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Abstract

6DoF Pose estimation has been gaining increased im-
portance in vision for over a decade, however it does not
yet meet the reliability and accuracy standards for mass de-
ployment in industrial robotics. To this effect, we present the
Industrial Plenoptic Dataset (IPD): the first dataset for the
co-evaluation of cameras, HDR, and algorithms targeted
at reliable, high-accuracy industrial automation. Specif-
ically, we capture 2,300 physical scenes of 20 industrial
parts covering a 1m × 1m × 0.5m working volume, re-
sulting in over 100,000 distinct object views. Each scene
is captured with 13 well-calibrated multi-modal cameras
including polarization and high-resolution structured light.
In terms of lighting, we capture each scene at 4 exposures
and in 3 challenging lighting conditions ranging from 100
lux to 100,000 lux. We also present, validate, and analyze
robot consistency, an evaluation method targeted at scal-
able, high accuracy evaluation. We hope that vision sys-
tems that succeed on this dataset will have direct industry
impact. The dataset and evaluation code are available at
https://github.com/intrinsic-ai/ipd.

1. Introduction

Only a small fraction of the thousands of robot arms cur-
rently deployed in factories use vision, with even fewer
using 6DoF object pose estimation [7, 43]. Instead, the
majority of factories still rely on mechanical fixtures and
pre-planned robot motions that need to be re-fabricated and
reprogrammed whenever the work product changes. This
is due to the fact that computer vision in general, and
6DoF pose estimation in particular, is not seen as reliable
enough for industrial applications [43], where requirements
include sub-millimeter accuracy in pose estimation, robust-
ness to challenging surface properties and drastic changes
in factory lighting conditions, and guaranteed levels of re-
call. This may seem surprising, considering that 6DoF
pose estimation has been an active area of research in terms
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Figure 1. The Industrial Plentopic Dataset (IPD) affords co-
evaluation of cameras, HDR, and pose estimation algorithms.
Our dataset contains polarization (top) which provides high con-
trast for dark objects, and high-res structured-light (bottom).

of both algorithms [9, 11–13, 15, 16, 31, 38, 42, 44, 47,
48, 52, 54, 65, 70, 72] and benchmarks [21, 22, 26, 32–
34, 37, 44, 45, 55, 61, 63, 67, 71] for over a decade. We
argue that research has so far been lacking in one key in-
gredient to enable the step to real-world factory floors: the
co-design of camera systems, high dynamic range imaging
(HDR), and corresponding pose estimation algorithms.

In particular, we find that existing public 6DoF pose esti-
mation benchmarks rarely provide enough variety in terms
of cameras, viewpoints, exposure settings, and modalities
(e.g., in the form of RGB, depth, and polarization) to al-
low the joint optimization of cameras, HDR, and algorithms
that enables industrial applications with high precision re-
quirements. Some datasets collect all data with only a sin-
gle camera [31, 45, 63, 70]. Others use multiple, but de-
rive ground truth poses from just a single camera, which is
prone to generating biased labels [22, 32, 37]. Only two
datasets consider polarization [34, 67], however only from
a single-camera, without complex lighting or HDR, and in
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the context of household objects.
At the same time, existing benchmarks do not mea-

sure industrial-grade 6DoF accuracy. Most benchmarks for
6DoF pose estimation [22, 33, 37, 71] define an accept-
able pose estimate typically as 10% of the object diame-
ter (5-45mm) in ADD [31], at distances of 50-100cm. This
does not meet industrial requirements. Our work focuses on
industrial-grade performance, meaning an acceptable esti-
mate to be < 3mm MVD (defined in Sec. 3.1) at distances
of 150-200cm at 99% recall. Note, MVD is the upper bound
of ADD. Measuring 3mm MVD at distances of 150-200cm
is difficult using the existing methods [33] of measuring ac-
curacy relative to (inaccurate) annotated ground truth.

This paper aims to address both limitations, as follows.
First, we introduce a novel dataset of 20 industrial ob-

jects and 2,300 scenes, tailored towards real-world tasks
with high precision requirements. We capture our dataset
with a total of 13 calibrated cameras at large baselines,
including RGB, structured light, and polarization cameras
(see Tab. 1(b)), and include challenging lighting conditions
in multiple exposures, allowing researchers to co-design
HDR and 6DoF algorithms to be invariant to lighting. Polar-
ization as a modality is critical for mitigating glare [58, 73],
enhancing HDR [69, 74], identifying edges of highly re-
flective/translucent surfaces [36, 68], and improving 6DoF
pose [27]. Our 4 polarization cameras capture polarized
HDR images and are placed at multiple locations to allow
for experimentation with multiple baselines.

Second, we introduce Robot Consistency, inspired
by [35], to the scientific community as a means of evaluat-
ing and comparing the performance of highly precise 6DoF
pose estimation algorithms at scale. In contrast to methods
based on (inaccurate) ground truth, it leverages consistency
between estimates of the pose estimation algorithm under
test to assess performance. We theoretically and empirically
demonstrate the validity of this approach, and highlight its
favorable properties for the high-precision setting.

The rest of this paper is organized as follows. Sec. 2 re-
views related work. Sec. 3 introduces Robot Consistency
and establishes its validity. Sec. 4 introduces our novel
dataset of industrial parts. Sec. 5 highlights directions of
co-design afforded by our dataset and Sec. 6 concludes the
paper. Additional results are included in the supplement.

2. Related Work
We begin with an overview of related work, focusing
on industrial datasets (Sec. 2.1) and evaluation methods
(Sec. 2.2) for 6DoF pose estimation.

