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Abstract

Embodied AI, such as autonomous vehicles, suffers from
insufficient, long-tailed data because it must be obtained
from the physical world. In fact, data must be continu-
ously obtained in a series of small batches, and the model
must also be continuously trained to achieve generalizabil-
ity and scalability by improving the biased data distribu-
tion. This paper addresses the training cost and catas-
trophic forgetting problems when continuously updating
models to adapt to incoming small batches from various en-
vironments for real-world motion prediction in autonomous
driving. To this end, we propose a novel continual mo-
tion prediction (CMP) learning framework based on sparse
meta-representation learning and an optimal memory buffer
retention strategy. In meta-representation learning, a model
explicitly learns a sparse representation of each driving en-
vironment, from road geometry to vehicle states, by train-
ing to reduce catastrophic forgetting based on an aug-
mented modulation network with sparsity regularization.
Also, in the adaptation phase, We develop an Optimal Mem-
ory Buffer Retention strategy that smartly preserves diverse
samples by focusing on representation similarity. This ap-
proach handles the nuanced task distribution shifts charac-
teristic of motion prediction datasets, ensuring our model
stays responsive to evolving input variations without requir-
ing extensive resources. The experiment results demonstrate
that the proposed method shows superior adaptation per-
formance to the conventional continual learning approach,
which is developed using a synthetic dataset for the contin-
ual learning problem.

1. Introduction

For autonomous driving, reliable motion prediction in vari-
ous driving environments is essential. However, while cur-
rent motion prediction studies perform well on given bench-
mark datasets, their performance deteriorates significantly
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Figure 1. Continual model update problem for scalability to
changing environments.

in changed environments, for example, new driving patterns
due to different road types never seen before [1]. Since
the driving environment is non-stationary and changes over
time and place, it is necessary to update the motion pre-
diction model seamlessly under changing environments to
maintain reliable performance as shown in Fig. 1.

Joint training described in [25], as an example is a rep-
resentative conventional method for such a model update.
This method re-trains the model with all existing datasets
and data from new environments upon each update. There-
fore, it guarantees decent performance across all environ-
ments by embracing the entirety of the data distribution.
However, it demands substantial training resources, which
escalate as data volume increases due to the redundant train-
ing inherent in the constant update process. Moreover, per-
formance degradation in data-scarce environments is a no-
table challenge stemming from the learning’s bias toward
more abundantly represented data. Conversely, transfer
learning [28] adopts a more streamlined approach by uti-
lizing solely the data from new environments for learning,
significantly enhancing the efficiency of the model update
process. However, this method encounters a notable limi-
tation: it struggles to retain previously acquired knowledge
while adjusting to a specific target environment, posing a
challenge to preserving learned experiences.

To tackle the above problem, continual learning, which
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focuses on updating models in response to sequences of data
from varying distributions, has emerged as a promising area
of research. While numerous studies are in progress, the
majority are focused on foundational research domains, like
image classification [42]. Remarkably, the domain of mo-
tion prediction remains largely unexplored. While a few of
studies have been studied adaptations between specific road
types [41] or datasets [19], the field has yet to embrace and
expand upon research into a continual model update frame-
work.

Therefore, this study addresses the significant challenge
of performance degradation in motion prediction models
due to changes in driving environments. We introduce a
groundbreaking Continual Motion Prediction (CMP) learn-
ing framework designed to mitigate catastrophic forgetting
of prior knowledge while efficiently assimilating new envi-
ronmental data. Our innovative CMP framework unfolds in
two strategic phases: first, a generic meta-representation is
cultivated during the pre-training phase, followed by imple-
menting an optimal memory buffer retention strategy dur-
ing the adaptation phase. This dual-step approach promises
a robust solution to the perennial issue of balancing past
learning with new experiences.

