case of not using sequence permutation.

Autoregressive and MLP-based decoders. As discussed
earlier, when it comes to autoregressive decoder perfor-
mance, optimal results are obtained when self-training is
paired with sequence-permutation, which is crucial for pre-
venting the decoder from ignoring slot information and
overfitting. Notably, our self-distillation scheme also ex-
tends beyond autoregressive decoders. To showcase this, we
apply it with MLP-based decoders where it brings signifi-
cant performance improvements as demonstrated in Tab. 4.

In Tab. 2, section (a) illustrates the sensitivity of the self-
distillation scheme to the loss weight λ, with λ=0.005 pro-
ducing optimal results. Performance remains relatively sta-
ble for loss weights around this value.

In section (b) of Tab. 2, we investigate the impact of ex-
tracting the teacher’s slot-mask AT with a standard or ran-
dom permutation during the self-distillation scheme. This
design choice does not appear to have a significant impact,
with a random permutation being our default choice.

Finally, in section (c) of Tab. 2, we highlight an addi-
tional benefit derived from the self-training stage, particu-
larly in the successful fine-tuning of the image encoder dur-
ing that stage. We stress that, without the self-training loss,
allowing the image encoder to be fine-tuned becomes unsta-
ble, yielding subpar results (Tab. 2 (a) for λ = 0 in LATT).
This observation aligns with Seitzer et al.’s findings [41].
The self-training loss acts as a stabilizing factor, enabling
further utilization of the pre-trained image encoder.

4.3. Comparison with object-centric methods

Method comparison. In Tab. 5, we compare our object-
centric learning method SPOT with prior approaches across
the MOVi-C, MOVi-E, PASCAL, and COCO datasets us-
ing MBOi and, when applicable, MBOc metrics. More de-
tailed results, including the FG-ARI metric are provided in

22782

METHOD
COCO PASCAL MOVI-C MOVI-E

MBOi MBOc MBOi MBOc MBOi MIOU MBOi MIOU

SA [34]† 17.2 19.2 24.6 24.9 26.2±1.0 - 24.0±1.2 -
SLASH [26] - - - - - 27.7±5.9 - -
SLATE [44]† 29.1 33.6 35.9 41.5 39.4±0.8 37.8±0.7 30.2±1.7 28.6±1.7

CAE [36]† - - 32.9±0.9 37.4±1.0 - - - -
DINOSAUR [41] 32.3±0.4 38.8±0.4 44.0±1.9 51.2±1.9 42.4 - - -
DINOSAUR-MLP [41] 27.7±0.2 30.9±0.2 39.5±0.1 40.9±0.1 39.1±0.2 - 35.5±0.2 -
Rotating Features [37] - - 40.7±0.1 46.0±0.1 - - - -
SlotDiffusion [60] 31.0 35.0 50.4 55.3 - - 30.2 30.2
(Stable-)LSD [24] 30.4 - - - 45.6±0.8 44.2±0.9 39.0±0.5 37.6±0.5

SPOT w/o ENS (ours) 34.7±0.1 44.3±0.3 48.1±0.4 55.3±0.4 47.0±1.2 46.4±1.2 39.9±1.1 39.0±1.1

SPOT w/ ENS (ours) 35.0±0.1 44.7±0.3 48.3±0.4 55.6±0.4 47.3±1.2 46.7±1.3 40.1±1.2 39.3±1.2

Table 5. Comparison with object-centric methods on COCO, PASCAL, MOVi-C and MOVi-E datasets. SPOT results are the mean and std
over 3 seeds. DINOSAUR uses an autoregressive decoder and DINO [7] ViT encoder (ViT-B/16 for PASCAL and MOVi-C, ViT-S/8 for
COCO). DINOSAUR-MLP uses an MLP decoder and DINO ViT encoder (ViT-B/16 for COCO and PASCAL, ViT-S/8 for MOVi-C/E). †:
COCO and PASCAL results of SA and SLATE are from [60], MOVi-C/E results are from [41] for SA and from [24] for SLATE, PASCAL
results of CAE are from [37].

(a) Ground Truth

(b) SPOT

(c) SPOT w/o self-training

(d) SPOT w/o self-training & w/o sequence permutation

Figure 6. Example results on COCO 2017, using 7 slots.

the supplementary material. Our method outperforms oth-
ers in all scenarios except PASCAL’s MBOi, where it ranks
second to SlotDiffusion [60]. Notably, on the demanding
COCO dataset, our approach excels, surpassing the prior
state-of-the-art by 2.7 and 5.9 points in MBOi and MBOc

metrics, respectively. This underscores its superiority in un-
supervised object-centric learning with real-world data.