2.1. Industrial Datasets

While a large number of datasets for 6DoF pose esti-
mation exist, a majority of them is targeted primarily at
household objects. These datasets include the widely used

LineMOD [31] and YCB-Video [70], the recently intro-
duced PhoCaL [67] and HouseCat6D [34] among oth-
ers such as LabelFusion [48], Occluded LineMOD [9],
HOPE [63], TOD [44], Wild6D [26], NOCS [65], and [21,
55, 61]. While household objects often pose challenges in
terms of geometry and appearance variations, they tend to
be less demanding in terms of lighting or required accuracy.

In contrast, only a handful of existing datasets is con-
cerned with the industrial high precision settings that pro-
vide the basis for our exploration (Tab. 1 compares key
characteristics of those existing datasets to ours). T-
LESS [32] features texture-less industrial objects with more
than 100, 000 images for all sensors combined, but provides
limited ground truth pose accuracy at around 5mm. Home-
brewedDB [37] includes 8 industrial parts out of 33 total ob-
jects, with a moderate ground truth pose accuracy of around
2mm. MVTec ITODD [22] covers a wide range of indus-
trial parts but it has only around 100 to 200 instances per
part and does not provide publicly available ground truth
poses. ROBI [71] has 7 parts in heavy clutter. DIMO [57]
provides two types of lighting conditions and different types
of backgrounds for 6 parts. StereOBJ-1M [45] covers 11
different scene types (including 3 outdoor scenes), and
more than 396, 000 captured images. However, it does
not provide any depth maps. Finally, Fraunhofer IPA Bin-
Picking [39] is mostly focused on simulated scenes.

In summary, none of these datasets comes close to ours
(last line, Tab. 1) in terms of provided cameras (13), modali-
ties (RGB, depth, polarization images, HDR) and 3 lighting
conditions with 4 exposures, making ours the first to enable
co-evaluation of cameras, HDR, and pose estimation algo-
rithms.

2.2. Evaluation methods

Existing methods for evaluating 6DoF pose estimation algo-
rithms typically rely on some notion of ground truth data.

Synthetic Data Generation. Synthetically generated
datasets [20, 62] simplify the process of accurate ground
truth generation, but at a cost: First, they often sacrifice the
fidelity of the rendered data, notably in scenarios involving
polarized light. Second, content creation becomes a bot-
tleneck [48] and the lack in variability and unpredictability
might lead to overfitting in trained models [20, 33, 45].

3D Point Cloud Registration. This method typically re-
lies on a 3D reconstruction of a physical scene, achieved
through Time-of-Flight [25, 32, 33, 55] or Structured Light
sensors [32]. It involves extracting object poses by aligning
the object’s CAD model with the scene’s 3D reconstruction,
either manually [25, 26, 32, 33, 55], semi- [22, 34, 63, 67,
70], or fully-automatically [37]. However, this method has
fundamental limitations. First, its accuracy depends on the
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Industial Dataset Parts Cams Modalities Frames Object
Instances

Lighting
Conditions HDR Working

Distance, cm
Claimed Annotation
Accuracy, mm

Scaled Annotation
Accuracy, mm

DIMO [57] 6 4 RGB-D 31,200 100k 2 No <50 0.3 2.7
ROBI [71] 7 2 RGB-D 8,000 600k 1 No <50 0.2 1.8
HomebrewedDB [37] 8 2 RGB-D 20,000 100k 1 No <140 2.0 2.3
ITODD [22] 28 5 RGB-D 800 5k 1 No <50 0.2 1.8
T-LESS [32] 30 3 RGB-D 147k 100k 1 No <100 5.0 11.3
StereOBJ-1M [45] 18 2 RGB 396k 1.5M 2 No <150 2.3 2.3

Ours 20 13 RGB-D+Polar 30,000 100k 3 Yes 150-200 N/A N/A

(a)

Camera # Resolution Modalities

Basler-LR [2] 3 1920 x 1200 RGB
Basler-HR [1] 5 2592 x 1944 RGB
FLIR-MonoP [3] 4 2448 x 2048 Gray, Polar
Photoneo [5] 1 2064 x 1544 RGB, Depth

(b)

Table 1. Industrial datasets overview. (a) Comparing existing industrial datasets with ours. Scaled annotation accuracy is an estimated
annotation accuracy at 150 cm with a quadratic z-error decay on distance [4]. (b) Cameras used in the proposed dataset.

3D reconstruction’s precision, often requiring sensors more
accurate than the one being evaluated. Depth sensors have
difficulty with transparent or reflective surfaces [44, 45] and
are less effective in densely populated scenes. To mitigate
these issues, some approaches resort to scanning spray [71]
or the use of a robot/handheld wand [34, 67], but these
increase the data collection effort. Even (semi-)automatic
methods often fail to achieve the desired accuracy, neces-
sitating manual verification [61, 63, 71]. Moreover, these
methods are sensitive to environmental factors like light-
ing [33] and sensor-object distance [71]. Second, this ap-
proach presupposes the availability of accurate CAD mod-
els or meshes of the objects (e.g. [32–34, 37]).