In preparation for the continual model update, our mo-
tion prediction model undergoes a vital initial phase termed
pre-training. During this stage, the model is trained to
strategically acquire sparse representations to mitigate in-
terference from subsequent updates with new data. By mas-
tering distinct representations from each input distribution
within the constraints of a limited model capacity, we aim
to minimize interference from disparate inputs’ overlap. To
achieve this objective, we undertake representation learn-
ing, targeting the reduction of catastrophic forgetting loss
induced through simulated scenarios of continual model up-
dates based on a modulation network with sparsity regu-
larization. This approach ensures our model is primed to
seamlessly adapt to evolving datasets while preserving es-
sential knowledge from past experiences. In the adaptation
phase, our model integrates and updates with new environ-
mental data at each stage, ensuring continuous and seam-
less refinement. At every stage, carefully chosen data is
preserved within the memory buffer with limited capac-
ity, then merged with incoming data in the following stage,
ensuring a sophisticated and seamless adaptation process.
In the merging process, we implement an optimal memory
buffer retention strategy encompassing the entire data spec-
trum. This approach selectively curates data distinct from
the current memory contents for storage, optimizing the use
of limited buffer space at each stage to ensure a comprehen-
sive and diverse data representation. By embracing the full
spectrum of the data distribution using a minimal number
of data, this strategic approach eliminates the redundancy
of reprocessing familiar data and effectively minimizes gra-

dient interference, safeguarding against catastrophic for-
getting. Through these two innovative methods, the mo-
tion prediction model achieves continual learning, adeptly
adapting to evolving driving conditions while maintaining
peak performance in previous environments.

The main contributions of this study can be summarized
as follows:

• We pioneered the problem formulation to facilitate the
continual updating of the motion prediction model,
specifically tailored to meet the demands of commercial
autonomous driving AI.

• We proposed the novel generic model representation
learning method that reveals the inherent sparsity within
each scene’s representation, effectively mitigating catas-
trophic forgetting.

• Recognizing the inefficiencies of successive joint training
in real-world applications, we introduced a groundbreak-
ing optimal memory buffer retention strategy. This in-
novative approach, rooted in adaptive sampling, ensures
efficient continual model updates by effectively manag-
ing gradient interference between previous and current
stages.

We constructed the virtual continual motion prediction
model update problem on nuScenes dataset and verified the
proposed method based on the designed problem formula-
tion.

2. Related Work

Motion Prediction. Conventional studies have predom-
inantly emphasized refining knowledge representation of
the surrounding environment through deep learning [29, 31,
46, 51–53]. Interaction-aware motion prediction model [9–
11, 13, 39] have been studied to consider the interac-
tion of surrounding vehicles. Recently, the focus has
shifted towards forecasting the future trajectory of the ego-
vehicle [2, 36, 38]. Studies have also explored leveraging
infrastructure-related data in motion prediction, employing
Convolutional Neural Network(CNN) [4, 8, 12, 14, 24, 27,
30, 35, 49] and the Graph Neural Network(GNN) [12, 24]
to encode HD-map information through knowledge repre-
sentation and concatenation techniques. Furthermore, re-
search [40] has delved into utilizing lane information to pre-
dict multiple trajectories, accommodating the potentiality of
diverse future paths.

While these studies have demonstrated progressively im-
proving performance, their validity is confined to specific
datasets, and they have yet to address testing scenarios in
new environments. [1] reveals that the motion prediction
model works in a trained environment but often fails in
diverse driving scenarios generated by the real world. A
recent study has explored the efficacy of transfer learning
between different road types for adapting to new environ-