In supplementary material, we provide additional results
about the impact of bi-level optimized queries [23] on DI-
NOSAUR [41] and SlotDiffusion [60] frameworks. Addi-

tionally, we examine SPOT with other pre-trained image
features using MoCo-v3 [10] and MAE [19] encoders.

4.4. Qualitative results

In Fig. 6, we present the effects of self-training and se-
quence permutation. This combination effectively mitigates
over-segmentation issues while preserving a high degree of
detailed segmentation. More examples of the efficacy of
SPOT are provided in Fig. 1, showcasing its robust perfor-
mance across various images.

5. Conclusion
In conclusion, SPOT advances unsupervised object-centric
learning for real-world images by enhancing slot-based
auto-encoders through two key strategies. Firstly, a self-
training scheme uses decoder-generated attention masks to
improve slot attention in the encoder. Secondly, a novel
patch-order permutation strategy for autoregressive trans-
formers boosts the decoder’s performance without addi-
tional training cost. The synergistic application of these
strategies enables SPOT to achieve state-of-the-art results
in real-world object-centric learning.

We note that sequence permutation decoding might be
more broadly beneficial to other computer vision tasks em-
ploying autoregressive decoders.

We discuss the limitations of our method and directions
for future work in the supplementary material.

Acknowledgements This research work was supported by the Hellenic

Foundation for Research and Innovation (HFRI) and the General Secretariat of Re-

search and Innovation (GSRI) under the 4th Call for H.F.R.I. Scholarships to PhD

Candidates (grant: 11252). It was also partially supported by the RAMONES and

iToBos EU Horizon 2020 projects under grants 101017808 and 965221, respectively.

NTUA thanks NVIDIA for the support with the donation of GPU hardware.

22783

References
[1] Görkay Aydemir, Weidi Xie, and Fatma Guney. Self-

supervised object-centric learning for videos. In NeurIPS,
2023. 2

[2] Federico Baldassarre and Hossein Azizpour. Towards self-
supervised learning of global and object-centric representa-
tions. In ICLRW, 2022. 2

[3] Zhipeng Bao, Pavel Tokmakov, Allan Jabri, Yu-Xiong Wang,
Adrien Gaidon, and Martial Hebert. Discorying object that
can move. In CVPR, 2022. 2

[4] Zhipeng Bao, Pavel Tokmakov, Yu-Xiong Wang, Adrien
Gaidon, and Martial Hebert. Object discovery from motion-
guided tokens. In CVPR, 2023. 2

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. In NeurIPS, 2020. 2

[6] Christopher P Burgess, Loic Matthey, Nicholas Watters,
Rishabh Kabra, Irina Higgins, Matt Botvinick, and Alexan-
der Lerchner. Monet: Unsupervised scene decomposition
and representation. arXiv preprint arXiv:1901.11390, 2019.
1, 2

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 3, 6, 8

[8] Michael Chang, Tom Griffiths, and Sergey Levine. Object
representations as fixed points: Training iterative refinement
algorithms with implicit differentiation. In NeurIPs, 2022.
2, 6

[9] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, 2020. 2

[10] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
ICCV, 2021. 8

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Jakob Uszkoreit, Mostafa Dehghani Neil Houlsby, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 4,
6

[12] Ye Du, Yujun Shen, Haochen Wang, Jingjing Fei, Wei Li,
Liwei Wu, Rui Zhao, Zehua Fu, and Qingjie LIU. Learning
from future: A novel self-training framework for semantic
segmentation. In NeurIPS, 2022. 2

[13] Gamaleldin Fathy Elsayed, Aravindh Mahendran, Sjoerd van
Steenkiste, Klaus Greff, Michael Curtis Mozer, and Thomas
Kipf. SAVi++: Towards end-to-end object-centric learning
from real-world videos. In NeurIPS, 2022. 2

[14] Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and
Ingmar Posner. Genesis: Generative scene inference and
sampling with object-centric latent representations. In ICLR,
2020. 1, 2, 6

[15] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa,
David Szepesvari, Geoffrey E Hinton, et al. Attend, infer,

repeat: Fast scene understanding with generative models.
NeurIPs, 2016. 1, 2

[16] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 2009. 6

[17] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick
Watters, Christopher Burgess, Daniel Zoran, Loic Matthey,
Matthew Botvinick, and Alexander Lerchner. Multi-object
representation learning with iterative variational inference.
In ICML, 2019. 1, 2

