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Abstract

Geometry-agnostic system identification is a technique
for identifying the geometry and physical properties of an
object from video sequences without any geometric as-
sumptions. Recently, physics-augmented continuum neural
radiance fields (PAC-NeRF) has demonstrated promising
results for this technique by utilizing a hybrid Eulerian–
Lagrangian representation, in which the geometry is rep-
resented by the Eulerian grid representations of NeRF, the
physics is described by a material point method (MPM),
and they are connected via Lagrangian particles. However,
a notable limitation of PAC-NeRF is that its performance
is sensitive to the learning of the geometry from the first
frames owing to its two-step optimization. First, the grid
representations are optimized with the first frames of video
sequences, and then the physical properties are optimized
through video sequences utilizing the fixed first-frame grid
representations. This limitation can be critical when learn-
ing of the geometric structure is difficult, for example, in
a few-shot (sparse view) setting. To overcome this limita-
tion, we propose Lagrangian particle optimization (LPO),
in which the positions and features of particles are opti-
mized through video sequences in Lagrangian space. This
method allows for the optimization of the geometric struc-
ture across the entire video sequence within the physical
constraints imposed by the MPM. The experimental results
demonstrate that the LPO is useful for geometric correction
and physical identification in sparse-view settings.1

1. Introduction
System identification is a technique used to identify the ge-
ometry and physical properties of an object based on visual
observations. It has been actively studied in computer vi-
sion and physics because of its wide range of applications,
including 3D reproduction, environmental understanding,
and content creation. To solve this problem in a realistic
environment, it is important to adequately address both the
extrinsic geometry structure and the intrinsic physical prop-

1Video samples are available at https://www.kecl.ntt.co.
jp/people/kaneko.takuhiro/projects/lpo/.
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Figure 1. Impact of the proposed Lagrangian particle optimiza-
tion (LPO) in sparse-view geometric-agnostic system identifica-
tion. We aim to identify the geometry and physical properties of
an object from visual observations without any geometric assump-
tions in severe (e.g., sparse-view) settings. As shown in (b), a
standard PAC-NeRF [41] has difficulty learning the geometry in a
sparse-view setting (particularly, when the number of viewpoints
is three). Consequently, it also fails to estimate the physical prop-
erties (Young’s modulus E and Poisson’s ratio µ). As shown in (c),
LPO is useful for correcting this failure and succeeds in improving
the identification of both geometry and physical properties.

erties. For example, to identify the geometry and physical
properties of an object from the observation that it collides
with the ground, it is necessary to understand not only the
appearance and shape change in the geometry but also other
internal factors in physics which are necessary to explain
this phenomenon without any discrepancies over time. Gen-
erally, this problem is ill-posed and challenging to resolve.
However, the emergence of powerful geometric represen-
tations by neural fields [82], 2D–3D connections by neural
rendering [74], and trainable physical simulations using dif-
ferentiable physical simulators [1] provide clues for solving
this problem. For instance, previous studies [34, 35, 47]
succeeded in estimating physical properties such as veloc-
ity, mass, friction, inertia, and elasticity directly from video
sequences by combining differentiable physical simulators
with differentiable renderers.

Although these studies have yielded promising results
in terms of physical property estimation, their applicabil-
ity is restricted by the assumption that the geometric struc-
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ture of a scene is completely known, which makes it diffi-
cult to apply them in practical scenarios. To eliminate this
assumption, geometry-agnostic system identification, which
is a technique for identifying the geometry and physical
properties of an object from visual observations without any
geometric assumptions, has been studied. Specifically, a
pioneering model involves physics-augmented continuum
neural radiance fields (PAC-NeRF) [41], which is an exten-
sion of NeRF [50] that is enforced to follow the conserva-
tion laws of continuum mechanics. PAC-NeRF obtains this
functionality utilizing a hybrid Eulerian–Lagrangian repre-
sentation, that is, the geometry (volume density and color
fields) is represented with the Eulerian grid representations
of NeRF [72], which is transformed into a material space via
Lagrangian particles, and physical simulation is conducted
on the particles using a material point method (MPM) (par-
ticularly, differentiable MPM (DiffMPM) [32]). Because
all modules are differentiable, PAC-NeRF can be trained
directly with multi-view video sequences and can optimize
the geometry and physics without explicit supervision.

Although PAC-NeRF has enabled the tackling of new
tasks, its notable limitation is that its performance is sen-
sitive to the learning of the geometry from the first frames
of the video sequences owing to its two-step optimization.
First, the grid representations were trained with the first
frames of the video sequences, and then the physical prop-
erties were optimized across the video sequences by utiliz-
ing the frozen first-frame grid representations. This limita-
tion makes it difficult to apply it to cases in which geome-
try learning is difficult, for example, in a few-shot (sparse-
view) setting, as shown in Figure 1(b).

