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Abstract

Recent methods for label-free 3D semantic segmentation
aim to assist 3D model training by leveraging the open-
world recognition ability of pre-trained vision language
models. However, these methods usually suffer from in-
consistent and noisy pseudo-labels provided by the vision
language models. To address this issue, we present a hi-
erarchical intra-modal correlation learning framework that
captures visual and geometric correlations in 3D scenes at
three levels: intra-set, intra-scene, and inter-scene, to help
learn more compact 3D representations. We refine pseudo-
labels using intra-set correlations within each geometric
consistency set and align features of visually and geometri-
cally similar points using intra-scene and inter-scene corre-
lation learning. We also introduce a feedback mechanism to
distill the correlation learning capability into the 3D model.
Experiments on both indoor and outdoor datasets show the
superiority of our method. We achieve a state-of-the-art
36.6% mIoU on the ScanNet dataset, and a 23.0% mIoU on
the nuScenes dataset, with improvements of 7.8% mIoU and
2.2% mIoU compared with previous SOTA. We also provide
theoretical analysis and qualitative visualization results to
discuss the mechanism and conduct thorough ablation stud-
ies to support the effectiveness of our framework.

1. Introduction

Label-free 3D semantic segmentation, which aims to
achieve scene understanding without reliance on labeled
data, has recently emerged as a vital research topic. This
task holds significant value for practical applications, in-
cluding autonomous driving, robotic navigation, and aug-
mented reality, where the collection of 3D annotations is
expensive and novel objects may appear.

Existing methods [4,5,8,15,19,21,31,36,37,40] leverage
the open-world recognition capability of pre-trained vision
language models, such as CLIP [22] and MaskCLIP [39],
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Figure 1. To address the noisy and inconsistent pseudo-label chal-
lenge, we design a hierarchical intra-modal correlation learning
framework, including intra-set label refinement, intra-scene corre-
lation learning, and inter-scene correlation learning. Intra-set la-
bel refinement reduces label inconsistency for points with similar
geometric attributes in each local set. For intra-scene correlation
learning, we model point correlations in each scene and constrain
visually and geometrically similar points to be closer in feature
space. For inter-scene correlation learning, we use cross-scene
point correlations to help constrain the consistency of feature dis-
tribution in different scenes.

to train 3D models through cross-modal transfer learning.
These vision language models generate semantic features
from texts and images to provide semantic guidance for
3D model training. However, pre-trained on image clas-
sification tasks, these vision language models struggle to
generate consistent dense semantic predictions [4, 39]. For
instance, as shown in Fig. 1, the predictions for pixels
belonging to the same chair may differ within each view
and across multiple views. The predictions for chairs in
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different scenes may also be inconsistent. Such ambigu-
ous guidance poses significant challenges for the 3D model
to learn stable visual representations. Recently, Segment
Anything (SAM) [16] has been proposed to pretrain mod-
els on dense prediction tasks and can obtain accurate object
masks. Leveraging SAM, concurrent work Chen et al. [4]
use a label refinement strategy to mitigate noisy supervision
in each mask, resulting in significant improvements. How-
ever, the use of SAM comes with a great increase in train-
ing costs. More importantly, the supervision inconsistency
across multiple views and different scenes still exists.

This inconsistency issue is caused by the unstable fea-
tures learned by the vision language model from images
with occlusions and a lack of geometric information. We
observe that point cloud data is free of occlusion and rich in
geometric clues, thus facilitating the learning of stable point
features. This allows us to establish reliable correlations
between different points, thus providing strong guidance to
help maintain feature compactness under inconsistent su-
pervision. As shown in Fig.1, intra-modal correlations in
3D scenes can be categorized into three aspects: Intra-
set correlation: Local point sets sharing similar geomet-
ric attributes usually can help generate cleaner and sharper
segmentation boundaries when compared to the boundaries
generated by the vision language model. This can be used
to reduce the noise and inconsistency of pseudo-labels and
thus improve local feature coherence. Intra-scene correla-
tion: Besides aligning 3D-2D and 3D-text features, align-
ing the features of objects with similar appearance and ge-
ometry during training can assist the 3D model in miti-
gating disruptions caused by ambiguous supervision from
the vision language model. This can help learn a more fo-
cused and concise feature space. Inter-scene correlation:
Aligning the features of objects with similar appearance and
geometry in different scenes can further address the inter-
scene contradictory semantic guidance, leading to consis-
tent feature distributions in various scenes.