2D Keypoint-based Pose Estimation. This method cap-
italizes on the relative ease of annotating two-dimensional
keypoints on images. It involves capturing a scene from var-
ious angles, followed by manual annotation of correspon-
dences between the CAD model and selected images. Poses
are then either extracted by using triangulation [44, 45] or
the Perspective-n-Point (PnP) algorithm [63]. Notable chal-
lenges include human labeling accuracy, the necessity of a
multi-view camera setup, adding the complexity of inter-
camera calibration [44, 45], and the re-projection of manu-
ally annotated labels from one view to others, particularly
when considering occlusions. This tends to be biased to-
wards the camera for which the labeling is done, making
comparing cameras difficult.

Fixture Based Detection. This approach attaches a
highly detectable marker to the object, precisely calibrating
its relative position. Variants include using an active target
with a laser tracking system for extreme precision [49] or
a mechanical fixture that measures its position and orienta-
tion [49]. Despite their precision, these methods have draw-
backs, such as high cost, limited scene complexity [49], and
not being reusable for different objects [49].

3. Scalable, Accurate Evaluation

In this section, we present the Robot Consistency evaluation
pipeline, inspired by [35], that is both scalable and allows
the accurate measurement of small errors. To that end, we

first describe the methodology (Sec. 3.1) and provide theo-
retical justification for its validity (Sec. 3.2). We then high-
light its favorable properties for high-precision applications
in extensive experiments on synthetic data (Sec. 3.3).

3.1. Robot Consistency

Robot Consistency relies on a well calibrated robot to gen-
erate a sequence of visual scenes (physical scenes of objects
imaged from different viewing directions) and exploits the
known relative rigid transforms between them to estimate
standard pose metrics. Prior work focuses on evaluating
against annotated ground truth, which is likely to both be
biased and inaccurate. Robot Consistency, however, relies
on accurate robot transforms, making it valuable for high-
precision requirements. Algorithm 1 lists all relevant steps.

Assume there is a fixed camera C observing a working
volume. There is a robot arm R with a gripper G. We
rigidly mount object O on the gripper (Sec. 3.1.2 extends
this to multiple objects). Let TCR be the transform from
the robot base frame to the camera frame given from hand-
eye calibration, and TGO be the unknown transform from
the object frame to the gripper (end effector) coordinates.
We capture images of the object in N different robot con-
figurations. For the i-th capture, we record the predicted
6DoF pose predT iCO, which is the transform from the object
frame to the camera coordinates, and the transform from
the gripper frame into robot coordinates T iRG. Our goal is
to evaluate the accuracy of predicted object poses predT iCO.
Since the ground truth gtT iCO is not available, most of prior
literature uses annotated ground truth annT iCO:

Eann(Tpred) =
1

N

∑
i

d(predT iCO,
ann T iCO) (1)

where d is a pose metric and Tpred = {predT iCO}i is the set
of all pose predictions.

We propose measuring the pose error against the robot
instead. Intuitively, this means that if the robot arm moves
in a particular way, then the pose estimates should move the
same. This is enabled by the kinematic calibration of the
robot, which is up to 0.1 mm accurate.

Note, that the unknown object pose can be expressed as

TGO = (T iRG)−1T−1CR{
predT iCO} = T iGRTRC{predT iCO}

(2)
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where we used TAB ≡ T−1BA for any reference frames
A,B. Eq. (2) provides N distinct measurements of un-
known TGO. Inspired by the well-known statistical law
of large numbers [46] one can hypothesise that a mean1 of
these measurements will be a good estimate of TGO:

T ∗GO = arg min
µ∈SE(3)

N∑
i=1

ρ2(µ, T iGRTRC{predT iCO}) (3)

where ρ is a distance between transforms. It turns out that
any choice of ρ (subject to minor constraints) converges to
TGO at the same rate. This is true for unbiased pose esti-
mates predT iCO but also for some forms of bias when T iRG
is chosen in a particular way, see Sec. 3.2. We also validate
the method on real pose estimators in Sec. 3.3. In practice,
we use the sample average for the translation and quater-
nion averaging [28] for the rotation in Eq. (3). Then, we
can approximate any pose metric d:

Erc(Tpred) =
1

N

∑
i

d(predT iCO, TCRT
i
RGT

∗
GO) (4)

Discussion Measuring Eq. (4) introduces a bias as we re-
duce the number of degrees of freedom by estimating TGO
through minimization. However given large N and di-
verse robot poses, we show theoretically and empirically
that Robot Consistency converges to the true value of the
metric and is more accurate than annotations.

3.1.1 Pose Accuracy Metrics

The standard metric d is ADD [31]:

ADD(predTCO,
gt TCO) =

1

N

∑
k

||predTCOvk−gtTCOvk||

(5)
where V = {vk}k is a set of vertices on object mesh. How-
ever, we prefer using another metric, namely Maximum
Vertex Distance (MVD):

MVD(predTCO,
gt TCO) = max

i
||predTCOvk−gtTCOvk||.

(6)
This is motivated by industrial peg-in-hole insertion tasks
that fail if any portion of the object exceeds the error bound.
MVD is also independent of vertex sampling, whereas ADD
is heavily dependent on the distribution of vertices.

3.1.2 Scenes with Multiple Objects

When there are multiple objects mounted to the robot, there
is a correspondence problem, that is, we do not know which

1Due to the structure of the rigid transforms SE(3) we cannot use stan-
dard arithmetic mean but have to resort to a more general Fréchet mean.

Algorithm 1 Robot Consistency.
0. Hand-Eye Calibration. Obtain hand-eye calibration TCR (transform

between camera and robot base) using checkerboard pose estimation.
1. Setup. Mount an object O rigidly to the robot arm.
2. Data Capture. Move the robot arm to 1..i..N different gripper poses,

recording the transform T i
RG from gripper G to robot base R.