15439



ments [41]. Also, the study has conducted domain adapta-
tion between benchmark datasets [19]. However, the scope
of these environments remains limited compared to the vast
array of real-world driving scenarios. Consequently, they
fail to ensure the diversity necessary for accurate motion
prediction in genuine environments. Extended research into
continual domain adaptation is imperative to accurately re-
flect the diverse driving scenarios encountered in real-world
settings.
Continual Learning. An adaptation process becomes es-
sential for effective motion prediction in light of the dy-
namically evolving driving environment. Continual learn-
ing specifically addresses challenges encountered when up-
dating the model throughout this adaptation process. There
are three approaches to continual learning: regularization-
based [22, 25, 44, 48], replay-based [5, 6, 16, 17, 21, 26, 33,
37], and dynamic model architecture [7, 15, 32, 34, 43, 45,
47, 50]. Regularization-based methods ensure performance
retention over previous tasks by using update constraints on
network weights that greatly impact previous tasks. Addi-
tionally, studies have been conducted to learn representa-
tion sparsity to maintain activation of only a minimal sub-
set of representation vectors at each input, thereby enhanc-
ing efficiency. Replay-based methods store samples from
past tasks using a memory buffer and utilize it to model
updates. Utilizing this memory buffer enables the model
to learn historical data along with sequential inputs, ensur-
ing performance across previous environments during the
adaptation process. While reservoir sampling is a primary
method for the memory buffer, its uniform data sampling
across stages would result in suboptimal buffer status in real
environments. The dynamic model architecture dynami-
cally activates neurons or layers to accommodate incremen-
tal classes or tasks. While this method effectively addresses
catastrophic forgetting through learning via selective model
expansion, its compatibility with embedded systems is lim-
ited due to constraints in model size dictated by hardware
capacity.

Furthermore, given that the approaches above primarily
focus on validating concepts using fundamental deep learn-
ing problems like MNIST classification, it is imperative to
conduct additional research into problem formulation and
learning methodologies tailored to applications such as mo-
tion prediction.

3. Problem Formulation
This study frames the challenge of adapting the motion
prediction model across various driving environments, ef-
ficiently updating the model with sequential data from each
environment. Therefore, we devise a virtual continual learn-
ing scenario, simulating consecutive updates to the motion
prediction model. The scenes dataset features a rich col-
lection of scenes from diverse locations, with each scene
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Figure 2. Problem formulation for scalability in motion predic-
tion. One circle is a training example. The color denotes a scene.
Each scene has a motion prediction sequence for one or more tar-
get vehicles

offering sequences for one or more target vehicles, orga-
nized into ten to thirty tailored motion prediction training
examples. In our virtual scenario, we treat data from each
scene as sequentially incoming, setting our objective to train
the motion prediction model scene by scene. We establish
a sequence of tasks [τ1, τ2, · · · ], each trained sequentially
with their respective incoming data [D1, D2, · · · ]. As the
scene shifts, retraining the model for new locations is cru-
cial, simultaneously minimizing catastrophic forgetting of
prior tasks. Given the significant influence of map details
and traffic conditions on motion prediction models, this ap-
proach is well-suited for continual learning scenarios within
motion prediction applications. In this scenario, sequen-
tial data entry with varying distributions disrupts the inde-
pendent and identically distribution (IID) sampling con-
ditions essential for stochastic gradient descent. Conse-
quently, when the model updates based on sequential tasks,
optimizing for a new task can lead to performance declines
in previous tasks due to the gradient directions of model
loss. Hence, our goal is to design the CMP learning frame-
work that can minimize catastrophic forgetting and opti-
mize performance across all T tasks encountered up to any
time step j throughout the adaptation process. Throughout
this process, the model is updated using minimal data for
each incoming sequential stage, assessing the efficacy of
adaptation. Furthermore, the continual model update pro-
cess verifies whether performance has degraded in the pre-
vious stage. Fig.2 illustrates the overall process and training
examples for each task sourced from the NuScenes dataset.

4. Methodology
When updating the motion prediction model, the sequential
input of different driving environments often leads to over-
lapping representations and misalignment in gradient direc-
tion, resulting in catastrophic forgetting. To address this
challenge comprehensively, we propose two key strategies:
meta-representation learning in the pre-training phase (Sec-
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Figure 3. Base model architecture for the meta-representation in
motion prediction.

tion 4.1) and an optimal memory buffer retention strategy
in the adaptation phase (Section 4.2).