In this paper, we present a hierarchical intra-modal cor-
relation learning framework to leverage the three aforemen-
tioned correlations. (1) We use an intra-set label refinement
scheme that statistically analyzes the pseudo-labels within
each geometric consistency set and refines the pseudo-
labels to encourage fewer label conflicts. (2) We propose
the intra-scene correlation learning module to capture point
feature correlations between different objects and thus con-
strain visually and geometrically similar points to be closer
in feature space. (3) We introduce the inter-scene correla-
tion learning module that leverages cross-scene attention to
model correlations among objects in different scenes, pro-
moting the 3D model to learn stable feature distributions.
Finally, we design a feedback mechanism that aligns the
output features of the 3D model with the final aggregated
point features, thereby distilling the correlation learning ca-

pability into the 3D model. Experiments on both indoor and
outdoor datasets demonstrate the superiority of our method.
We achieve a state-of-the-art (SOTA) mIoU of 36.6% on
the ScanNet dataset, surpassing the previous SOTA method
CLIP2Scene [5] by 7.8% mIoU. On the nuScenes dataset,
we achieve 23.0% mIoU and surpass CLIP2Scene by 2.2%
mIoU. Theoretical analysis, qualitative visualization, and
extensive ablation studies further support the effectiveness
of our framework.

The key contributions can be summarized as follows.

• We propose a novel hierarchical intra-modal corre-
lation learning framework for label-free 3D semantic
segmentation that leverages intra-modal correlations
at three levels: intra-set, intra-scene, and inter-scene,
to capture visual and geometric correlations hierarchi-
cally and thus assist in learning compact 3D features.

• We present a comprehensive theoretical analysis, qual-
itative visualization, extensive ablation studies, and a
thorough discussion of our framework’s mechanism.

• Our method achieves promising results on both indoor
and outdoor datasets, showing significant improve-
ment over previous SOTA methods.

2. Related Work
2.1. Label-free 3D Semantic Segmentation

Label-free 3D semantic segmentation, with the goal of
achieving scene understanding independent of labeled data,
has attracted significant attention in recent years. Ex-
isting works [4, 5, 8, 15, 18, 19, 21, 23, 31, 32, 36, 37, 40]
mainly utilize powerful pre-trained vision language mod-
els [16, 22, 39] to extract semantic knowledge from im-
age and text modalities and distill these semantic knowl-
edge into a 3D model through cross-modal transfer learning.
Specifically, these methods first construct dense correspon-
dences between 3D points, 2D images, and text descrip-
tions, and then optimize the similarities between point fea-
tures and text embeddings according to 2D pseudo-labels.
However, since vision language models are typically pre-
trained on image classification tasks and lack dense predic-
tion constraints, the pseudo-labels generated from dense vi-
sual features are usually noisy and inconsistent. This results
in ambiguous semantic guidance for the 3D model training
and hinders its performance. To address this issue, concur-
rent work by Chen et al. [4] use segmentation masks from
Segment Anything [16] to reduce the noise in 2D pseudo-
labels and improve the 3D model’s performance. Nonethe-
less, SAM brings considerable costs in the training process.
A comparison of training costs is provided in Section 5 of
the supplementary material. Besides, the inconsistency of
pseudo-labels still exists in different views in each scene
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and across different scenes and impedes the 3D model to
learn stable visual representations. In this work, we de-
sign a hierarchical intra-modal correlation learning frame-
work that models visual and geometric correlations between
points in each local neighborhood, in each scene, and across
different scenes. Based on the learned multi-scale correla-
tions, we draw the deep features of points with high corre-
lations closer, leading to a concise 3D feature space with
fewer conflicts.