One possible solution is to train the Eulerian grid rep-
resentations using all video sequences and not just the first
frame. However, a critical problem with this approach is
that Eulerian grid representations cannot be trained with ex-
plicit physical constraints on the particles because they are
optimized in Eulerian (i.e., world) space and cannot reflect
all physical phenomena occurring in Lagrangian (i.e., ma-
terial or particle) space; for example, they cannot propagate
gradients calculated for particle positions.

To solve this problem, we propose Lagrangian parti-
cle optimization (LPO), in which the positions and features
(i.e., volume density and color) of the particles are opti-
mized in Lagrangian space and not in Eulerian space. Con-
trary to the abovementioned possible solution, this method
allows for the optimization of the geometric structure across
video sequences with explicit physical constraints on the
particles imposed by the MPM. Thus, the gradients calcu-
lated for the particle positions are reflected.

Furthermore, LPO is useful not only for geometry cor-
rection, but also for corrections to the physical identifica-
tion because this task is closely related, that is, an accu-
rate geometry is useful for accurately identifying the phys-
ical properties, and vice versa. This motivated us to uti-
lize the geometry corrected by LPO to re-identify the phys-

ical properties and propose iterative geometry–physics op-
timization for gradually seeking the optimized states. Fig-
ure 1(c) shows the effectiveness of this method.

We evaluated the effectiveness of LPO in sparse-view
settings. In particular, we first applied LPO to a pretrained
PAC-NeRF and demonstrated that LPO is useful for cor-
recting geometric structures through video sequences. Sub-
sequently, we employed LPO in iterative geometry–physics
optimization and demonstrated that LPO contributes to im-
proving the performance of physical identification. Abla-
tion and comparative studies were conducted to determine
the importance of each component.

Our contributions can be summarized as follows:
• To improve the performance of geometry-agnostic system

identification, we propose LPO, which optimizes the po-
sition and features of the particles in Lagrangian space
to optimize the geometrical structures across video se-
quences within the physical constraints of an MPM.

• We propose iterative geometry–physics optimization to
utilize the geometry corrected by LPO for re-identifying
physical properties in an iterative manner.

• We experimentally demonstrated that LPO is useful for
geometric correction and physical identification in sparse-
view settings. We also provide detailed analyses and ex-
tended results in the Supplementary Material. Video sam-
ples are available at the link indicated on the first page of
this manuscript.1

2. Related work
Neural radiance fields (NeRF). Novel view synthesis is
a fundamental problem in computer vision and graphics
and has been addressed in a large body of research. Re-
cently, a substantial breakthrough has been achieved with
the emergence of neural fields that represent a scene utiliz-
ing a coordinate-based network (e.g., a survey paper [82]).
NeRF [50] is a representative variant of such neural fields
and has attracted significant attention because of its geo-
metrical consistency and high-fidelity novel view synthe-
sis. Various studies have been conducted since the emer-
gence of NeRF. These can be categorized into three top-
ics. (1) Improvements to the image quality and expanding
of the applicable settings, such as wild or few-shot settings
(e.g., [2–4, 8, 11, 12, 14, 30, 33, 48, 51, 56, 65, 76, 79, 85,
87, 89, 91]), (2) speeding up the training or inference speed
(e.g., [4, 6, 9, 18, 20, 26, 29, 30, 38, 40, 45, 46, 52, 53, 58,
63, 64, 72, 80, 81, 86]), and (3) incorporating other models
or functionalities, such as generative models [22, 28, 71]
(e.g., [5–7, 15, 23, 37, 54, 55, 59, 67, 70, 84]) and dynam-
ics/physics (e.g., [13, 19, 24, 25, 41, 43, 57, 60, 68, 75, 90]).
Among these, this study relates to the first in terms of its ap-
plication to few-shot settings. This study relates to the third
in terms of seeking physics-informed models. As studies
on NeRF are benefiting from developments in adjacent cat-
egories, applying our ideas to other categories and models
will be an interesting future research direction.
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NeRF with dynamics/physics. As mentioned above,
NeRFs with dynamics/physics have been actively studied
(e.g., [13, 19, 24, 25, 41, 43, 57, 60, 68, 75, 90]). These
studies have one characteristic in common: they learned
time-varying neural fields from video sequences. These can
be roughly categorized into two models: (1) non- (or weak)
physics-informed models (e.g., [19, 25, 43, 57, 60, 68, 75,
90]) and (2) physics-informed models (e.g., [13, 24, 41]).
The advantage of the first is that it can be applied to scenes
or objects that are difficult to describe physically; how-
ever, its disadvantage is that it requires a large amount
of training data to learn dynamics from scratch, and the
learned representations are not necessarily interpretable be-
cause they are not based on physics. The advantage of
the second is that it can obtain interpretable representa-
tions based on physics; however, the disadvantage is that
its application is limited to physically describable objects
or scenes. In particular, PI-NeRF [13] targets smoke scenes
and does not address the boundary conditions; therefore, it
cannot handle solid or contact materials. NeuroFluid [24]
focuses on fluid dynamics grounding and solves it using an
intuitive physics-based approach in which formal instruc-
tion in physics is not explicitly defined. In contrast, PAC-
NeRF [41] is based on a principled and interpretable phys-
ical simulator and can be applied to various materials, in-
cluding Newtonian/non-Newtonian fluids, granular media,
deformable solids, and plasticine. This study focused on the
PAC-NeRF and attempted to widen its applicability while
prioritizing its interpretability. However, a Lagrangian par-
ticle representation is commonly utilized in physics (e.g.,
NeuroFluid [24]2); therefore, applying our ideas, that is,
LPO, to other models is an interesting research topic.
NeRF for few-shot (sparse-view) settings. In practice, it is
often laborious or impractical to collect multi-view images.
Recent studies [8, 12–14, 33, 56, 65, 68, 79, 85, 87, 89] ad-
dressed this problem by refining NeRF such that it could
be applied to few-shot (sparse-view) settings. These meth-
ods can be roughly divided into three approaches. (1) Reg-
ularization using external models. For example, normal-
izing flow [16]-based [56], VGG [69]-based [89], depth-
based [14, 65, 79], and CLIP [62]-based [33] regulariza-
tions have been proposed. (2) Utilization of general and
transferable models [8, 12, 68, 87]. They are trained using
external datasets, and in several studies, they are finetuned
for each scene. (3) Introduction of advanced training meth-
ods, such as gradual training to prevent overfitting to sparse
views, including frequency regularization [85] and layer-
by-layer growing strategies [13]. Among these categories,
the proposed LPO is categorized as the third one, that is,
optimization is conducted for each scene, and external mod-
els/datasets are not required. The main difference between