4.1. Meta Representation Learning in Training

Our meta-representation learning approach focuses on cul-
tivating sparse representations tailored to each input distri-
bution that are robust to catastrophic forgetting. This ap-
proach effectively mitigates interference between diverse
inputs while facilitating the rapid assimilation of new as-
sociations.
Meta-Representation Learning for Motion Prediction.
Inspired by Online-aware Meta-Learning (OML) [20], we
employ a base model architecture comprising a Represen-
tation Learning Network (RLN) and a Prediction Learning
Network (PLN), as depicted in Fig. 3. The RLN encodes
vehicle states and map information, while the PLN decodes
the learned representations into the output.

To learn representations resilient to catastrophic forget-
ting, we simulate a continual learning process during the
pre-training phase. This involves a two-step training pro-
cess consisting of inner and outer loops. In the inner
loop update, we sequentially sample the inner loop train-
ing sequences {SI

1 , S
I
2 , · · · , SI

k} from the pre-training data
D where SI

i = {sIi,1, · · · sIi,m}. Here SI and sI de-
note a sequence and sample, respectively. Subsequently,
the PLN undergoes k serial updates using these sequences
while the parameters in the RLN remain frozen. Follow-
ing this, we randomly sample outer loop training samples
SO = {sO1 , · · · , sOl }, and both the RLN and PLN are
updated concurrently in the outer loop. Note that we set
l > mk to provide sufficient data for the RLN update.

This approach enables us to emulate a continual learning
process during the pre-training phase, guiding the model to
learn representations robust to catastrophic forgetting. By
updating the model towards retaining learned representa-
tions while adapting to new data, we ensure its adaptabil-
ity to changing input landscapes. Algorithm 1 describes our
pioneering approach to meta-representation learning for the
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Figure 4. Modulation via regularization for sparse representation.

continual update of the motion prediction model.
Sparsity Regularization with Modulation Network. Ide-
ally, activating a minimal subset of neurons in response to
each unique input can significantly reduce catastrophic for-
getting. This is because updates to the model will only
adjust a limited set of weights per input, preserving the
integrity of learned representations. Hence, we aim to
achieve representations devoid of inactive neurons across
all data distributions while ensuring sparsity in the neu-
ral response to individual inputs. In addition to leveraging
meta-representation learning, we enhance the representa-
tion learning framework by integrating and training a mod-
ulation network to incentivize explicitly sparse representa-
tion. As shown in Fig. 4, the modulation network shares the
feature vector from the backbone of RLN and uses it as an
input. It transfers the input feature vector to the final layers
of existing RLN through the modulation network. In a net-
work structured in Fig. 4, we apply the L1 loss to the mod-
ulation network output vector (v) and add it to the original
loss term to penalize. We enhance the model’s representa-
tion by applying L1 loss to the modulation network’s output

Algorithm 1 Meta-representation learning process
Input: D: Pre-training data, α,β: Each learning rate for
inner loop and outer loop, m: No. of inner gradient steps
per update, θ: RLN parameters, ω: PLN parameters

1: Random initialize θ
2: while do
3: Random initialize ω
4: {Si

1, S
i
2, · · · , Si

k} ∼ D, Sample data sequences
5: ω0 = ω
6: for i = 1, 2, · · · , k do
7: ωi = ωi−1 − α∇ωi−1L(fθ,ωi−1 , S

I
i )

8: end for
9: SO ∼ D, Sample data for outer loop training

10: θ = θ − β∇θL(fθ,ωk
, SO)

11: end while
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vector (v), integrating it with the original loss to introduce
a sparsity penalty. The application of L1 loss naturally en-
courages the emergence of sparse vectors. Consequently,
this method directly induces learning of sparse representa-
tions determining neuron activation within the RLN layer
through the dot product of the modulation network’s output
with the existing RLN.