2.2. Scene Context Learning

Scene context learning utilizes semantic and spatial cor-
relations among visual elements to facilitate various scene-
understanding tasks, such as semantic segmentation and ob-
ject detection. Existing methods can be mainly catego-
rized into three directions: convolutional-based, attention-
based, and graph-based methods. Convolutional-based
methods aim to design various sparse convolutional ker-
nels [6, 12–14, 27] to progressively integrate multi-scale
point features and help the 3D model capture both local de-
tails and global context. Another research line focuses on
attention mechanisms [9, 10, 17, 26, 29, 35, 38] to model se-
mantic and spatial correlations between different points, en-
abling the 3D model to learn robust contextual point repre-
sentations. Graph-based methods [1, 25, 28, 30, 33, 34] treat
scenes as graphs and utilize graph convolutional networks
to propagate information between different visual items. By
leveraging the inherent structure of the data, these methods
effectively capture the visual correlations within each scene.
In this work, we propose using flexible and adaptive atten-
tion mechanisms on point clouds to capture visual correla-
tions in 3D scenes for label-free 3D semantic segmentation.

3. Method
Following the cross-modal transfer learning framework

in CLIP2Scene [5], we optimize a 3D model using 2D
pseudo-labels generated by MaskCLIP [5, 39]. In Sec. 3.1,
we formulate the cross-modal transfer learning framework,
while in Sec. 3.2, we present our hierarchical scene correla-
tion learning framework that leverages visual and geomet-
ric correlations to build a compact feature space. We also
introduce a feedback distillation module in Sec. 3.3 to in-
corporate the correlation learning ability into the 3D model.
The overall training objective is explained in Sec. 3.4.

3.1. Cross-modal Transfer Learning

Given a scene S, its projected image I under certain
camera position, and class prompts {Tc}c∈[1,C], the pre-
trained vision language model maps each image pixel Iij
to feature space f I

ij ∈ Rd, and each class prompt Tc to
text embedding T̂c ∈ Rd, where C is the number of cat-
egories. Subsequently, with given similarity measurement

ψ, the pixel-wise pseudo label can be defined as lij =

argmaxc ψ(f
I
ij , T̂c). In the meanwhile, a point cloud P

can be sampled from the scene and be processed with a 3D
encoder mapping each point pm to fP

m ∈ Rd. Then we
project point pm back to the image plane of I filtered by
depth and transfer the pseudo label of Iij to pm, resulting
in (fP

m, T̂lij ), which we call a pair. For simplicity of ex-
pression, we denote fm as the m-th point feature, and lm as
the m-th paired pseudo label. With the variation of S under
different projection camera positions, we can collect a set of
such pairs denoted as M. In the end, a cross-entropy loss is
used for cross-modal feature alignment as follows,

Lce = −
∑
M

log
exp(ψ(fm, T̂lm))∑
c exp(ψ(fm, T̂c))

. (1)

Denote hm,c = ψ(fm, T̂c) and ym,lm =
exp(hm,lm )∑
c exp(hm,c)

.
The gradient of m-th item of loss function with respect to
hm,c can be expressed as

∂Lm

∂hm,c
=

{
ym,c − 1, c = lm;

ym,c, c ̸= lm.
(2)

During the optimization process, this gradient forces hm,lm

to increase and hm,c (c ̸= lm) to decrease, driving fm to-
wards T̂lm and away from T̂c (c ̸= lm). This results in an
alignment between the point features and text embeddings.

Following CLIP2Scene [5], we use MaskCLIP [39] as
the pre-trained vision language model and an inner product
function ψ = ⟨·, ·⟩ as the similarity measurement. Dur-
ing training, the pre-trained text embeddings remain fixed,
serving as feature anchors for different categories. The loss
function Lce optimizes the 3D model by pulling point fea-
tures towards corresponding text embeddings according to
the 2D pseudo-labels. However, due to the inherent noise
and inconsistency in pseudo-labels, point features within
the same category may be directed towards different text
embeddings, resulting in a confusing 3D feature space. To
address this, we propose a hierarchical intra-modal corre-
lation learning framework that captures visual and geomet-
ric correlations in 3D scenes hierarchically and helps learn
more consistent point representations in various environ-
ments.