2Note that NeuroFluid optimizes the transition probability of particles
under the assumption that the initial particle positions are known, that is,
fixed. In contrast, LPO optimizes the initial particle positions to correct the
geometry estimation of the first frames. Therefore, NeuroFluid and LPO
are complementary.

the LPO and previous methods is that LPO attempts to opti-
mize geometric structures through video sequences with the
physical constraints of an MPM. However, previous studies
have not sufficiently considered these constraints. Owing to
this difference in applications, the proposed method is com-
plementary to, rather than competitive with, other methods.
System identification of soft bodies. Soft bodies are not
only high-dimensional, but also allow large deformations;
therefore, it is challenging to identify their geometry and
physical properties. Typical methods can be categorized
into three types. (1) Gradient-free methods [73, 77], (2)
neural network-based methods [42, 66, 83], and (3) dif-
ferentiable physics-simulation-based methods [10, 17, 21,
27, 35, 41, 47, 61]. The strength of the methods in the
first and second categories is that they are flexible; how-
ever, they have difficulty achieving a high accuracy owing
to their black-box modeling. Methods in the third category
require sophisticated modeling to fill the gap between sim-
ulations and the real world; however, they have recently
demonstrated promising results owing to advancements in
differentiable physical simulators. The third category can
be further divided into two subcategories. (i) Methods that
assume that watertight geometric mesh representations of
objects are available [17, 21, 27, 35, 47, 61] and (2) methods
that do not assume this [10, 41]. Among these methods, we
focused on the final category, PAC-NeRF [41], which pri-
oritizes general and fast characteristics. Specifically, PAC-
NeRF adopts an MPM that can be applied to various ma-
terials, including elastic objects, sand [39], fluids [36], and
foam [88]. In particular, PAC-NeRF utilizes a differentiable
MPM (DiffMPM) [32] to construct a fully differentiable
simulation rendering system. This study is based on this
advancement. In particular, sensitivity to geometry learn-
ing from the first frames is one of the bottlenecks of PAC-
NeRF. Therefore, this study focused on alleviating this bot-
tleneck and attempted to widen its applicability to severe
(e.g., sparse-view) settings.

3. Method
In this section, we first define the problem statement (Sec-
tion 3.1) and then briefly review PAC-NeRF [41], upon
which our method is built (Section 3.2). Subsequently, we
explain the main idea of the proposed method, that is, geo-
metric correction using LPO (Section 3.3), and then intro-
duce its application to physical identification (Section 3.4).

3.1. Problem statement
Given a set of multi-view video sequences, our objectives
are as follows: (1) to recover geometric representations3

of the target dynamic object (particularly continuum ma-
terials) through video sequences and (2) identify its phys-
ical properties. More formally, the training data comprise

3Here, both appearance and shape are treated as part of the geometric
representation. We attempted to recover both.
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Figure 2. Training pipelines of PAC-NeRF (1)(2) and the proposed LPO (3).

ground truth color observations, that is, Ĉ(r, t). Here,
r(s) ∈ R3 is a camera ray defined as r(s) = o+ sd, where
o ∈ R3 is the camera origin, d ∈ S2 is the view direction,
and s ∈ [sn, sf ] is a distance from the origin. r is sam-
pled from a set of ray collections in the training data, that
is, R̂. t ∈ R+ is a time variable, and during training, it is
sampled from {t0, . . . , tN−1}, where N is the number of
frames. Given these training data, we attempt to (1) pre-
dict the color observation C(r, t) that can recover Ĉ(r, t)
from the training data and those for novel views, and (2)
identify the physical properties. In particular, to widen its
applicability, we addressed a scenario in which input views
are sparse, that is, R̂ is limited.