3. Prediction. Run the pose estimation algorithm under test on the desired
camera setup to yield pose predictions predT i

CO .
4. Conversion. Convert all pose predictions to robot base coordinates

using TCR and then to gripper coordinates using the recorded T i
RG.

5. Evaluation. Calculate the pose error Erc using Eq. (3) and Eq. (4).

prediction in scene i corresponds which object j on the
robot. To resolve this, we provide annotations annT jGO
which are used only for determining the correspondence.
For each object j, the closest prediction to annT jGO in each
scene is grouped together before calculating MVD using
Eq. (4) and Eq. (3).

Semi-Automated Annotations: We compute annT jGO
using a semi-automated pipeline. Specifically, for a se-
quence of N scenes, we run the best performing pose esti-
mator on all scenes, yielding Ki pose predictions predT i,kiCO

for scene i ∈ {1, . . . , N}. which we transform to the grip-
per coordinate system using Eq. (2):

H = {T iGRTRC(predT i,kiCO ) | 1 ≤ i ≤ N, 1 ≤ ki ≤ Ki}
(7)

We then cluster H using DBSCAN with pose distance
threshold ε, such that each cluster corresponds to a set of
spatially consistent object hypotheses. Any cluster larger
than N ′ is considered valid2, while others are rejected as
outliers. All predictions in each cluster are averaged to cre-
ate an estimate of annT jGO. A manual inspection and filter-
ing step concludes the computation of reference pose anno-
tations. This must be done once per dataset.

3.2. Theoretical Validation

We discuss basic statistical properties of Robot Consis-
tency, assuming for simplicity the single object case. First,
we consider the case where the pose estimates Φ(ti) =
predT iCO are unbiased and independent. Here Φ is the pose
estimator under evaluation and ti is the image capture for
scene i ∈ {1, . . . , N}. Under mild conditions the poses es-
timated by Robot Consistency Eq. (3) converge in probabil-
ity to the actual ground truth as N increases. We can obtain
a good proxy to the ground truth via Eq. (3) by increas-
ing the number of captures N . Likewise, approximations
of common pose metrics Eq. (4) also converge to their true
value. Second, we discuss an extension to a biased case.

Robot Consistency can be seen as a pose estimation
method, which is built on top of Φ. In general, an esti-
mator is called consistent if it converges in probability to

2In practice, we set N ′ as 25% of N .
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the estimated value. An estimator is called unbiased if its
mathematical expectation equals the estimated value. As-
sume that the original pose estimates Φ(ti) are statistically
independent from each other. Then, assume that pose esti-
mator Φ is unbiased. We consider Eq. (3) separately for the
rotation and translation components. In case of translation,
we assume the Euclidean distance. Hence, the translation
component of Eq. (3) is the sample mean.

Proposition 1. The Robot Consistency pose estimator is
consistent and unbiased.3

Proof. The translation component is unbiased and consis-
tent due to standard properties of the sample mean estimate.
The rotation component is unbiased and consistent due to
[8, 24]. Moreover, an extension of the Central Limit Theo-
rem for manifolds [8, 24] applies giving the rate of conver-
gence N−

1
2 in both components.

Biased Posed Estimators Let P ∈ S denote camera
pose, where S defines the domain of the camera pose dis-
tribution. Let camera pose P be defined as a rigid trans-
form from the world to the camera frame of reference. Let
further ΦT (tP ) be the translation component of pose esti-
mator result Φ(tP ) in the world reference frame for image
tP corresponding to the camera at pose P . Let P ∗ be the
true pose of the target object in the world reference frame.
We assume the world reference frame is chosen such that
P ∗ = I is identity. E denotes mathematical expectation.
Here randomness is due to the unknown camera pose and
inaccuracy of the pose estimator Φ.

Prop. 2 below shows that under these conditions the ex-
pected Robot Consistency pose estimate Eq. (3) is unbiased.

Proposition 2. If (1) the camera pose distribution is spher-
ical w.r.t. to the target object, and (2) the pose estimator’s
translation error has the mean value of µ 6= 0 in the refer-
ence frame of the camera for any camera pose (bias is only
w.r.t. camera), i.e., the expectation of predicted pose trans-
lation given camera pose is E(PΦT (tP )|P ) = µ. Then, the
expected pose estimate translation P̂ = EΦT (tP ) is zero.

Proof.

P̂ = EΦ(tP ) = E{E(Φ(tP )|P )} = E{P−1E(PΦ(tP )|P )}
= E{P−1µ} = E{P−1}µ = 0 · µ = 0 (8)

Discussion While this theory does not account for robot
errors, calibration errors, many types of biases, etc., it
shows that Robot Consistency does not introduce new bi-
ases, in some cases improves evaluated pose estimator bi-
ases, and converges to the ground truth-based evaluation.

3See additional mild conditions in [8, 24].

3.3. Synthetic Validation

Having established the validity of Robot Consistency in the-
ory (Sec. 3.2), we now proceed to highlighting its favorable
properties in comparison to approaches based on annotated
ground truth, in particular for high-precision settings. To
that end, we conduct an extensive experimental study in a
controlled setting, using synthetic data.

Synthetic data and pose estimation algorithms We ren-
der 20 physical scenes with 10 object instances each from
30 different viewpoints, using 4 different cameras of 5
MP resolution. Camera setup and pose distribution closely
match our dataset (Sec. 4). We train and evaluate a popula-
tion of 24 different key point-based models differing in NN
backbone and degree of convergence, each with and without
edge-alignment [17] (see Sec. 5.1), which we deem repre-
sentative of algorithms of different performance levels.