3.2. Hierarchical Scene Correlation Learning

To leverage intra-modal correlations for learning consis-
tent visual features, we design a hierarchical scene corre-
lation learning framework, as shown in Fig. 2, containing
three parts, intra-set label refinement, intra-scene correla-
tion learning, and inter-scene correlation learning.
Intra-set label refinement. Pre-trained on image classifi-
cation tasks, CLIP potentially produces noisy dense predic-
tions and thus hinders the model’s performance. Concur-
rent work Chen et al. [4] address this inconsistency issue

28246



3
D

C
L

IP

𝑃

{𝐼}

Pseudo labels Refined pseudo labels

Point features

Point predictions

V
iT

 1
V

iT
 1

V
iT

 2

Intra-set Intra-scene Inter-scene

Feedback alignment

Sampled

predictions

Sampled

labels

Projected 2D sets Paired supervision Sampled points

Point cloud

Multi-view 

images

Sampled points in other scenes

Sample

Figure 2. Illustration of the hierarchical intra-modal correlation learning framework. First, we use a CLIP model and a 3D model to
generate pixel-wise pseudo-labels and point features. Then we perform intra-modal correlation learning hierarchically. For intra-set label
refinement, we cluster points into geometric consistency sets and adopt a voting mechanism to refine pseudo-labels in each set. We extract
intra-scene correlation by sampling points in each set and processing them via a vision transformer. For inter-scene correlation learning,
we use a cross-scene vision transformer that processes points from multiple scenes. Finally, we align the output features of the 3D model
with the final aggregated point features. Note that only the 3D model is retained for inference.

by employing the Segment Anything model [16]. However,
it introduces considerable additional training costs. In this
work, we choose a more efficient way for label refinement.
Our key insight is that geometric clues like normal smooth-
ness can help identify the same semantics for points in the
same object part. Specifically, following Chen et al. [3],
with a given equivalence relation ∼ between points in all the
scenes ∪Si, we can obtain the quotient set {Gk} = ∪Si/ ∼,
denoted as geometric consistency sets. Then we project
points within each setGk to the image plane of I and denote
the projected set as Ĝk. In each projected set Ĝk, we use a
voting mechanism formulated as l̂ij = Mode({lij}Iij∈Ĝk

),
and replace the original pseudo-labels with this most fre-
quent label, resulting in refined pseudo-labels {l̂ij}. In
this work, we generate geometric consistency sets using a
normal-based over-segmentation algorithm [11, 20]. Other
complex equivalences, such as topological, semantic, and
functional equivalences, can also be used to generate point
sets. We show the refined pseudo-labels for the point cloud
in Fig. 3. Through intra-set label refinement, we can ef-
ficiently reduce the noise in pseudo-labels and provide lo-
cally consistent supervision during training.

Intra-scene correlation learning. Previous cross-modal
transfer learning methods typically optimize the 3D model
by aligning point features with text embeddings according
to 2D pseudo-labels, as formulated in Eq. 1. Given that the
2D pseudo-labels tend to be noisy and inconsistent, the re-
sulting 3D feature space is often ambiguous. To this end, we
propose to investigate intra-scene correlations to help con-
strain features of points with strong correlations to be closer

and construct a more focused feature space. Initially, we
sample a set of points {pi}k in each geometry consistency
set Gk and concatenate all the sampled points to formulate
a subset of the input point cloud, noted as PS . The number
of sampled pointsMi is determined by the ratio of the num-
ber of points Ni in each set to the total number of points N ,
i.e., Mi = M × Ni/N . In our experiments, we limit the
total number of sampling points to M = 1024 to manage
GPU memory consumption.

The sampled point features in i-th scene, {fm}pm∈PS
i

,
are processed through a transformer block. Them-th output
feature of the transformer block can be formulated as

f̃m = fm +
∑

n
wmnvn,

f̂m = f̃m + Linear(f̃m)

= (W + I)(fm +
∑

n
wmnvn) + b

= f ′
m +

∑
n
wmnv

′
n + b,

(3)

where wmn denotes the attention weight between the m-th
and n-th visual features, vn is the n-th value vector, which
is derived by passing fn through a linear projection layer
and W ∈ Rd×d and b ∈ Rd are the weight matrix and
the bias vector of the linear layer. Since b is unrelated to
the gradient for other items, it can be omitted from the loss
function. The cross-entropy loss function is formulated as,

