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Figure 1. 3D motions generated by Multi-view Ancestral Sampling (MAS) — each one using a different initial noise. Our method generates
novel 3D motions using a 2D diffusion model. As such, it enables learning intricate 3D motion synthesis solely from monocular video
data.

Abstract

We introduce Multi-view Ancestral Sampling (MAS), a
method for 3D motion generation, using 2D diffusion mod-
els that were trained on motions obtained from in-the-wild
videos. As such, MAS opens opportunities to exciting and
diverse fields of motion previously under-explored as 3D
data is scarce and hard to collect. MAS works by simultane-
ously denoising multiple 2D motion sequences representing
different views of the same 3D motion. It ensures consis-
tency across all views at each diffusion step by combining
the individual generations into a unified 3D sequence, and
projecting it back to the original views. We demonstrate
MAS on 2D pose data acquired from videos depicting pro-
fessional basketball maneuvers, rhythmic gymnastic perfor-
mances featuring a ball apparatus, and horse races. In each
of these domains, 3D motion capture is arduous, and yet,
MAS generates diverse and realistic 3D sequences. Un-
like the Score Distillation approach, which optimizes each
sample by repeatedly applying small fixes, our method uses
a sampling process that was constructed for the diffusion
framework. As we demonstrate, MAS avoids common is-
sues such as out-of-domain sampling and mode-collapse.
https://guytevet.github.io/mas-page/

1. Introduction

3D motion generation is an increasingly popular field that
has prominent applications in computer-animated films,
video games, virtual reality, and more. One of the main bot-
tlenecks of current approaches is reliance on 3D data, which
is typically acquired by actors in motion capture studios or
created by professional animation artists. Both forms of
data acquisition are costly, not scalable, do not capture in-
the-wild behavior, and leave entire motion domains under-
explored.

Fortunately, the ubiquity of video cameras leads to
countless high-quality recordings of a wide variety of mo-
tions. Naively, a possible way to leverage these videos for
motion generation tasks is extracting 3D pose estimations
and using them as training data. However, pose estimation
methods are mostly trained using 3D data [19, 31], thus in-
heriting the mentioned data limitations. Some methods only
require 2D data [5, 37], but suffer from noticeable artifacts
and temporal inconsistencies.

Recently, Azadi et al. [2] and Zhang et al. [45] incor-
porated 3D motions estimated from images or videos into
motion synthesis applications. The former used them to
enrich an existing motion capture dataset and the latter as
reference motions while learning a physically-based Rein-
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forcement Learning policy. In both cases, the quality is-
sues were bridged using strong priors (either high-quality
3D data or physical simulation), hence remaining limited
to specific settings. Contrary to the pose estimation ap-
proaches, we focus on unconditional 3D motion generation
from pure noise.

In this paper, we present Multi-view Ancestral Sampling
(MAS), a diffusion-based 3D motion generation method,
requiring only 2D motion data that can be acquired exclu-
sively from videos. First, we learn a 2D motion diffusion
model from a set of videos, then, we employ the MAS algo-
rithm to effectively sample 3D motions from this learned
model. Our method is based on Ancestral Sampling —
the standard denoising loop used for sampling from a dif-
fusion model. MAS extends this concept and generates a
3D motion by simultaneously denoising multiple 2D views
describing it. At each diffusion denoising step, all views are
triangulated into a single 3D motion and then projected back
to each view. This ensures multi-view consistency through-
out the denoising process, while adhering to the prior’s pre-
dictions. We further encourage multi-view consistency by
projecting a 3D noise to each view whenever sampling from
a Gaussian distribution in the 2D ancestral sampling pro-
cess.

We show that MAS generates diverse and realistic mo-
tions from the underlying 3D motion distribution using a
2D diffusion model that was exclusively trained on mo-
tions obtained from in-the-wild videos. Furthermore, we
show that relying on ancestral sampling allows MAS to gen-
erate a 3D motion in a few seconds only, using a single
standard GPU. MAS excels in scenarios where acquiring
3D motion capture data is impractical while video footage
is abundant (See Figure 1). In such settings, we apply
off-the-shelf 2D pose estimators to extract 2D motion se-
quences from video frames, and use them to train our dif-
fusion prior. We demonstrate MAS in three domains: (1)
professional basketball player motions extracted from com-
mon NBA match recordings, (2) horse motions extracted
from equestrian contests, and (3) human-ball interactions
extracted from rhythmic ball gymnastics performances (ball
location is an additional parameter predicted by the model).
These datasets demonstrate motion domains that were pre-
viously under-explored due to 3D data scarcity.