3.2. Preliminary: PAC-NeRF

To solve the abovementioned problem, PAC-NeRF employs
three core components: a continuum NeRF, particle-grid in-
terconverters, and a Lagrangian field.

Continuum NeRF. PAC-NeRF extends the standard (static)

NeRF to a continuum NeRF to address the dynamics of con-
tinuum materials. To achieve this, a standard NeRF is first
extended to a dynamic NeRF [60] for dynamic scenarios.
In a dynamic NeRF, the volume density and color fields
are defined as σ(r, t) and c(r,d, t), respectively, where the
time variable t is introduced to represent the dynamics. The
color of each pixel C(r, t) is calculated using volume ren-
dering [49]

C(r, t) =

∫ sf

sn

T (s, t)σ(r(s), t)c(r,d, t)ds+ cbgT (sf , t),

(1)

T (s, t) = exp

(
−
∫ s

sn

σ(r(u), t)du

)
, (2)

where cbg denotes the background color. The model is
trained with pixel-wise loss.

Lpixel =
1

N

N−1∑
i=0

1

|R̂|

∑
r∈R̂

∥C(r, ti)− Ĉ(r, ti)∥22. (3)
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Furthermore, dynamic NeRF is extended to a continuum
NeRF to represent continuum materials. To achieve this,
conservation laws for the velocity field are imposed on the
volume density and color fields.

Dσ

Dt
= 0,

Dc

Dt
= 0, (4)

whereas the material derivative of an arbitrary time-
dependent field ϕ(x, t) is defined as Dϕ

Dt = ∂ϕ
∂t + v · ∇ϕ.

Here, v is the velocity field and follows momentum conser-
vation for continuum materials:

ρ
Dv

Dt
= ∇ · T + ρg, (5)

where ρ is the physical density field, T is the internal
Cauchy stress tensor, and g is the acceleration owing to
gravity. This equation is solved using DiffMPM [32].
Particle-grid interconverters. As shown in Figure 2(1)(2),
in PAC-NeRF, a physical simulation is conducted in La-
grangian particle space using DiffMPM [32], whereas neu-
ral rendering is performed in Eulerian grid space with a
discretized voxel-based NeRF [72]. To bridge these two
spaces, grid-to-particle (G2P) and particle-to-grid (P2G)
conversions are conducted.

FP
p ≈

∑
i

wipFG
i , FG

i ≈
∑

p wipFP
p∑

p wip
, (6)

where F∗
∗ is a field (e.g., volume density or color field); P

and G denote particle and grid views, respectively; i and p
indicate the index of the grid node and particle, respectively;
and wip is the weight of the trilinear shape function defined
on i and evaluated at p.
Lagrangian field. As shown in Figure 2(1), during train-
ing, the Eulerian voxel field FG′

(t0) is optimized for the
first frames of the video sequences. Subsequently, this field
is converted into a Lagrangian particle field FP (t0) using
G2P, in which the positions of the particles are determined
by random sampling around voxel grids. The geometric
shape is represented in Lagrangian space by removing the
particles whose alpha values are small, that is, the remain-
ing particles represent the shape of the object. As shown
in Figure 2(2), the particle field in the next step, that is,
FP (t1), where t1 = t0 + δt and δt is the duration of the
simulation time step, is calculated based on FP (t0) using
DiffMPM [32]. After this process, FP (t1) is converted to
the Eulerian voxel field FG(t1) using P2G, and pixels are
rendered based on this field using voxel-based volume ren-
dering [72], in which the volume density and color of a sam-
ple on a ray are rendered as follows:

σ(x, t) = softplus(interp(x, σG)), (7)

c(x,d, t) = MLP(interp(x, cG),d), (8)

where σG and cG denote the volume density and color
fields, respectively, discretized on fixed voxel grids.

3.3. Geometric correction with LPO

As explained above, in PAC-NeRF, the Eulerian voxel fields
FG′

(t0) are optimized for the first frames of the video se-
quences (Figure 2(1)). These are fixed while optimizing
the physical properties using video sequences (Figure 2(2)).
This approach is problematic when the learning of the Eu-
lerian voxel field from the first frames is difficult, for exam-
ple, in sparse-view settings, because failure of this learning
cannot be corrected after the process. This also means that
in dynamic scenes, information over time is useful for cov-
ering a lack of information owing to sparse views; however,
this approach cannot utilize this information to optimize the
volume density and color.

One possible solution is to train FG′
(t0) with the en-

tire video sequence and not just the first frame. However,
in this approach, the optimization targets are limited to the
volume density and color of the grids; therefore, it is diffi-
cult to reflect the physics-based optimization that occurs in
Lagrangian particle space.4 This can cause excessive mod-
ification of the geometry beyond physical constraints.