L̂ce = −
∑
M

log
exp(ψ(f ′

m +
∑

n wmnv
′
n, T̂l̂m

))∑
c exp(ψ(f

′
m +

∑
n wmnv′

n, T̂c))
, (4)

where l̂m represents the refined pseudo label for point pm.
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Denote hm,c = ψ(f ′
m, T̂c) and en,c = ψ(v′

n, T̂c). We
get ym,lm =

exp(hm,lm+
∑

n wmnen,lm ))∑
c exp(hm,c+

∑
n wmnen,c))

. The gradient of
m-th item of the loss function with respect to hm,c is the
same as Eq. 2. The gradient for en,c can be formulated as

∂L̂m

∂en,c
=

{
wmn · (ym,c − 1), c = l̂m,

wmn · ym,c, c ̸= l̂m.
(5)

The gradient for wmn can be formulated as

∂L̂m

∂wmn
=

{
en,c · (ym,c − 1), c = l̂m,

en,c · ym,c, c ̸= l̂m.
(6)

During the optimization process, the gradient in Eq. 5 forces
en,l̂m to increase and en,c (c ̸= l̂m) to decrease if wmn > 0,
denoting that points with higher correlations should move
toward the same text embedding. The degree of this con-
straint is determined by the value of wmn. The gradient in
Eq. 6 forces wmn to increase if en,l̂m > 0 and decrease if

en,c > 0 (c ̸= l̂m). This ensures that point features are
positioned closer to each other if they surround the same
text embedding and farther from each other if they surround
different text embeddings.

The loss function in Eq. 1 pulls each point feature to-
wards its corresponding text embedding based on pseudo-
labels. This can be misleading when pseudo-labels are
inconsistent, resulting in a scattered feature distribution.
Through our intra-scene correlation learning, the loss func-
tion in Eq. 4 further constrains that, (a) points with stronger
correlations should be close to the same text embedding,
and (b) point features within the same category should be
closer together, assisting in the construction of a more fo-
cused and concise feature space.
Inter-scene correlation learning. To solve the issue of in-
consistent pseudo labels across different scenes, we propose
an inter-scene attention mechanism to learn feature correla-
tions among objects in different scenes. Specifically, we
first include point features from multiple scenes in a train-
ing batch as {fm}pm∈∪PS

i
. Then we process the batched

features through a transformer block as

{f̂m}pm∈∪PS
i
= Transformer({fm}pm∈∪PS

i
), (7)

where the Transformer(·) function works the same as
Eq. 3. By integrating inter-scene attention weights {wmn}
between {fm}pm∈PS

i
and {fn}pn∈PS

j
into {f̂m}pm∈∪PS

i
,

the gradient formulated in Eq. 5 and 6 promotes the com-
pactness of visual features in different scenes during train-
ing, leading to a stable and consistent feature distribution.
The visualization of intra- and inter-scene attention weights
can be found in Section 4 of the supplementary material.

Our theoretical analysis suggests that integrating correla-
tions within the optimization process can effectively impose

Pseudo labels Refined labels

Figure 3. Visualization of intra-set label refinement. By replacing
the original pseudo-labels with the most frequent labels in each
geometric consistency set, we can effectively reduce the noise.

further constraints on feature compactness among points of
high relevance, leading to a more compact feature space
with less ambiguity. This enables the 3D model to learn
robust features under noisy pseudo-labels.

3.3. Feedback Distillation

To distill the correlation learning capability of our hi-
erarchical framework to the 3D model, we align the output
features of the 3D model with the final aggregated point fea-
tures through a widely used Kullback-Leibler (KL) distance
loss, which can be formulated as

Lkl =

M∑
m=1

KL(fm, f̂m), (8)

where f̂m is m-th aggregated feature and KL(, ) is the KL
distance that measures the distribution difference between
two input vectors. This feedback strategy enables the 3D
model to integrate the ability to capture visual correlations,
thereby generating more robust semantic predictions.

3.4. Overall Objective

Our training phase is segmented into three parts: the first
10 epochs involve training the 3D model with Lce. Starting
at epoch 11, we concurrently train the visual transformer by
introducing L̂ce, and post-epoch 20, we incorporate Lkl for
feedback distillation. We use the average of the losses at
each stage of the training and the entire training process is
seamless. During the inference stage, we only retain the 3D
model for semantic segmentation.