4.2. Optimal Memory Buffer Retention Strategy

In section 1, we pointed out that there are limitations in
storing and using many data samples due to resource lim-
itations and cost issues. Thus, we use a memory buffer to
keep some portion of previous data and restrain catastrophic
forgetting due to gradient interference using it. Most stud-
ies apply a reservoir sampling algorithm [23] to store se-
quentially incoming data in a memory buffer at an equal
ratio. The reservoir sampling simply samples Di ∈ Xi

with probability 1
i , remove Di with probability (i−1)

i at
stage i. [X1, X2, · · · , XN ], [D1, D2, · · · , DN ] represents
samples in the memory buffer at stage N and stream data
for each stage. According to this algorithm, the probabil-
ity that a random jth sample is in the memory buffer re-
mains uniformly 1

N . However, the significant challenge of
the real scenario is that data distributions are non-stationary
during the adaptation process, and there is no prior infor-
mation about these distribution shifts. Therefore, if data is
stored in the memory buffer at the same ratio in each stage,
we can not hold the memory buffer in an optimal state that
reflects the entire data distribution. In this study, we ap-
ply the strategy using the difference in data distribution be-
tween the memory buffer and the current stage to maintain
the memory buffer in an optimal state that covers the en-
tire data distribution. To efficiently determine how much
the data distribution changes, we consider the similarity of
the representation vector. The similarity decreases when the
model receives data from the shifted data distribution at any

Algorithm 2 Data distribution shift detection (Adaptation
process)
Input: Stream data D, Representation Learning Network
fθ

1: R=[], Initialize memory buffer
2: while do
3: Di ∼ D, Sample a data sequence at stage i
4: Da ← Di, Batch of sequential data from Di

5: bm ← Sample(R), Batch from memory buffer
6: sim similarity(fθ(Da), fθ(bm))
7: if sim ≦ threshold then
8: R ← Da, Update memory buffer with reservoir

sampling
9: end if

10: end while

Model update in adaptation processFor i in stage n

At stage i

𝑹 ← 𝑫𝒕

𝑫𝒂 ~ 𝑫𝒊 𝑫𝒂 ∪ 𝒃𝒎 Output

sim = similarity(𝒇𝜽 𝒃𝒎 , 𝒇𝜽(𝑫𝒂))

if sim ≤ threshold

𝑹 ← 𝑫𝒂

𝒖𝒑𝒅𝒂𝒕𝒆 𝜶, 𝛂 = (𝐦𝐢𝐧 𝝐 , 𝛂 ∗ 𝐬𝐢𝐦)
𝒖𝒑𝒅𝒂𝒕𝒆𝒎𝒆𝒎𝒐𝒓𝒚 𝒃𝒖𝒇𝒇𝒆𝒓

𝒇𝜽 𝑫𝒂

: Adaptation at stage i

: Memory buffer update Update 𝜽 = 𝜽 - α𝛁𝜽L(𝒇𝜽,𝝎𝒊
(R))

𝒇𝜽 𝒃𝒎

Data from memory buffer𝒃𝒎~

Figure 5. The overall continual model update process.

stage. Using this tendency, we design algorithm 2 to detect
the data distribution shift whenever the similarity is below
some pre-defined threshold.

4.3. Overall Continual Model Update Framework

In the entire adaptation phase, each stage data is received
and divided into adaptation and evaluation data, dataDa for
adaptation is combined with memory buffer data bm to up-
date the model by additional learning. During the learn-
ing process, the memory buffer is updated through adaptive
sampling in section 4.2. Then, the representation learning
network is trained in section 4.1 through the updated mem-
ory buffer data and continually proceeds to the next stage.
The overall continual model update process is described in
Fig.5.

5. Experiment
5.1. Experimental Setup

This study evaluates the adaptation and sustainability per-
formance during sequential model updates. We validate the
optimization performance of the overall framework by inte-
grating a pre-trained model into the adaptation process dur-
ing testing.

We train and evaluate our approach on nuScenes bench-
mark [3]. Initially, we utilize 400 scenes to establish a
robust meta-representation during the pre-training phase.
Then, we sequentially update the trained model across the
remaining 50 scenes, simulating the continual model up-
date process during motion prediction model deployment,
as illustrated in Fig. 2. In the adaptation phase, test data is
continuously streamed at each stage from various environ-
ments, as depicted in Fig. 6. The incoming data is divided
into adaptation (50 samples including samples from the
memory buffer) and evaluation (20 samples) sets, wherein
the model undergoes updates based on adaptation data and
is subsequently evaluated on separate data not utilized in
adaptation training.
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Figure 6. Continual model update scenario in the adaptation phase.