2. Related Work
3D Motion Synthesis. Multiple works explore 3D mo-
tion generation using moderate-scale 3D motion datasets
such as HumanML3D [8], KIT-ML [24] Human3.6M [14]
and HumanAct12 [7]. With this data, synthesis tasks were
traditionally learned using Auto-Encoders or VAEs [18],
[1, 8, 11, 23, 35]. Recently, Denoising Diffusion Mod-
els [33, 34] were introduced to this domain by MDM [36],
MotionDiffuse [46], MoFusion [4], and FLAME [17]. Dif-

fusion models were proven to have a better capacity to
model the motion distribution of the data and provided op-
portunities for new generative tasks. Yet the main limita-
tion of all the mentioned methods is their reliance on high-
quality 3D motion capture datasets, which are hard to ob-
tain and limited in domain and scale. In this context, Sin-
MDM [27] enabled non-humanoid motion learning from a
single animation; PriorMDM [29] and GMD [15] presented
fine-tuning and inference time applications for motion tasks
with few to none training samples, relying on a pre-trained
MDM.

Monocular Pose Estimation. Monocular 3D pose es-
timation is a well-explored field [19, 30, 31, 43]. Its main
challenge is the many ambiguities (e.g. self-occlusions and
blurry motion) inherent to the problem. A parallel line
of work is pose lifting from 2D to 3D. MotionBERT [48]
demonstrates a supervised approach to the task. Some
works offer to only use 2D data and learn in an unsupervised
manner; Drover et al. [6] suggest training a 2D discrimina-
tor to distinguish between random projections of outputs of
a 3D lifting network and the 2D data while optimizing the
lifting network to deceive the discriminator; ElePose [37]
train a normalizing-flows model on 2D poses and then use it
to guide a 3D lifting network to generate 3D poses that upon
projection have high probability w.r.t the normalizing-flows
model. They add self-consistency and geometric losses and
also predict the elevation angle of the lifted pose which is
crucial for their success.

Animal 3D Shape Reconstruction. The recent Mag-
icPony [41] estimates the pose of an animal given a single
image by learning a per-category 3D shape template and
per-instance skeleton articulations, trained to reconstruct a
set of 2D images upon rendering. Yao et al. [42] sug-
gest a method for improving the input images with occlu-
sions/truncation via 2D diffusion. Then, they use a text-to-
image diffusion model to guide 3D optimization process to
obtain shapes and textures that are faithful to the input im-
ages.

Text to 3D Scene Generation. DreamFusion [25] and
SJC [38], introduced guidance of 3D content creation using
diffusion models trained on 2D data. Poole et al. [25] sug-
gest SDS, a method for sampling from the diffusion model
by minimizing a loss term that represents the distance be-
tween the model’s distribution and the noised sample dis-
tribution. They suggest to harness SDS for 3D genera-
tion by repeatedly rendering a 3D representation (mostly
NeRF [22] based) through a differentiable renderer, nois-
ing the resulting images using the forward diffusion, get
a correction direction using the diffusion model, and then
back-propagate gradients to update the 3D representation
according to the predicted corrections. Although promis-
ing, their results are of relatively low quality and diversity
and suffer from slow inference speed, overly saturated col-
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ors, lack of 3D consistency, and heavy reliance on text con-
ditioning. Follow-up works such as ProlificDreamer [40],
HIFA [47], DreamTime [13], DDS [10] and NFSD [16] ex-
pose those weaknesses and suggest various methods to mit-
igate them. In a similar context, Instruct-NeRF2NeRF [9]
edit a NeRF by gradually editing its source multi-view im-
age dataset during training, using an image diffusion model.
MVDream [32] train a diffusion model to generate multiple
views of the same object using a 3D object dataset. They
apply SDS optimization loop using the diffusion model to
correct multiple views of the optimizing object at each iter-
ation. This method and similar ones [12, 21, 28, 44] heavily
rely on additional data such as 3D structure, depth or nor-
mals, which is not available in our setting.

Contrary to the SDS approach which is an optimization
process, our MAS samples 3D motions from 2D diffusion
models at inference. Hence it suggests a faster approach
and avoids many of the SDS weaknesses by design (See
Section 5).