4. Experiment
4.1. Experiment Setup

Datasets and metrics. We conduct experiments on both
an indoor dataset ScanNet [7] and an outdoor dataset
nuScenes [2]. ScanNet includes 1,603 scanned indoor
scenes, where 1,201 scans are for training, 312 scans are
for validation, and 100 scans are for testing. The nuScenes
dataset contains 1,000 scenes, where 700 scenes are for
training, 150 scenes are for evaluation, and 150 scenes are
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Methods Year ScanNet mIoU nuScenes mIoU Time Parameter
(%) (%) (GPU · h) (M )

MaskCLIP [39] 2022 14.2 12.8 - -
MaskCLIP+ [39] 2022 21.6 15.3 - -
OpenScene [21] 2023 16.8 14.6 24 15.6
CLIP2Scene [5] 2023 25.6 20.8 4 8.2
Chen et al. [4]† 2023 33.5 26.8 20 31.7

Ours 2023 36.6 23.0 14 8.2

Table 1. Comparison with previous SOTA label-free 3D semantic segmentation methods on ScanNet and nuScenes datasets. The training
time is measured on the ScanNet dataset. † indicates concurrent work.

for testing. We use the mean Intersection of Union (mIoU)
metric to evaluate the semantic segmentation performance,
the training GPU hour to measure the training cost, and the
number of model parameters to evaluate the model size.
Implementation details. We follow CLIP2Scene [5] to use
MinkowskiNet14 [6] and SPVCNN [24] as the 3D models
for ScanNet and nuScenes, respectively. The image features
and text embeddings are generated with MaskCLIP [39],
which is fixed during training. To extract intra-scene and
inter-scene correlations, we utilize two three-layer vision
transformers [9] in our experiments: one for intra-scene
correlation learning and the other for inter-scene correlation
learning. For the 3D model, we use SGD as the optimizer,
while AdamW is employed for the vision transformer. We
adopt the cosine learning rate decay strategy, setting the ini-
tial learning rate at 0.2 for the 3D model and 2e-4 for the vi-
sion transformer. Our framework is developed on PyTorch
and trained on four NVIDIA Tesla V100 GPUs. For Scan-
Net, we train our model for 120 epochs over 3.5 hours. The
batch size used is 8. For nuScenes, we train our model for
30 epochs over 12.5 hours, with a batch size of 8.

4.2. Comparison Methods

We compare our method with state-of-the-art meth-
ods, including MaskCLIP [39], MaskCLIP+ [39], Open-
Scene [21], CLIP2Scene [5], and Chen et al. [4], on the
ScanNet and nuScenes datasets.
MaskCLIP & MaskCLIP+ [39] generate segmentation re-
sults through projecting 2D pixel-wise predictions to 3D
points according to camera parameters and depth maps. The
2D predictions are derived by evaluating the similarities be-
tween the CLIP visual features and text embeddings.
OpenScene [21] combines multi-view image features with
point features and evaluates their similarity with CLIP text
embeddings to make predictions. For a fair comparison,
the reported results are produced by using the same image
encoder as used in MaskCLIP.
CLIP2Scene [5] achieves 3D segmentation by utilizing se-
mantic consistency regularization and spatial-temporal con-
sistency regularization to align point features with corre-
sponding text embeddings and concentrating point features
in each spatial-temporal interval.

Chen et al. [4] adopt SAM’s [16] segmentation masks to re-
fine noisy pseudo-labels from MaskCLIP, thereby improv-
ing the 3D model’s performance.

Our approach hierarchically utilizes intra-modal corre-
lations to promote the compactness between point features
and thereby reduces prediction ambiguity. Our principal in-
novation capitalizes on intra-modal feature alignment and
does not conflict with the concurrent work of Chen et al. [4],
which leverages cross-modal feature alignment to learn ro-
bust point features from refined pseudo-labels. Finally,
we achieve state-of-the-art results without additional priors,
like the feature fusion strategy in OpenScene or the SAM
model used by Chen et al.