Metrics
• Ri,j is the accuracy of the model at stage Tj after observ-

ing the last sample from stage Ti.
• Retained accuracy (RA): The average accuracy at stage T

is then defined as, AT = 1
T

T∑
j=1

RT,j .

• Backward-transfer and interference (BTI) : Forgetting,

BTI = 1
T

T∑
j=1

RT,j −Rj,j .

We adopt average displacement error(ADE) in motion
prediction as the model accuracy metric. In Fig. 6, Rij sig-
nifies the ADE performance of the model at the jth stage,
following adaptation updates made in the ith stage. We uti-
lize the BTI metric to assess the average accuracy shift at
each stage, from initial learning to the conclusion of train-
ing. Because ADE stands for path prediction error, smaller
values of RA and BTI serve as indicators of a successful
continual model update process.

The proposed method is compared and evaluated using
the following baselines in Fig. 7. The baselines are listed
below:
A) Joint training: The model is trained using all avail-
able data (dataset from training and target tasks). The pre-
training and adaptation processes are not separate.
B) Pre-training (standard-supervised), C) Pre-training
(OML) [20], and D) Pre-training (MAML-Rep) [20]: The
model is trained in the pre-training phase using each train-
ing method. Then it is continually fine-tuned at each
stage using the incoming data sequence from the adapta-
tion phase. MAML-Rep is also a representation learning
method. Unlike OML, which leverages sequential updates
in the inner loop to induce catastrophic forgetting effects,
MAML-Rep uses a batch of data for updates in the inner
loop.
E) Elastic Weight Consolidation (EWC) [22]: The model is
trained in the pre-training phase using EWC. Then, it is con-
tinually updated for the incoming sequential stage based on
EWC. EWC is a representative regularization-based learn-

A)

B)

C)

Training / Adaptation

Stage 1

Adaptation (Proposed method)

Stage 2 . . .

Training dataset, stage 1, stage 2, . . . , stage N

Pre-training
(Standard supervised)

F)
. . .

Pre-training
(OML)

Pre-training
(Proposed method) Stage 3

Stage 1 Stage 2 . . .Stage 3

Stage 1 Stage 2 . . .Stage 3

Stage 1 Stage 2 Stage 3

Adaptation (Fine-Tuning)

D)
Stage 1 Stage 2 . . .Stage 3

E)

Pre-training
(MAML-Rep)

Pre-training
(EWC) Stage 1 Stage 2 . . .Stage 3

Scratch

Adaptation (Fine-Tuning)

Adaptation (Fine-Tuning)

Adaptation (EWC)

Figure 7. Training process of baselines.

ing method for continual learning that constrains updating
parameters important for previous tasks.
F) Scratch: The model is updated with only data for the
incoming sequential stage in the adaptation phase.
Implementation details. We utilize DenseNet-121 [18]
as the backbone for the Representation Learning Network
(RLN), while employing Multi-Layer Perceptron (MLP)
layers for the Prediction Learning Network (PLN). Notably,
our approach remains agnostic to the specific model archi-
tecture, ensuring flexibility and applicability across various
frameworks. During the pre-training phase, we configure
k = 10 and m = 1, conducting 5 epochs of training for the
inner loop with a learning rate of 1e-2. For the outer loop,
we set m = 16 and conduct 10 epochs of training with a
learning rate of 1e-3. In the adaptation phase, the model
undergoes training for 10 epochs per stage with a learning
rate of 1e-3. We employ the Adam optimizer throughout
the training process and train the model with 4 NVIDIA
RTX3080ti GPUs. To ensure robustness and reliability of
our results, experiments are conducted using five random
seeds, with data composition altered at each stage to provide
comprehensive evaluation and validate the effectiveness of
our approach.