Alternatively, we developed Lagrangian particle opti-
mization (LPO), in which the geometric structure is opti-
mized not in Eulerian grid space but in Lagrangian particle
space, as shown in Figure 2(3). More formally, in the Eu-
lerian voxel grid optimization, σG (Equation (7)) and cG

(Equation (8)) are optimized for the fixed voxel grid xG.
In contrast, in LPO, not only the volume density and color
fields of the particles, that is, σP and cP , but also the par-
ticle position, that is xP , are optimized.5 Because xP is
defined in Lagrangian space, it can reflect the physical con-
straints of the MPM. Consequently, we can optimize the
geometric structures within the physical allowance.

3.4. Physical identification with LPO

Identifying both the geometry and physical properties from
limited observations is ill-posed and challenging because
there is a chicken-and-egg relationship between the geomet-
ric structure and the physical properties, that is, accurate ge-
ometry estimation is necessary for accurate physical identi-
fication and vice versa. Considering that particle-based geo-
metric correction is highly challenging when there is a large
gap between the ground truth and the predicted pixels owing
to the high-dimensional nature (e.g., in extreme cases, par-
ticles can diverge), in practice, we apply LPO after physical
property optimization, as shown in Figure 2.

However, an interesting question is whether the cor-
rected geometric structures can be utilized to improve the

4More precisely, as explained in Section 3.2, particles are randomly
sampled around equally spaced voxel grids, and the Eulerian voxel fields
(precisely, alpha values calculated from them) are only utilized to mask
them (with a non-differentiable way). Consequently, gradients calculated
for the particle positions cannot propagate to FG′

(t0).
5Note that the values of σP and cP are changed in training but they

are time-invariant, i.e., have the same values across sequences. Therefore,
the conservation laws (Equation (4)) are preserved.

5474



Algorithm 1 Iterative geometry–physics optimization

Input: Ground-truth color observations Ĉ(r̂, t)

r̂ ∈ R̂: Rays from observed viewpoints
t ∈ {t0, . . . , tN−1}: Time

Output: Physical properties
1: for i = 1 to R do
2: // (1) Eulerian static voxel grid optimization
3: if i = 1 then
4: Optimize voxel grids with Ĉ(r̂, t0)
5: else
6: Optimize voxel grids with Ĉ(r̂, t0) and C̆(r̆, t0)
7: end if
8: // (2) Physical property optimization
9: Optimize physical properties with Ĉ(r̂, t)

10: // (3) Lagrangian particle optimization
11: Optimize particles with Ĉ(r̂, t)

12: // (4) Color prediction for unobserved views r̆ ∈ R̆
13: Predict C̆(r̆, t0)
14: end for

identification of the physical properties. We developed it-
erative geometry–physics optimization (Algorithm 1) to an-
swer this question. As described above, we first conduct
PAC-NeRF optimization ((1) and (2)) and then apply LPO
(3). Subsequently, we render the images in the first frame
based on the updated σP , cP , and xP (4). We denote them
as C̆(r̆, t0), where r̆ ∈ R̆ and R̆ is designed such that it
covers the missing area in R̂ in the training data. We re-
train PAC-NeRF from scratch using the combination of the
original Ĉ(r̂, t0) and synthesized C̆(r̆, t0) as training data.
Specifically, to alleviate the negative effect caused by in-
complete geometry correction, which can occur at the be-
ginning of the iterative calculation, we only utilize C̆(r̆, t0)
for the Eulerian static voxel grid optimization and do not
utilize it to optimize the physical properties and particles.

Another possible solution is to update the voxel grids by
applying P2G to the updated σP , cP , and xP instead of (4)
and (1). However, we found that the repeated utilization
of G2P and P2G tends to produce artifacts (such as those
typically occurring in the erosion process) owing to their
approximate nature (Equation (6)).6 Therefore, the full re-
calculation approach described above was adopted.

4. Experiments
4.1. Experimental setup
Two experiments were conducted to investigate the effec-
tiveness of the proposed LPO. First, we evaluated the effec-

6A similar phenomenon was observed in the original study on PAC-
NeRF [41]. Based on this observation, they rendered an image in the first
frame by utilizing the voxel grids obtained after the P2G and G2P con-
versions, that is, FG(t0), instead of the original voxel grids FG′

(t0) to
make the rendering conditions the same as those in other frames.