[18] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J. Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, Thomas Kipf,
Abhijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-
Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Rad-
wan, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi,
Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun,
Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi,
Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: A scal-
able dataset generator. In CVPR, 2022. 6

[19] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022. 8

[20] Olivier J Hénaff, Skanda Koppula, Jean-Baptiste Alayrac,
Aaron Van den Oord, Oriol Vinyals, and Joao Carreira. Effi-
cient visual pretraining with contrastive detection. In ICCV,
2021. 2

[21] Olivier J Hénaff, Skanda Koppula, Evan Shelhamer, Daniel
Zoran, Andrew Jaegle, Andrew Zisserman, João Carreira,
and Relja Arandjelović. Object discovery and representation
networks. In ECCV, 2022. 2

[22] Allan Jabri, Sjoerd van Steenkiste, Emiel Hoogeboom,
Mehdi SM Sajjadi, and Thomas Kipf. Dorsal: Diffusion for
object-centric representations of scenes et al. arXiv preprint
arXiv:2306.08068, 2023. 2

[23] Baoxiong Jia, Yu Liu, and Siyuan Huang. Improving object-
centric learning with query optimization. In ICLR, 2022. 2,
3, 6, 8

[24] Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn.
Object-centric slot diffusion. In NeurIPS, 2023. 2, 3, 8

[25] Laurynas Karazija, Iro Laina, and Christian Rupprecht.
Clevrtex: A texture-rich benchmark for unsupervised multi-
object segmentation. In NeurIPS Datasets and Benchmarks
Track, 2021. 2, 6

[26] Jinwoo Kim, Janghyuk Choi, Ho-Jin Choi, and Seon Joo
Kim. Shepherding slots to objects: Towards stable and ro-
bust object-centric learning. In CVPR, 2023. 2, 8

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[28] Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahen-
dran, Austin Stone, Sara Sabour, Georg Heigold, Rico Jon-
schkowski, Alexey Dosovitskiy, and Klaus Greff. Condi-
tional object-centric learning from video. In ICLR, 2022. 2

[29] Avinash Kori, Francesco Locatello, Francesca Toni, and Ben
Glocker. Unsupervised conditional slot attention for object
centric learning. arXiv preprint arXiv:2307.09437, 2023. 2

22784

[30] Harold W Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):83–97,
1955. 4

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 6

[32] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao
Sun, Gautam Singh, Fei Deng, Jindong Jiang, and Sungjin
Ahn. Space: Unsupervised object-oriented scene representa-
tion via spatial attention and decomposition. In ICLR, 2020.
1, 2

[33] Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-
training for domain adaptation. In NeurIPS, 2021. 3

[34] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention. In NeurIPS, 2020. 1, 2,
3, 6, 8

[35] Sindy Löwe, Klaus Greff, Rico Jonschkowski, Alexey
Dosovitskiy, and Thomas Kipf. Learning object-centric
video models by contrasting sets. arXiv preprint
arXiv:2011.10287, 2020. 2

[36] Sindy Löwe, Phillip Lippe, Maja Rudolph, and Max Welling.
Complex-valued autoencoders for object discovery. Transac-
tions on Machine Learning Research, 2022. 1, 2, 8

[37] Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max
Welling. Rotating features for object discovery. NeurIPs,
2023. 1, 2, 8

[38] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. In-
stance adaptive self-training for unsupervised domain adap-
tation. In ECCV, 2020. 3

[39] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby.
Scaling open-vocabulary object detection, 2023. 2

[40] Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu
Aubry. Unsupervised Layered Image Decomposition into
Object Prototypes. In ICCV, 2021. 6

[41] Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Do-
minik Zietlow, Tianjun Xiao, Carl-Johann Simon-Gabriel,
Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox,
and Francesco Locatello. Bridging the gap to real-world
object-centric learning. In ICLR, 2023. 1, 2, 3, 4, 6, 7, 8

[42] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin,
Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud Mar-
let, and Jean Ponce. Localizing objects with self-supervised
transformers and no labels. In BMVC, 2021. 3

[43] Oriane Siméoni, Chloé Sekkat, Gilles Puy, Antonin Vobecky,
Éloi Zablocki, and Patrick Pérez. Unsupervised object local-
ization: Observing the background to discover objects. In
CVPR, 2023. 3

[44] Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate dall-e
learns to compose. In ICLR, 2022. 1, 2, 3, 8