4.3. Label-free 3D Semantic Segmentation

We demonstrate the effectiveness of our hierarchical
intra-modal correlation learning framework on both indoor
dataset ScanNet and outdoor dataset nuScenes. In Table 1,
we report the semantic segmentation metric ‘mIoU’ on
ScanNet and nuScenes, as well as training time and model
size for models trained on ScanNet. On the ScanNet dataset,
our method outperforms all the state-of-the-art methods by
achieving 36.6% mIoU, with a significant gain of 11.0%
mIoU compared with CLIP2Scene [5] and 3.1% mIoU gain
compared with Chen et al. [4]. Furthermore, the training ex-
penses and model size of our methods are notably minimal.
On the nuScenes dataset, we achieve 23.0% mIoU with a
gain of 2.2% mIoU compared with CLIP2Scene. All these
results show the superiority of our hierarchical intra-modal
correlation learning framework. In Fig. 4, we present the
qualitative results of our method and CLIP2Scene on the
validation set of ScanNet. Note that Chen et al. [4] have
not released code yet, so their visualization results are not
presented. Compared with CLIP2Scene, our method pro-
duces more consistent predictions, such as the wall in the
first row, the table in the second row, and the sofa in the last
row. Besides, our method can make more accurate recog-
nition for categories with limited training samples, like the
sink in the first row and the cabinet in the second row. By
employing our hierarchical intra-model correlation learning
framework, the 3D model can generate more coherent and
accurate semantic segmentation results.
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Figure 4. Qualitative comparison for semantic segmentation of our method and CLIP2Scene [5] on the ScanNet dataset. More visualization
results are reported in the supplementary material.

Pseudo labels Refined labels Ground truth

Figure 5. Visualization of pseudo-labels on nuScenes dataset.

We also observe that the improvement of our method on
the nuScenes dataset is not as much as that on the ScanNet
dataset. This is because the pseudo-labels generated from
CLIP [22, 39] in the nuScenes dataset are notably deficient
in quality. As shown in Fig. 5, despite the fact that intra-set
refinement can improve the local consistency, the overall la-
bel quality from CLIP is so poor that erroneous labels con-
stitute the majority. Consequently, the refined labels may
not accurately depict the true categories of the points. In the
meanwhile, Chen et al. [4] implement an additional step of
training a 2D semantic segmentation model. Although this
step is costly, it effectively corrects these erroneous labels,
contributing to a more substantial improvement.

4.4. Ablation Study

To evaluate the effectiveness of different components
of our hierarchical intra-modal correlation learning frame-
work, we conduct a series of ablation experiments on the
ScanNet dataset and results are shown in Table 2. All exper-

EXP IntraSet IntraScene InterScene FB mIoU

I - - - - 28.8
II ✓ - - - 31.1 (+2.3)
III ✓ ✓ - - 32.1 (+3.3)
IV ✓ ✓ ✓ - 36.1 (+7.3)
V ✓ ✓ ✓ ✓ 36.6 (+7.8)

Table 2. Ablation study of our hierarchical intra-modal correlation
learning framework on the ScanNet validation set. ‘FB’ denotes
the feedback distillation mechanism.

iments are implemented on four NVIDIA V100 GPUs with
a batch size of 4 over 120 training epochs. In EXP I, we re-
produce CLIP2Scene [5] as our baseline model, achieving
a mIoU of 28.8% on the ScanNet validation set.
Ablation of intra-set label refinement. In EXP II, we clus-
ter the input point cloud into geometric consistent sets and
perform label refinement in each set, leading to a mIoU of
31.1% and a gain of 2.3% mIoU compared to EXP I. In
Fig. 3, we demonstrate that intra-set label refinement can
produce cleaner pseudo-labels, thus improving the coher-
ence of the 3D model’s predictions.
Ablation of intra-scene correlation learning. In EXP III,
we incorporate the intra-scene correlation learning module
based on EXP II, resulting in a higher gain of 3.3% mIoU.
As shown in the second column of Fig. 7, the intra-scene
correlation learning enables the model to learn a more con-
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Figure 6. Semantic segmentation results of our method and
CLIP2Scene [5] on ScanNet across different training epochs.