tiveness of LPO for geometric correction (Section 4.2) and
then we investigated the utility of LPO for physical identifi-
cation (Section 4.3). The main results of these experiments
are presented here, and the detailed analyses, extended re-
sults, and implementation details are provided in the Sup-
plementary Material. Video samples are available at the link
indicated on the first page of this manuscript.1 In this sec-
tion, we provide the experimental setup common to both
experiments and other setups in subsequent sections.
Dataset. We investigated the benchmark performance
on the dataset provided by the original study on PAC-
NeRF [41].7 This dataset comprised nine scenes and
various continuum materials, including Newtonian fluids
(Droplet and Letter with fluid viscosity µ and bulk modulus
κ), non-Newtonian fluids (Cream and Toothpaste with shear
modulus ν, bulk modulus κ, yield stress τY , and plastic vis-
cosity η), granular media (Trophy with friction angle θfric),
deformable solid (Torus and Bird with Young’s modulus E
and Poisson’s ratio ν), and plasticine (Cat and Playdoh with
E, ν, and τY ). In each scene, the objects fall freely under
the influence of gravity and undergo collisions. The ground-
truth simulation data were generated using the MLS-MPM
framework [31]. A photorealistic simulation engine ren-
dered objects under diverse environmental lighting condi-
tions and ground textures. Each scene was captured from 11
viewpoints with cameras evenly spaced on the upper hemi-
sphere, including the object. To evaluate our method under
sparse-view settings, three views were used for training and
the remaining eight views were used for testing. To show
the robustness to the view settings, we provide the results
for the other view settings in Appendix C.
Assumptions and preprocessing. For a fair comparison,
we follow the assumptions and preprocessing used in PAC-
NeRF [41]. It was assumed that the intrinsic and extrin-
sic parameters of the set of static cameras were previously
known. Moreover, it was assumed that collision objects,
such as the ground plane, were previously known. As men-
tioned in [41], this is not difficult to estimate from the ob-
served images. For preprocessing, a video matting frame-
work [44] was applied to remove static background objects
and focus the rendering computation on the target object.

4.2. Evaluation of geometric correction

Compared models. In the first experiment, we investigated
the effectiveness of LPO on the geometric correction (i.e.,
the method described in Section 3.3). Three models were
used as the baseline. (I) PAC-NeRF was the same as that
in the original [41] and was trained with all views, includ-
ing the eight views that were used for testing. We examined
this model to determine the upper bound of its performance.
(II) PAC-NeRF-3v was trained using three views. The train-
ing settings were the same as those for (I) except that the

7Note that although only one dataset was used, this dataset is useful
for assessing the versatility because it includes a wide variety of materials,
surpassing the scope of previous studies (e.g., elastic objects only in [10]).

5475



PAC-NeRF PAC-NeRF-3v +LPO +LPO-F +LPO-P +GO PAC-NeRF-3v† +LPO +LPO-F +LPO-P +GO

PSNR↑ 35.99 27.39 29.22 28.22 28.89 28.33 28.47 30.11 29.31 29.87 29.39
SSIM↑ 0.989 0.978 0.980 0.979 0.980 0.979 0.980 0.982 0.981 0.981 0.981
LPIPS↓ 0.020 0.034 0.032 0.033 0.032 0.033 0.033 0.031 0.032 0.031 0.031

Table 1. Comparison of PSNR↑, SSIM↑, and LPIPS↓ on geometric correction. The scores for each scene and qualitative results are
provided in Table 5 and Figures 3–7, respectively, in the Supplementary Material.

number of views varied. (III) PAC-NeRF-3v† was an im-
proved variant of (II) for sparse-view settings. An interest-
ing question is whether LPO, which is a few-shot learning
method for dynamic scenes, can be used with other few-
shot learning methods, such as those for static scenes. To
answer this question, we adjusted the Eulerian static voxel
grid optimization (Figure 2(1)) of PAC-NeRF-3v, such that
it became robust to sparse views. Specifically, we sched-
uled a surface regularizer to reduce unexpected artifacts, in-
troduced a view-invariant pixel-wise loss to compensate for
the lack of views, and adjusted the training length to pre-
vent overfitting. Details are provided in Appendix A.8 We
applied LPO to both (II) and (III) to investigate the effect
of the initial Eulerian static voxel grid optimization. Here-
after, we denote these variants by +LPO. Furthermore, three
comparative and ablation models were evaluated to deter-
mine the importance of each component. (i) +LPO-F and
(ii) +LPO-P are variants of LPO, in which only the fea-
tures and positions of the particles are optimized. (iii) +GO
optimized Eulerian voxel grids through the entire video se-
quence instead of using Lagrangian particles. (i)–(iii) are
used as alternatives to +LPO. These variants were applied
to both (II) and (III).
Evaluation metrics. We evaluated the performance of the
geometric correction using metrics commonly used to as-
sess the performance of novel view synthesis in NeRF stud-
ies: the peak signal-to-noise ratio (PSNR), structural sim-
ilarity index (SSIM) [78], and learned perceptual image
patch similarity (LPIPS) [92]. In particular, we calculated
the scores using all test data over time.
Results. The results are summarized in Table 1. Our find-
ings are threefold. (1) PAC-NeRF-3v/3v† vs. +LPO. +LPO
improved both baselines in terms of all metrics. In partic-
ular, the utility of +LPO for PAC-NeRF-3v† indicates an
improvement in the Eulerian static voxel grid optimization
and that of LPO are complementary. (2) +LPO vs. +LPO-
F/P. We found that +LPO was superior or comparable to
+LPO-F/P. This is because the feature and position opti-
mizations are complementary. Intuitively, feature optimiza-
tion is useful for correcting features of the appearance that
are invisible in the first frame but visible after the object
has moved. Similarly, position optimization is effective for