3. Preliminary

Diffusion Models and Ancestral Sampling. Diffusion
models are generative models that learn to gradually trans-
form a predefined noise distribution into the data distribu-
tion. For the sake of simplicity, we consider the source dis-
tribution to be Gaussian. The forward diffusion process
is defined by taking a data sample and gradually adding
noise to it until we get a Gaussian distribution. The dif-
fusion denoising model is then parameterized according to
the reverse of this process, i.e. the model will sample a ran-
dom Gaussian sample and gradually denoise it until getting
a valid sample.

Formally, the forward process is defined by sampling
a data sample x0 ∼ q (x0) and for t in 1, ..., T , sam-
pling xt ∼ q (xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), un-

til getting to xT , which has a gaussian distribution xT ∼
q (xT ) = N (xT ; 0, I).

The reverse process, also called ancestral sampling,
is defined by sampling a random gaussian noise xT ∼
pϕ (xT ) = N (xT ; 0, I) and then for t in T, t − 1, ..., 1,
sampling x̂t−1 ∼ pϕ (x̂t−1|xt) , until getting to x̂0, which
should ideally approximate the data distribution. The
model posterior pϕ (xt−1|xt) is parameterized by a network
µϕ (xt, t):

pϕ (xt−1|xt) = q (xt−1|xt, x0 = µϕ (xt; t)) =

N
(
xt−1;µϕ (xt, t) , σ

2
t I

)
i.e. the new network predicts a mean denoising direction

from xt which is then used for sampling xt−1 from the pos-
terior distribution derived from the forward process. µϕ is
further parameterized by a network ϵϕ that aims to predict

the noise embedded in xt:

µϕ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵϕ(xt, t)

)
Now, when optimizing the usual variational bound on

negative log-likelihood, it simplifies to,

L (ϕ) = Eϵ∼N (0,I)

[
w(t)∥ϵϕ (αtx0 + σtϵ; t)− ϵ∥22

]
which is used as the training loss. We approximate this

loss by sampling t, ϵ, x0 from their corresponding distribu-
tions and calculating the loss term. Note that when adding
text-conditioning to the model, it is denoted by pϕ (x|y)
where y is the text prompt.

Data Representation. A motion sequence is defined on
top of a character skeleton with J joints. A single charac-
ter pose is achieved by placing each joint in space. Varying
the character pose over time constructs a motion sequence.
Hence, we denote a 3D motion sequence, X ∈ RL×J×3,
with L frames by the xyz location of each joint at each
frame. Note that this representation is not explicitly force
fixed bone length. Instead, our algorithm will do so im-
plicitly. Additionally, This formulation allows us to model
additional moving objects in the scene (e.g. a ball or a box)
using auxiliary joints to describe their location.

Considering the pinhole camera model1, we define a
camera-view v = (Rv, τv, fv) by its rotation matrix Rv ∈
R3×3, translation vector τv ∈ R3 and the focal length fv
given in meters. Then, a 2D motion, xv = P (X, v) ∈
RL×J×2, from camera-view v, is defined as the perspective
projection P of X to v such that each joint at each frame is
represented with its uv coordinates of the camera space.

In order to drive 3D rigged characters (as presented in
the figures of this paper) we retrieve 3D joint angles from
the predicted 3D joint positions of X using SMPLify [3]
optimization for human characters, and Inverse-Kinematics
optimization for the non-humanoid characters (i.e. horses).

4. Method
Our goal is to generate 3D motion sequences using a diffu-
sion model trained on monocular 2D motions. This would
enable 3D motion generation in the absence of high-quality
3D data, by leveraging the ubiquity of monocular videos de-
scribing those scenes. To this end, we introduce Multi-view
Ancestral Sampling (MAS), a method that simultaneously
generates multiple views of a 3D motion via ancestral sam-
pling. MAS maintains consistency between the 2D motions
in all views at each denoising step to construct a coherent
3D motion. A single MAS step is illustrated in Figure 3.