Evaluation methods under test. Since we have access to
gtTCO of each object in our synthetic scenes, we compare
the accuracy of robot consistency Erc to evaluation meth-
ods based on different levels of human annotation quality.
Specifically, we generate 3 degradations of the true poses
by adding random jitters in pose until an MVD of 1, 2, or 3
mm is reached. From Tab. 1, existing datasets show 2-3mm
annotation accuracy when scaled to our dataset’s working
distance (150-200cm) using n2 z-decay [4].

Testing methodology. We quantify the degree to which
different evaluation methods under test capture the true per-
formance of a pose estimation algorithm in three ways: (1)
as the correlation between the performance estimate pro-
vided by the evaluation method under test and the true per-
formance, as measured w.r.t. true synthetic pose gtTCO, on
the population of representative pose estimation algorithms
(Fig. 2 (a)), (2) as the mean absolute difference between the
performance estimate provided by the evaluation method
under test and the true performance. (Fig. 2 (b)), and (3) as
the empirical probability with which an evaluation method
under test provides the correct ordering of the mean error of
two pose estimation algorithms (Fig. 2 (c)).

Results. From Fig. 2 (a), we see that Robot Consistency
is better correlated with true model performance than meth-
ods relying on inaccurate ground truth annotations. Inter-
estingly, those methods tend to systematically overestimate
the model error (points lie under the diagonal), and this ef-
fect tends to worsen as true performance improves, i.e., for
the high precision settings that are relevant for industrial
applications. Our method scales as model performance im-
proves, allowing us to correctly estimate the error of highly
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(a) (b) (c)

Figure 2. Our method of evaluating 6DoF poses is much closer to (synthetic) true ground truth than using mm-level human-
labeled annotations. (a) Shows model performance estimates using different evaluation methods against the true model performance from
synthetic GT. (b) Shows the absolute difference between model performance estimates from different evaluation methods against the true
model performance. (c) Shows the likelihood of ordering two models correctly using different evaluation methods.

accurate algorithms. Fig. 2 (b) shows this favorable behav-
ior also reflected in terms of the mean absolute difference
from the true error (0.13 for our method vs. 0.47 mm for 1
mm jitter). Fig. 2 (c) shows that Robot Consistency also has
a slight edge in terms of ordering the performance of differ-
ent pose estimation methods correctly, which is critical for
benchmarking. It maintains the highest level of probability
among all compared evaluation methods, in particular for
high precision settings.

4. Industrial Plenoptic Dataset
In this section we describe our novel Industrial Plenop-
tic Dataset aimed at providing the basis for the co-design
of camera systems, HDR, and 6DoF pose estimation algo-
rithms. It is targeted at high accuracy pose estimation with
moderate clutter, as it is typical in industrial applications
such as machine tending.

4.1. Setup

Physical scenes. We select 20 industrial objects from the
inventory of a mechanical parts vendor that we deem repre-
sentative of industrial applications (Fig. 3 (d)). They range
from metal gears to metal brackets and baskets to highly
reflective, black surfaces. The difficulty of estimating accu-
rate 6DoF poses for these objects varies according to which
camera, HDR approach, and pose estimation algorithm is
being used. Each physical scene is rigidly mounted to a
UR5e robot arm that has been kinematically calibrated, re-
sulting in less than 100µm relative pose accuracy.

Capture. For each physical scene we capture 30 robot
configurations (corresponding to distinct visual scenes,
Fig. 3 (c)). They differ in up to 30 degrees in pitch and roll
and 360 degrees in yaw. We also allow the robot to move up
to 50cm in Z, and 1m inX and Y , respectively, to represent
a large working volume typical of industrial applications.

Our setup includes a total of 13 cameras in order to af-
ford the comparison of pose estimation approaches based

on structured light, multi-view key points, and polarization
(Fig. 3 (c)): 4 Mono-Polar FLIR Cameras [3] at 5MP reso-
lution with a baseline of 50cm to 1m, 8 Basler RGB cameras
[1, 2], 5 at 8MP and 3 at 2MP with baselines varying from
10cm to 1m, and a Photoneo XL [5], which gives≈ 500µm
accurate depth maps at a distance of 2m. Furthermore, each
visual scene is captured by FLIR and Basler cameras using
four exposures (1ms, 30ms, 80ms, and 200ms) to enable
HDR experimentation. For Photoneo, a 12-bit HDR image
is captured, allowing for tone mapping exploration.

Lighting. We capture 3 different lighting conditions of
varying difficulty for single exposures, some of them posing
challenges even to HDR-enabled approaches (Fig. 3 (b)).
Roomlight: lux level of 1, 000 to 2, 000, offering the
friendliest lighting conditions. Spotlight: simulates sun-
light with stark shadows, creating scenes with extremely
bright (100, 000 lux) and dark (100 lux) regions, which are
challenging for HDR. Daylight: our robot arm is positioned
close to a large window that exposes the scene to directional
sunlight with large variability due to changes in weather.

5. Towards co-evaluation for co-design
In this section, we demonstrate the unique property of our
novel dataset to enable co-evaluation of cameras, HDR, and
pose estimation algorithms to support the co-design that is
required for highly precise industrial pose estimation.