8In the preliminary experiments, we examined the previous representa-
tive few-shot learning methods (e.g., DietNeRF [33] and FreeNeRF [85]).
However, we found that they were less stable than PAC-NeRF-3v, possi-
bly because in our experimental settings, the number of views was small
(three) despite the wide range of the views (upper hemisphere), and explicit
voxel representations were more useful than the fully implicit representa-
tion in [33, 85]. However, this study and previous studies are complemen-
tary. Further investigations will be important in future work.

correcting features of the shape that are invisible in the first
frame but visible after the object has moved. In severe (e.g.,
sparse-view) settings, the utilization of both is important.
(3) +LPO vs. +GO. +LPO outperforms +GO, possibly be-
cause +LPO can optimize the geometry adequately within
the physical constraints of the MPM, whereas +GO cannot
because of the absence of an explicit physical constraint.

4.3. Evaluation of physical identification

Compared models. In the second experiment, we verified
the usefulness of LPO for physical identification (i.e., the
method described in Section 3.4). In addition to the models
described in Section 4.2, we examined +None, for which
iterative training (Algorithm 1) was conducted without ge-
ometric correction (i.e., step (3) was skipped). This model
was used to investigate the importance of geometric correc-
tion. For a fair comparison, we set the number of iterations
(i.e., R in Algorithm 1) to four for all models. We use the
superscript 4 (e.g., +LPO4) to specify this.

Evaluation metrics. To evaluate the performance of the
physical identification, we measured the absolute distance
between the ground truth and the estimated physical proper-
ties. For an easy comparison, we calculated these distances
after adjusting the scale (i.e., either a logarithmic scale or
a linear scale) following the study of PAC-NeRF [41]. The
smaller the values, the better was the performance.

Results. The results are summarized in Table 2. Our
findings are fourfold. (1) PAC-NeRF-3v/3v† vs. +LPO4.
+LPO4 improved the physical identification of PAC-NeRF-
3v/3v† in most cases. In particular, the effectiveness of
+LPO4 for PAC-NeRF-3v† indicates that the improvement
in the Eulerian static voxel grid optimization and that of
LPO are complementary for physical identification. (2)
+LPO4 vs. +LPO-F4/P4. In some cases, superiority
depends on the physical properties because the physical
properties interact with each other, and finding the opti-
mal balance is difficult. However, we found that +LPO-
F4/P4 sometimes had obvious difficulties (e.g., PAC-NeRF-
3v+LPO-F4 on Bird and PAC-NeRF-3v†+LPO-P4 on Play-
doh), whereas +LPO4 exhibited good stability. We con-
sider that the joint optimization of the features and posi-
tions is useful for tackling difficult situations. (3) +LPO4

vs. +GO4. +GO4 also experienced apparent difficulties in
some cases (e.g., on Bird). +LPO4 exhibited a more stable
performance. (4) +LPO4 vs. +None4. +None4 sometimes
worsened the performance. The results indicated that sim-
ple iterations were insufficient and that geometric correction
was essential.
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PAC- PAC-
+LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

PAC-
+LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

NeRF NeRF-3v NeRF-3v†

Droplet log10(µ) 0.039 0.140 0.112 0.112 0.119 0.111 0.131 0.136 0.082 0.068 0.067 0.082 0.090
log10(κ) 0.017 1.285 1.628 1.638 1.466 1.675 1.684 1.263 0.106 1.139 0.520 1.520 1.656

Letter log10(µ) 0.041 0.674 0.015 0.026 0.079 0.048 0.530 0.379 0.010 0.087 0.007 0.118 0.436
log10(κ) 0.039 6.772 0.174 0.411 1.040 0.865 6.083 5.229 0.060 0.027 0.127 0.138 5.060

Cream

log10(µ) 0.090 0.311 0.178 0.163 0.234 0.183 0.251 0.179 0.100 0.073 0.065 0.092 0.076
log10(κ) 0.132 0.215 0.158 0.249 0.027 0.028 0.244 0.336 0.121 0.197 0.142 0.193 0.339
log10(τY ) 0.007 0.014 0.004 0.030 0.005 0.006 0.025 0.009 0.006 0.001 0.004 0.010 0.008
log10(η) 0.015 0.281 0.183 0.256 0.083 0.061 0.252 0.195 0.033 0.059 0.079 0.096 0.051

Toothpaste

log10(µ) 0.026 1.891 0.109 0.156 0.119 0.164 0.215 0.252 0.031 0.201 0.005 0.252 0.138
log10(κ) 0.247 1.580 0.601 1.356 0.597 0.648 0.729 1.436 0.673 0.630 0.899 0.590 0.596
log10(τY ) 0.066 0.201 0.114 0.191 0.075 0.250 0.061 0.199 0.093 0.064 0.117 0.149 0.054
log10(η) 0.013 0.373 0.003 0.267 0.013 0.007 0.047 0.212 0.009 0.016 0.005 0.007 0.042