In our experiments we first extract 2D pose estimations
from in-the-wild videos and use them to train a 2D diffusion

1https://en.wikipedia.org/wiki/3D_projection#
Perspective_projection
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model x̂0 = G2D(xt), that predicts the clean 2D motion, x̂0

at each denoising step (See Figure 2).
MAS then uses the diffusion model to simultaneously

apply an ancestral sampling loop on multiple 2D motions,
which represent views of the same 3D motion from V dif-
ferent camera angles. At each denoising step t, we get a
set of noisy views x1:V

t as input and predict clean sam-
ples x̂1:V

0 = G2D(x1:V
t ). Then, the Consistency Block is

applied in two steps: (1) Triangulation: find a 3D motion
X that follows all views as closely as possible. (2) Repro-
jection: project the resulting 3D motion to each view, get-
ting x̃1:V

0 , which we can think of as a multiview-consistent
version of the predicted motions. Finally, we can sample
the next step x1:V

t−1 from the backward posterior x1:V
t−1 ∼

q
(
xt−1|xt, x̃

1:V
0

)
just like the original ancestral sampling

algorithm. Repeating this denoising process up to t = 0
yields multiple views of the same 3D motion. Finally, we
triangulate the resulting 2D motions to create a 3D motion,
which is returned as the final output. This sampling pro-
cess is detailed in the Supp. The remainder of this section
describes the monocular data collection and diffusion pre-
training (4.1), followed by a full description of MAS build-
ing blocks (4.2).

4.1. Preparations

Data Collection. We collect videos from various sources
— NBA videos, horse jumping contests, and rhythmic
gymnastics contests. We then apply multi-person and ob-
ject tracking using off-the-shelf models to extract bounding
boxes. Subsequently, we use other off-the-shelf models for
2D pose estimation to get 2D motions. Implementation de-
tails are in Section 6. We build on the fact that 2D pose es-
timation is a well-explored topic, with large-scale datasets
that can be easily scaled as manual annotations are much
easier to obtain compared to 3D annotation which usually
requires a motion capture studio.

2D Diffusion Model Training. We follow Tevet et al.
[36] and train the unconditioned version of the Motion Dif-
fusion Model (MDM) with a transformer encoder backbone
for each of the datasets separately. We boost the sampling
of MDM by a factor of 10 by learning 100 diffusion steps
instead of the original 1000.

4.2. Multi-view Ancestral Sampling

We would like to construct a way to sample a 3D motion
using a model that generates 2D samples. First, we ob-
serve that a 3D motion is uniquely defined by 2D views of it
from multiple angles. Second, we assume that our collected
dataset includes a variety of motions, from multiple view-
points, and deduce that our 2D diffusion model can gener-
alize for generating multiple views of the same 3D motion,
for a wide variety of 3D motions. Thus, we aim to gener-
ate multiple 2D motions that represent multiple views of the

2D
Di
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od
el

2D Pose
Estimation

Diffusion
Training

Videos scraped
from the web 2D Motion Dataset

Figure 2. Preparations. The motion diffusion model used for
MAS is trained on 2D motion estimations of videos scraped from
the web.

same 3D motion, from a set of different view-points.
Ancestral Sampling for 3D generation. As described

in Section 3, diffusion models are designed to be sampled
using gradual denoising, following the ancestral sampling
scheme. Hence, we design MAS to generate multiple 2D
motions via ancestral sampling, while guiding all views
to be multiview-consistent. Formally, we take a set of V
views, distributed evenly around the motion subject, with
elevation angle distribution heuristically picked for each
dataset. Then, for a each view v we initialize xv

T with noise,
and for t = T, ..., 1 transform xv

t to xv
t−1 until getting a

valid 2D motion xv
0 for each view. We choose to generate

all views concurrently, keeping all views in the same diffu-
sion timestep throughout the process.

In every denoising step we receive x1:V
t =

(
x1
t , ..., x

V
t

)
.

We derive the clean motion predictions by applying the dif-
fusion model in each view x̂v

0 :=
xv
t−

√
1−ᾱtϵϕ(x

v
t )√

ᾱt
, get-

ting x̂1:V
0 =

(
x̂1
0, ..., x̂

V
0

)
. We apply our multi-view Con-

sistency Block to find multi-view consistent motions x̃1:V
0

that approximate the predicted motions x̂1:V
0 . We then use

the resulting motions x̃1:V
0 as the denoising direction by

sampling xv
t−1 from q

(
xv
t−1|xv

t , x0 = x̃v
0

)
, and outputting

x1:V
t−1 =

(
x1
t−1, ..., x

V
t−1

)
.