To that end, we conduct four different ablation experi-
ments. First (Sec. 5.2, Tab. 2 (a)), we evaluate average pose
estimation performance of different camera setups across
all 20 parts in our dataset for different lighting conditions.
Second (Sec. 5.2, Tab. 2 (b)), we analyze the performance
of different cameras on specific parts, some that are chal-
lenging in terms of material and geometry. Third (Sec. 5.3,
Tab. 2 (c)), we quantify the impact of different HDR vari-
ants on performance. Fourth (Sec. 5.4, Tab. 2 (d)), we
demonstrate significant performance gains from polariza-
tion when applying specialized pose refinement. Lastly
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Figure 3. Industrial Plenoptic Dataset. Every physical scene is captured (a) against 3 different backgrounds, (b) under 3 different lighting
conditions, and with 4 exposures. (c) A subset of the 13 cameras fixed at different viewpoints, representing various modalities (RGB,
depth, and polarization). (d) The 20 parts that make up physical scenes in the dataset (row 1: challenging parts).

Camera Basler LR Basler HR FLIR-monoP Photoneo

Lighting MVD Recall MVD Recall MVD Recall MVD Recall

daylight 5.361 0.66 3.078 0.83 4.808 0.70 6.348 0.60
roomlight 4.580 0.69 2.640 0.83 4.875 0.69 5.676 0.63
spotlight 4.898 0.60 3.061 0.77 5.743 0.62 6.646 0.61

Part (see Fig.3d) Hex Manifold Pegboard basket Oblong float Gear 2

Camera MVD Recall MVD Recall MVD Recall MVD Recall

Basler LR 2.359 0.84 6.280 0.27 4.574 0.97 2.580 0.99
Basler HR 1.883 0.87 2.435 0.42 3.141 0.95 1.652 1.00

FLIR-monoP 2.713 0.81 3.681 0.21 4.952 0.85 2.521 0.98
Photoneo 1.633 0.57 10.201 0.14 8.128 0.06 6.521 0.93

(a) Performance of cameras across lighting conditions. (b) Performance of cameras on representative parts.
Lighting HDR Method Median MVD Recall Precision

Spotlight No HDR 3.271 0.72 0.960
Debevec [19] 3.300 0.74 0.951

Robertson [56] 3.351 0.74 0.952
Mertens [50] 3.061 0.77 0.963

Camera Part (see Fig.3d) Modality for Refinement [17] Median MVD Recall Precision

FLIR-MonoP Pipe Fitting None 9.92 0.98 1.00
Gray 9.66 0.98 1.00
AOLP / DOLP 8.43 0.98 1.00

Oblong Float None 6.17 0.94 1.00
Gray 5.91 0.94 1.00
AOLP / DOLP 5.41 0.94 1.00

(c) Performance of HDR in challenging light. (d) Performance of Polarization on dark, highly reflective parts.

Table 2. Our dataset allows for the evaluation of cameras, modalities, HDR, and algorithms for 6DoF pose estimation against a
variety of geometries, materials, and lighting. We show ablations that are only possible using our dataset.

(Sec. 5.5), we highlight particularly challenging parts.

5.1. Experimental Setup

Pose estimation algorithms. The following experiments
share a set of pose estimation algorithms as the basis for
evaluation. Common across cameras is an object detec-
tion step (standard Mask-RCNN [29] pipeline), followed
by 2D key point estimation and some mechanism for lift-
ing the 2D key points to 6DoF object poses. This mech-
anism depends on the camera setup and consists either of
some form of PnP (for multi-view images, candidates in-
clude [18, 23, 40, 41, 59]) or ICP (for structured light sen-
sors, candidates include [23, 30, 53, 60, 72]). For the for-
mer, we found key points from [14] (heatmap regression
with a High Resolution Network [66]) to work best. We
apply the same key point network to multiple views and
combine it with multi-view re-projection error minimiza-
tion [18], implemented in Open-CV [10] and Ceres [6]. We
select candidate key points using the standard farthest point

method [53]. For the latter, we use the same key points, but
in combination with 3D-3D least-squares optimization [30].
We generate training data with a rendering pipeline using
NVISII [51] and generate data similar to BlenderProc [20].

We experiment with both traditional [17] (applied to
gray-scale images of any camera) and polarization-aware
edge refinement (applied to edges from the angle and de-
gree of linear polarization (AOLP / DOLP), Tab. 2 (d)).

Evaluation. We report median MVD (mm, Sec. 3.1), pre-
cision, and recall. True positives are determined as objects
within 10mm and 10 degrees of annTGO.

5.2. Camera Ablation

In Tab. 2 (a, b) we compare the performance of differ-
ent cameras for various lighting conditions, object geome-
tries, and materials. We find that high-resolution multi-view
(Basler-HR) is the most robust, however in some cases high-
resolution structured light (Photoneo) is more accurate.
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Lighting conditions. In Tab. 2(a), high-resolution multi-
view cameras (Basler-HR) consistently outperform other
cameras on average across all lighting conditions and met-
rics. However, all cameras struggle in spotlight conditions
when compared to performance in roomlight. Multi-view
RGB cameras face challenges due to dark and bright regions
being close together, while Photoneo’s use of a red/NIR
laser leads to ambient light interference [64] with the high-
intensity spotlight. This underscores the need for future re-
search on integrating HDR algorithms and pose estimators
to improve performance in challenging lighting conditions.