Torus log10(E) 0.019 0.277 0.061 0.008 0.083 0.010 0.054 0.074 0.036 0.026 0.039 0.015 0.074
ν 0.023 0.085 0.001 0.120 0.031 0.074 0.316 0.131 0.007 0.040 0.033 0.050 0.129

Bird log10(E) 0.013 0.449 0.067 0.240 0.074 0.313 0.246 0.123 0.027 0.186 0.039 0.231 0.296
ν 0.029 0.102 0.001 0.372 0.075 0.365 0.581 0.141 0.047 0.072 0.008 0.132 0.145

Playdoh
log10(E) 0.286 0.290 0.116 0.580 0.120 0.304 0.170 0.521 0.133 0.474 2.121 0.232 2.148
log10(τY ) 0.038 0.283 0.165 0.027 0.214 0.196 0.237 0.110 0.173 0.079 1.179 0.197 0.967

ν 0.076 0.495 0.111 0.173 0.109 0.248 0.128 0.212 0.063 0.133 0.110 0.127 0.106

Cat
log10(E) 0.855 1.301 0.973 1.068 1.071 1.127 1.066 1.192 0.706 0.534 0.712 0.783 0.793
log10(τY ) 0.026 0.120 0.107 0.117 0.113 0.086 0.112 0.084 0.067 0.014 0.076 0.069 0.072

ν 0.027 0.044 0.004 0.036 0.069 0.190 0.079 0.118 0.003 0.027 0.007 0.028 0.063

Trophy θfric [rad] 0.048 0.053 0.055 0.051 0.056 0.057 0.054 0.030 0.039 0.041 0.043 0.044 0.039

Table 2. Comparison of the absolute differences between the ground-truth and the estimated physical properties on physical identification.
The smaller the values, the better was the performance. The values of the physical properties (i.e., not the absolute differences) are provided
in Tables 6 and 7 in the Supplementary Material. The qualitative comparisons are presented in Figures 3–9 in the Supplementary Material.

PAC-
NeRF-3v +LPO +LPO4 PAC-

NeRF-3v† +LPO +LPO4

PSNR↑ 27.39 29.22 29.65 28.47 30.11 30.34
SSIM↑ 0.978 0.980 0.982 0.980 0.982 0.983
LPIPS↓ 0.034 0.032 0.030 0.033 0.031 0.029

Table 3. Comparison of PSNR↑, SSIM↑, and LPIPS↓ on geomet-
ric recorrection. The scores for each scene and the qualitative
comparisons are provided in Table 8 and Figures 3–9, respectively,
in the Supplementary Material.

Applications. As mentioned above, there is a chicken-and-
egg relationship between the geometric structure and phys-
ical properties. An interesting question is whether the cor-
rected physical properties can be used to re-estimate the ge-
ometry (the opposite problem). To answer this question,
we investigated the geometry identification performance af-
ter physical re-identification. The results are summarized in
Table 3. These results indicate that accurate physical identi-
fication is useful for improving the geometry identification
performance.

5. Discussion
Based on the above experiments, we demonstrated promis-
ing results for geometric correction and physical identifica-
tion. However, our methods have some limitations. (1) Our
methods require a longer training time due to the introduc-
tion of LPO (Section 3.3)9 and the iterative algorithm (Sec-

9The calculation time of LPO (Figure 2(3)) is almost identical to that
of the main process of physical property optimization (Figure 2(2)) be-
cause the forward and backward processes are identical with different op-
timization targets. Similarly, the calculation times for +LPO-F, +LPO-P,

tion 3.4).10 However, it is not trivial to obtain robustness to
sparse views only by increasing the training time because
overfitting is a typical factor that causes learning to fail.
(2) LPO is sensitive to the state before applying LPO (e.g.,
either PAC-NeRF-3v or -3v†) because solving geometry-
agnostic system identification in sparse-view settings is ill-
posed and challenging. We believe that the advancements
in previous few-shot learning methods (Section 2) and the
newly introduced few-shot learning method with physical
constraints will solve this problem.

6. Conclusion
We proposed LPO to improve PAC-NeRF-based geometric-
agnostic system identification. Our core idea is to optimize
the geometry not in Eulerian space but in Lagrangian space,
utilizing the particles to directly reflect the physical con-
straints of an MPM. The results demonstrate that LPO is
useful for both geometric correction and physical identifi-
cation. Although we focused on PAC-NeRF while prioritiz-
ing its high generality, Lagrangian particles are commonly
employed in physics-informed models (e.g., several studies
discussed in Section 2). We expect that our ideas can be
utilized in other models or tasks.

and +GO were almost identical to those for +LPO, indicating that the im-
provement was attributable to the ingenuity of the algorithm and not to an
increase in the calculation cost. The computation times are discussed in
detail in Appendix B.2.

10The total computation time increases linearly when running Algo-
rithm 1 repeatedly but is adjustable under a quality-and-time trade-off as
discussed in Appendix B.3.
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