5.2. Evaluation on Continual Update Scenario

Catastrophic forgetting. Table. 1 reports that the pre-
trained model based on the proposed learning method
shows superior RA and BTI performance than other pre-
trained models throughout overall memory buffer sizes. No-
tably, it represents extremely low catastrophic forgetting
when the memory buffer is 40. While traditional learning
methods exhibit enhanced performance with larger mem-
ory buffer sizes, our proposed approach excels even with
smaller ones. The performance continues to improve in
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Table 1. Overall adaptation performance analysis. M denotes the memory buffer size.

Method
RA / BTI

M=20 M=30 M=40
Joint-training 1.92±0.03

Standard supervised 2.87±0.11 / 0.60±0.30 2.89±0.52 / 0.49±0.54 2.42±0.08 / 0.16±0.13
OML 2.75±0.03 / 0.54±0.01 2.52±0.29 / 0.31±0.15 2.35±0.06 / 0.14±0.11
EWC 2.88±0.15 / 0.42±0.17 2.77±0.33 / 0.54±0.22 2.31±0.17 / 0.36±0.76

MAML-Rep 2.79±0.09 / 0.73±0.49 2.54±0.12 / 0.77±0.89 2.36±0.47 / 0.23±0.44
Proposed method 2.24±0.23 / 0.51±0.14 2.16±0.31 / 0.24±0.17 2.06±0.11 / 0.13±0.09

Adaptation process in consecutive stages

Training time (sec)

MJT 

MPT 

0

2k

8k

4k

6k

10k

12k

Joint training Proposed method

Figure 8. Comparison in training time between joint training and
the proposed method.

correlation with the memory buffer size, showcasing the ef-
fectiveness of our adaptive sampling method. Through the
above test scenarios, we ensured that the methods proposed
in the pre-training and adaptation process could cope with
continual learning scenarios in the real world.
Adaptation time. Joint training is unsustainable because it
requires much resource consumption to collect, store, and
process data. We compare the adaptation time of the pro-
posed method with joint training and find that joint training
is not feasible in real scenarios. Training time(second) in
the adaptation process in each method is defined as model
update time until the model is fully trained at each adap-
tation stage (MUj : time consumed for the model update
using joint training method, MUp: time consumed for the
model update using the proposed method). Fig. 8 shows
the difference in model update time of the two methods. It
reports that joint training needs more model update time as
an adaptation process progresses than the proposed method.
Since the motion prediction model used for autonomous
driving must be extended to infinitely different environ-
ments, we are confident that the proposed method can
greatly help the AI model update process of autonomous
driving.
Adaptation performance during model update. Leverag-
ing a pre-trained model, we continually updated the model
using sample data at each task stage, demonstrating superior

: Proposed method

0

1

2

3

4

5

1 2 3 4 5 46 47 48 49 50

: OML         
: MAML-Rep

: Standard supervised

Stage

ADE

(Number)

(m)

: EWC

Figure 9. Adaptation performance during continual model up-
dates.

Random Sampling Reservoir Sampling Proposed Method

Figure 10. Average activation of the representation vector in the
dataset of the memory buffer through each sampling method. Dead
neuron percentage: 31%(random sampling), 24%(reservoir sam-
pling), 11%(proposed method)

adaptation performance. Unlike traditional continual learn-
ing challenges, where synthetic datasets provide clear task
shifts, the real-world driving data presents blurred bound-
aries between stages, leading to performance variability.
Despite this, our methodology stands out, consistently de-
livering stable and robust performance, evidenced by a re-
markably even trend across the adaptation phase as shown
in Fig. 9.
Performance depending on adaptation strategy. In the
existing benchmark dataset for developing continual learn-
ing methods, the data distribution is given discretely in the
data sequence, so there is no concern regarding the sam-
pling method for the memory buffer. However, in the real
motion prediction problem, the sampling method to fill the
limited memory buffer in an optimal state is necessary be-
cause there could be cases where the data distribution is
similar depending on driving patterns, even if the scene is
different. Therefore, we proposed an adaptive sampling
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Table 2. Performance analysis depending on adaptation strategy without pre-trained model. M denotes the memory buffer size.