Object geometry. Tab. 2 (b) gives pose estimation results
for different object geometries and materials. As before,
Basler-HR has the edge in terms of performance for most
parts. Hex Manifold is one instance where high-resolution
structured light is more accurate as it is a large part with
many holes as geometric features. On the contrary, Pho-
toneo has the worst performance on a large part like Peg-
board basket, because it is made up of thin structures that
are detected better with the additional RGB resolution of
Basler-HR (Recall 0.42 vs. 0.14 of Photoneo and 0.27 of
Basler-LR). Finally, Gear 2 is a simple part where all cam-
eras achieve high recall. Results for all other parts are avail-
able in the supplement.

Object material. Tab. 2 (b) highlights the performance
of Oblong float, a particularly challenging object with a
dark, highly reflective surface, obtaining poor performance
among all objects in the table. Structured light (Photoneo)
is particularly impacted by the photometric properties (re-
call of 0.06), as the laser of the structured light scanner will
not reflect back into the camera. Multi-view camera setups
(Basler-LR, Basler-HR, FLIR) are less impacted by this ef-
fect, and polarization can further improve (Tab. 2 (d)).

5.3. HDR Ablation

Tab. 2 (c) compares the performance of three standard
HDR algorithms [19, 50, 56] available in OpenCV [10] on
the best-performing Basler-HR cameras, in the challenging
spotlight lighting condition. We find that Mertens has the
best performance. Visually, we also find that it retains most
of the contrast in bright lighting (Fig. 5).

5.4. Polarization Ablation

Tab. 2 (d) shows that polarization can significantly improve
the quality of 2D edge refinement [17] in dark-on-dark
scenes leading to improved MVD. We run this experiment
on two difficult objects with dark, highly reflective surfaces
in our dataset, Pipe fitting and Oblong float, and the dark
and shiny background category (Fig. 1 (top)). For both ob-
jects, edge refinement [17] on the angle and degree of linear
polarization edges outperforms the grayscale edges.

Thin
Long

Dark Reflective

Small

Challenging Parts

Figure 4. Our dataset contains industry relevant challenging
parts. We compare median MVD across different parts and show
the challenging ones leading to poor pose accuracy.

Mertens HDR  Predicted poses  80 ms

Figure 5. Mertens HDR (middle) improves lighting robustness
compared to a single exposure (left). Our dataset offers multiple
exposures to allow co-design of pose estimation and HDR.

5.5. Challenging Parts

In Fig. 4, we order all 20 parts of our dataset according to
the performance of our best-performing camera on average,
Basler-HR. We highlight the 5 parts with more than 3mm
MVD, and show they all fall into three categories: thin,
small, and dark reflective. We feel that these three chal-
lenges remain in industrial pose estimation, and we believe
the co-design of camera-configurations, HDR, and pose es-
timation algorithms will be important to address them.

6. Conclusions

In this paper, we have introduced a novel Industrial Plenop-
tic Dataset of 20 parts, paired with a scalable and accurate
Robot Consistency evaluation methodology, to enable co-
evaluation of camera systems, HDR, and 6DoF pose esti-
mation algorithms. To that end, we have made two im-
portant contributions. First, we have validated the evalu-
ation method both in theory and in synthetic experiments.
And second, we have highlighted initial directions of co-
evaluation based on our novel dataset that we hope will in-
spire future research and facilitate the step to real-world,
high-precision industrial applications.
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[40] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. Cosypose: Consistent multi-view multi-object 6d pose
estimation. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XVII 16, pages 574–591. Springer, 2020. 7

[41] Alan Li and Angela P Schoellig. Multi-view keypoints
for reliable 6d object pose estimation. arXiv preprint
arXiv:2303.16833, 2023. 7

[42] Jiehong Lin, Zewei Wei, Zhihao Li, Songcen Xu, Kui Jia,
and Yuanqing Li. Dualposenet: Category-level 6d object
pose and size estimation using dual pose network with re-
fined learning of pose consistency. CoRR, abs/2103.06526,
2021. 1

[43] Sanneman Lindsay and Julie Fourie. The state of indus-
trial robotics: Emerging technologies, challenges, and key
research directions. 2020. 1

[44] Xingyu Liu, Rico Jonschkowski, Anelia Angelova, and Kurt
Konolige. Keypose: Multi-view 3d labeling and keypoint
estimation for transparent objects. In CVPR, 2020. 1, 2, 3

[45] Xingyu Liu, Shun Iwase, and Kris M. Kitani. Stereobj-1m:
Large-scale stereo image dataset for 6d object pose estima-
tion. In ICCV, 2021. 1, 2, 3

[46] Michel Loeve. Probability theory 1 (4th ed.). Springer, 1977.
4

[47] Fabian Manhardt, Manuel Nickel, Sven Meier, Luca Minci-
ullo, and Nassir Navab. CPS: class-level 6d pose and shape
estimation from monocular images. CoRR, abs/2003.05848,
2020. 1

[48] Pat Marion, Peter R. Florence, Lucas Manuelli, and Russ
Tedrake. Labelfusion: A pipeline for generating ground truth
labels for real rgbd data of cluttered scenes. In ICRA, 2018.
1, 2

[49] Jeremy A. Marvel, Joe Falco, and Tsai Hong. Ground truth
for evaluating 6 degrees of freedom pose estimation systems.
In Proceedings of the Workshop on Performance Metrics for
Intelligent Systems, page 69–74, New York, NY, USA, 2012.
Association for Computing Machinery. 3

[50] Tom Mertens, Jan Kautz, and Frank Van Reeth. Exposure
fusion: A simple and practical alternative to high dynamic
range photography. In Computer graphics forum, pages 161–
171. Wiley Online Library, 2009. 7, 8