[45] Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsu-
pervised object-centric learning for complex and naturalistic
videos. In NeurIPS, 2022. 2, 3

[46] Gautam Singh, Yeongbin Kim, and Sungjin Ahn. Neural
systematic binder. In ICLR, 2023. 2

[47] Andrew Stange, Robert Lo, Abishek Sridhar, and Kousik
Rajesh. Exploring the role of the bottleneck in slot-based
models through covariance regularization. arXiv preprint
arXiv:2306.02577, 2023. 2

[48] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, and Brian Fuller. Llama 2: Open founda-
tion and fine-tuned chat models, 2023. 2

[49] Manuel Traub, Sebastian Otte, Tobias Menge, Matthias Karl-
bauer, Jannik Thuemmel, and Martin V. Butz. Learning
what and where: Disentangling location and identity track-
ing without supervision. In ICLR, 2023. 2

[50] Michael Tschannen, Manoj Kumar, Andreas Peter Steiner,
Xiaohua Zhai, Neil Houlsby, and Lucas Beyer. Image cap-
tioners are scalable vision learners too. In NeurIPs, 2023. 2,
4, 7

[51] Renaud Vandeghen, Gilles Louppe, and Marc Van Droogen-
broeck. Adaptive self-training for object detection. In ICCV
Workshop, 2023. 2

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2,
3

[53] Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra.
Cut and learn for unsupervised object detection and instance
segmentation. arXiv preprint arXiv:2301.11320, 2023. 3

[54] Nick Watters, Loic Matthey, Chris P. Burgess, and Alexander
Lerchner. Spatial broadcast decoder: A simple architecture
for disentangled representations in VAEs. In ICLR work-
shops, 2019. 2

[55] Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and
Fan Yang. Crest: A class-rebalancing self-training frame-
work for imbalanced semi-supervised learning. In CVPR,
2021. 2

[56] Marissa A. Weis, Kashyap Chitta, Yash Sharma, Wieland
Brendel, Matthias Bethge, Andreas Geiger, and Alexander S.
Ecker. Benchmarking unsupervised object representations
for video sequences. Journal of Machine Learning Research,
2021. 2

[57] Xin Wen, Bingchen Zhao, Anlin Zheng, Xiangyu Zhang, and
Xiaojuan Qi. Self-supervised visual representation learning
with semantic grouping. NeurIPs, 2022. 2

[58] Ronald J Williams and David Zipser. A learning algorithm
for continually running fully recurrent neural networks. Neu-
ral computation, 1(2):270–280, 1989. 2

[59] Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and
Animesh Garg. Slotformer: Unsupervised visual dynamics
simulation with object-centric models. In ICLR, 2023. 2

[60] Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Ani-
mesh Garg. Slotdiffusion: Object-centric generative model-
ing with diffusion models. In NeurIPS, 2023. 2, 3, 6, 8

[61] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon,
Thomas Breuel, Jan Kautz, and Xiaolong Wang. Groupvit:
Semantic segmentation emerges from text supervision. In
CVPR, 2022. 2

22785

[62] I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri,
and Dhruv Mahajan. Billion-scale semi-supervised learning
for image classification. arXiv preprint arXiv:1905.00546,
2019. 2

[63] Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, and Yang Gao.
St++: Make self-training work better for semi-supervised se-
mantic segmentation. In CVPR, 2022. 2

[64] Qize Yang, Xihan Wei, Biao Wang, Xian-Sheng Hua, and
Lei Zhang. Interactive self-training with mean teachers for
semi-supervised object detection. In CVPR, 2021. 2

[65] Yafei Yang and Bo Yang. Promising or elusive? unsuper-
vised object segmentation from real-world single images. In
NeurIPS, 2022. 1, 2

[66] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Russ R Salakhutdinov, and Quoc V Le. Xlnet: General-
ized autoregressive pretraining for language understanding.
In NeurIPs, 2019. 2

[67] Andrii Zadaianchuk, Maximilian Seitzer, and Georg Mar-
tius. Object-centric learning for real-world videos by pre-
dicting temporal feature similarities. In NeurIPS, 2023. 2

[68] Yi Zhu, Zhongyue Zhang, Chongruo Wu, Zhi Zhang, Tong
He, Hang Zhang, R Manmatha, Mu Li, and Alexander J
Smola. Improving semantic segmentation via efficient self-
training. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2021. 2

[69] Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong
Wang. Unsupervised domain adaptation for semantic seg-
mentation via class-balanced self-training. In ECCV, 2018.
3

22786