centrated and concise feature space, thereby reducing con-
fusion between different categories.
Ablation of inter-scene correlation learning. Building on
EXP III, we additionally employ the inter-scene correlation
learning module in EXP IV, yielding a gain of 7.3% mIoU.
As shown in the third row of Fig. 7, this strategy further con-
strains that the feature spaces of multiple scenes should be
consistent, assisting the model in generating stable feature
distributions in different scenes.
Ablation of feedback distillation. In EXP V, we imple-
ment the feedback distillation mechanism and achieve a
mIoU of 36.6%, with a total gain of 7.8% mIoU compared
with CLIP2Scene. By aligning the feature space, we can
transfer the correlation learning capacity into the 3D model,
further enhancing its performance.
Ablation of training epochs. We compare the segmenta-
tion performance of our method with CLIP2Scene [5] as
the number of training epochs increases from 30 to 120.
The results are presented in Fig. 6. Our method con-
sistently outperforms CLIP2Scene across various training
epochs, achieving a maximum mIoU gain of 7.8% at the
120th epoch. Additionally, our method shows a better up-
ward trend with a 1.4% mIoU increase from 100 to 120
epochs, compared to only a 0.3% mIoU increase exhibited
by CLIP2Scene across the same epoch range.

Additional ablation studies of geometric consistency sets
are detailed in Section 3 of the supplementary material.

4.5. Feature Space Visualization

Our hierarchical intra-modal correlation learning frame-
work aims to create a concise feature space. To validate
this, we compare the t-SNE visualizations of the feature
space from our method and CLIP2Scene [5] in Fig. 7. The
first two rows show the t-SNE map of two unique scenes.
We present the feature spaces separately for CLIP2Scene,
our method that incorporates intra-scene correlation learn-
ing, and our method that integrates inter-scene correlation
learning. Compared to CLIP2Scene, both the intra- and
inter-scene strategies assist the 3D model in learning a more
focused feature space with fewer conflicts, as indicated by
the dotted box. This verifies the effectiveness of introduc-
ing point correlations to help concentrate point features. In
the last row of Fig. 7, we concatenate point features from

CLIP2Scene Ours Intra-Scene Ours Inter-Scene

Cabinet

Bed

Door

Counter

Desk

Refrig

Toilet

Table

Window

S curtain

Bathtub

Chair

Sofa

Sink

Other

Figure 7. Feature space visualization. We visualize the learned
point features of our method and CLIP2Scene [5] using t-SNE
maps. The first two rows are t-SNE maps of two distinct scenes
and the last row shows the t-SNE map of the concatenated features
from these two scenes. Refrig and S curtain are the abbreviations
for refrigerator and shower curtain, respectively.

the two aforementioned scenes to verify the consistency of
feature distributions across different scenes. Compared to
CLIP2Scene and the intra-scene correlation learning strat-
egy, our inter-scene setting results in a more stable feature
space across diverse scenes. This indicates that incorporat-
ing global correlations across multiple scenes can enhance
the alignment of feature distributions in different scenes and
help the 3D model produce more robust predictions.

5. Limitations and Future Work
Our work demonstrates that exploring intra-modal cor-

relations can help the 3D model training for label-free 3D
semantic segmentation. However, we have not yet explored
intra-modal correlations within images and texts. By us-
ing correlations in images, we can create a more consistent
2D feature space, leading to more accurate and coherent
pseudo-labels. Similarly, investigating correlations within
texts enables us to use more precise and detailed descrip-
tions, offering rich guidance for cross-modal alignment. In
the future, we will extend our hierarchical intra-modal cor-
relation learning framework to images and texts to achieve
better label-free 3D semantic segmentation performance.

6. Conclusion
In this paper, we introduce a hierarchical intra-modal

correlation learning framework for label-free 3D seman-
tic segmentation. Our method hierarchically utilizes visual
and geometric correlations at three scales including intra-
set, intra-scene, and inter-scene, to help mitigate noise in
pseudo-labels and concentrate point features, resulting in a
focused and concise 3D feature space with fewer conflicts.
Experiments on both indoor and outdoor datasets demon-
strate the superiority of our method. Comprehensive theo-
retical analysis and extensive ablation studies further sup-
port the effectiveness of our framework.
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