[51] Nathan Morrical, Jonathan Tremblay, Yunzhi Lin, Stephen
Tyree, Stan Birchfield, Valerio Pascucci, and Ingo Wald.
Nvisii: A scriptable tool for photorealistic image generation.
arXiv preprint arXiv:2105.13962, 2021. 7

[52] Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter
Fox. Latentfusion: End-to-end differentiable reconstruction
and rendering for unseen object pose estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020. 1

[53] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. Pvnet: Pixel-wise voting network for 6dof pose
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4561–
4570, 2019. 7

[54] Cody J. Phillips, Matthieu Lecce, and Kostas Daniilidis. See-
ing glassware: from edge detection to pose estimation and
shape recovery. In RSS, 2016. 1

[55] Colin Rennie, Rahul Shome, Kostas E Bekris, and Alberto F
De Souza. A dataset for improved rgbd-based object de-
tection and pose estimation for warehouse pick-and-place.
IEEE Robotics and Automation Letters, 1(2):1179–1185,
2016. 1, 2

[56] Mark A Robertson, Sean Borman, and Robert L Stevenson.
Dynamic range improvement through multiple exposures. In
Proceedings 1999 international conference on image pro-
cessing (Cat. 99CH36348), pages 159–163. IEEE, 1999. 7,
8

[57] Peter De Roovere, Steven Moonen, Nick Michiels, and
Francis Wyffels. Dataset of industrial metal objects.
arXiv:2208.04052v1, 2022. 2, 3

[58] Tushar Sandhan and Jin Young Choi. Anti-glare: Tightly
constrained optimization for eyeglass reflection removal. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1241–1250, 2017. 2

[59] Ivan Shugurov, Ivan Pavlov, Sergey Zakharov, and Slobodan
Ilic. Multi-view object pose refinement with differentiable
renderer. IEEE Robotics and Automation Letters, 6(2):2579–
2586, 2021. 7

[60] Chen Song, Jiaru Song, and Qixing Huang. Hybridpose: 6d
object pose estimation under hybrid representations. In Pro-

22700



ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 431–440, 2020. 7

[61] Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and
Tae-Kyun Kim. Latent-class hough forests for 3d object de-
tection and pose estimation. In ECCV, 2014. 1, 2, 3

[62] Jonathan Tremblay, Thang To, and Stan Birchfield. Falling
things: A synthetic dataset for 3d object detection and pose
estimation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
2018. 2

[63] Stephen Tyree, Jonathan Tremblay, Thang To, Jia Cheng,
Terry Mosier, Jeffrey Smith, and Stan Birchfield. 6-dof pose
estimation of household objects for robotic manipulation:
An accessible dataset and benchmark. In International Con-
ference on Intelligent Robots and Systems (IROS), 2022. 1,
2, 3

[64] Sophie Voisin, Sebti Foufou, Frédéric Truchetet, David Page,
and Mongi Abidi. Study of ambient light influence for three-
dimensional scanners based on structured light. Optical En-
gineering, 46(3):030502–030502, 2007. 8

[65] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J. Guibas. Normalized object
coordinate space for category-level 6d object pose and size
estimation. In CVPR, 2019. 1, 2

[66] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep
high-resolution representation learning for visual recogni-
tion. TPAMI, 2019. 7

[67] Pengyuan Wang, HyunJun Jung, Yitong Li, Siyuan Shen,
Rahul Parthasarathy Srikanth, Lorenzo Garattoni, Sven
Meier, Nassir Navab, and Benjamin Busam. Phocal: A
multi-modal dataset for category-level object pose estima-
tion with photometrically challenging objects. In CVPR,
2022. 1, 2, 3

[68] Lawrence B Wolff. Polarization vision: a new sensory ap-
proach to image understanding. Image and Vision comput-
ing, 15(2):81–93, 1997. 2

[69] Xuesong Wu, Hong Zhang, Xiaoping Hu, Moein Shakeri,
Chen Fan, and Juiwen Ting. Hdr reconstruction based on the
polarization camera. IEEE Robotics and Automation Letters,
5(4):5113–5119, 2020. 2

[70] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. In Robotics:
Science and Systems (RSS), 2018. 1, 2

[71] Jun Yang, Yizhou Gao, Dong Li, and Steven L. Waslander.
Robi: A multi-view dataset for reflective objects in robotic
bin-picking. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 9788–9795,
2021. 1, 2, 3

[72] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Dpod:
6d pose object detector and refiner. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 1941–1950, 2019. 1, 7

[73] Xuaner Zhang, Ren Ng, and Qifeng Chen. Single image re-
flection separation with perceptual losses. In Proceedings of

the IEEE conference on computer vision and pattern recog-
nition, pages 4786–4794, 2018. 2

[74] Chu Zhou, Yufei Han, Minggui Teng, Jin Han, Si Li, Chao
Xu, and Boxin Shi. Polarization guided hdr reconstruction
via pixel-wise depolarization. IEEE Transactions on Image
Processing, 32:1774–1787, 2023. 2

22701


	. Introduction
	. Related Work
	. Industrial Datasets
	. Evaluation methods

	. Scalable, Accurate Evaluation
	. Robot Consistency
	Pose Accuracy Metrics
	Scenes with Multiple Objects

	. Theoretical Validation
	. Synthetic Validation

	. Industrial Plenoptic Dataset
	. Setup

	. Towards co-evaluation for co-design
	. Experimental Setup
	. Camera Ablation
	. HDR Ablation
	. Polarization Ablation
	. Challenging Parts

	. Conclusions