Adaptation strategy Memory buffer
RA / BTI

M=20 M=30 M=40
Scratch 3.94±1.09 / 1.83±1.10

Random sampling ✓ 3.42±0.51 / 1.44±0.81 3.22±0.42 / 1.29±0.54 3.23±0.51 / 0.97±0.66
Reservoir sampling ✓ 2.54±0.25 / 0.96±0.35 2.54±0.08 / 0.56±0.21 2.48±0.14 / 0.45±0.46

Reservoir+adaptive sampling ✓ 2.45±0.12 / 0.85±0.18 2.48±0.49 / 0.47±0.43 2.25±0.13 / 0.22±0.14

Table 3. Performance analysis depending on pre-trained model
without model update.

Pre-training RA
Standard supervised 4.96±0.13

OML 3.24±0.19
Proposed method 2.57±0.09

method through data distribution shift detection showed
better adaptation performance than the existing sampling
method. To verify the effectiveness of the proposed adap-
tive sampling method, we conducted an experiment updat-
ing the model with each adaptation strategy in Table. 2
without a pre-trained model. Compared to Scratch without
memory replay, memory replay surely improves both RA
and BTI. Also, we see that the reservoir sampling method,
which stores data from each stage in identical proportion,
positively affects RA improvement while reducing BTI than
the random sampling method. In addition, instead of tak-
ing data in equal proportions at each stage, the proposed
method shows improved performance in both RA and BTI
than reservoir sampling, which is widely used in continual
learning.

5.3. Ablation Study

Effect of the optimal memory buffer retention strategy.
The ideal state for the memory buffer is one where the data
distribution closely resembles the overall data distribution
of the adaptation phase. This alignment can help optimize
model updates by ensuring data fidelity and facilitating
seamless information integration. We demonstrate the ef-
fectiveness of our proposed method by evaluating the extent
to which each sampling approach achieves these optimal
states. This can be elucidated by examining the mean acti-
vation of the representation vector across the dataset stored
in the memory buffer using each sampling method. The av-
erage activation represents a composite of representations
from all data within the memory buffer. We illustrate it by
normalizing and visually flattening it in two dimensions to
improve clarity, as depicted in Fig. 10 Our demonstration
of data distribution coverage within the memory buffer, de-
picted through the average activation map, provides valu-
able insights into the efficiency of various sampling meth-

ods. The proposed sampling method leverages a broader
representation space in average activation compared to con-
ventional random and reservoir sampling methods. Notably,
our proposed method exhibits a significantly lower dead
neuron percentage of (11%), outperforming reservoir sam-
pling (24%) and random sampling (31%). This expansion
encompasses a wider range of data distributions, ensuring
the optimal state of the entire memory buffer.
Generalization performance in the pre-training phase.
Each learning method demonstrates varying performance
levels during the adaptation phase. Table. 3 reports that our
proposed method, even without additional updates, achieves
a remarkable RA result comparable to joint training, which
entails training all data from the adaptation stage. Com-
pared to OML, the proposed method, which leverages a
modulation network for explicitly learning sparse represen-
tation, significantly enhances the performance in environ-
ments with complex input data distribution. This outcome
can be attributed to sparse representation, with instance
sparsity percentages for each learning method measured at
15%, 22%, and 58%, respectively (proposed method, OML,
standard supervised).

6. Conclusion

This study addresses the critical challenge of scaling and
deploying motion prediction models across diverse driving
environments. Given the myriad driving scenarios shaped
by unique road and traffic conditions, achieving scalability
is crucial for the commercial viability of autonomous driv-
ing. Thus, our proposed learning framework is indispens-
able for these models’ sustainable development and deploy-
ment, marking a significant stride toward commercializa-
tion.
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