MAS can be extended to support dynamic camera-view
along sampling instead of fixed ones as detailed in The
Supp. Since this is not empirically helpful for our appli-
cation, we leave it out of our scope.

Multi-view Consistency Block As mentioned, the pur-
pose of this block is to transform multiview motions x̂1:V

0

into multiview-consistent motions x̃1:V
0 that are as similar

as possible. We achieve this by finding a 3D motion X that
when projected to all views, it resembles the multiview mo-
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Figure 3. The figure illustrates an overview of MAS, showing a multi-view denoising step from the 2D sample collection x1:V
t to x1:V

t−1,
corresponding to camera views v1:V . Denoising is performed by a fixed 2D motion diffusion model G2D . At each such iteration, our
Consistency Block triangulates the motion predictions x̂1:V

0 into a single 3D sequence and projects it back onto each view (x̃1:V
0 ). To

encourage consistency in the model’s predictions, we sample 3D noise, ϵ3D and project it to the 2D noise ϵv for each view. Finally, we
sample x1:V

t−1 from q
(
x1:V
t−1|x1:V

t , x̃0
1:V

)
.

tions x̂1:V
0 via Triangulation. We then return projections

of X to each view x̃1:V
0 = (P (X, 1) , ..., P (X,V )), as

the multiview-consistent motions. Since the denoising pro-
cess is gradual, the model’s predictions are approximately
multiview-consistent so the consistency block only makes
small corrections.

Triangulation. We calculate X via optimization to min-
imize the difference between projections of X to all views
and the multiview motion predictions x̂1:V

0 :

X = argmin
X′

∥P (X ′, 1:V )− x̂1:V
0 ∥22 =

argmin
X′

V∑
v=1

∥P (X ′, v)− x̂v
0∥22

For faster convergence, we initialize X with the opti-
mized results from the previous sampling step. This way
the process can also be thought of progressively refining X
but we wish to emphasize that the focus remains the ances-
tral sampling in the 2D views.

3D Noise. When triangulating the 2D motions x̂1:V
0 , we

would like them to be as close to being multiview-consistent
as possible. A critical observation is that for our model
to generate multiview-consistent motions we would like to
pass it multiview-consistent noised motions. To this end,
we design a new noise sampling mechanism that will (1)
keep Gaussian distribution for each view, and (2) maintain
multiview-consistency.

We start by sampling 3D noise ε3d ∼ N (0, I) (ε3d ∈
RL×J×3). Projecting this noise to each view using per-
spective projection will result in a distribution that is not
Gaussian. Hence, we instead use orthographic projection,
which preserves Gaussian distribution for each view (See
Supp.), and can differ from perspective projection by at
most O (1/ (d− 1)), where d is the distance between the
camera and the subject’s center and assuming the sub-
ject is normalized to be bounded in a sphere with radius
1 (See Supp.) We then use the resulting distribution for
sampling the initial noise xT and when sampling xt−1 ∼
q (xt−1|xt, x0 = P (X)) which significantly improves the
quality and diversity of our results (see table 3).

5. Method Discussion

In this section, we discuss the properties of MAS, contex-
tualizing it within the landscape of recent advancements in
the text-to-3D domain.

Ancestral sampling. MAS is built upon the ancestral
sampling process. This means that the model is used in
its intended way over in-domain samples. This is in con-
trast to SDS-based methods [25] which employ a sampling
scheme that uses the forward diffusion to noise images ren-
dered from a 3D representation that is only partially opti-
mized. This can lead to out-of-distribution samples, par-
ticularly when using smaller timesteps where the model ex-
pects motions that are close to being real. This phenomenon
is also addressed by [38] and [13], who suggest heuristics
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Dataset Name Subject #Samples Length Range Average Length FPS In-the-wild videos
Human3.6M [14] Humans 300 42s-240s 104s 25 ✗
NBA videos Humans 60K 4s-16s 6s 30 ✓
Horse jumping contests Horses 2K 3s-40s 7s 20 ✓
Rhythmic ball gymnastics Humans + Ball 500 10s-120s 81s 20 ✓

Table 1. 2D Datasets. Details of the 2D motion datasets used for our experiments. The last three are newly collected in-the-wild datasets
which we made available at https://guytevet.github.io/mas-page/.

MAS (ours)

MotionBERT

ElePose

DreamFusion (Adaptation)

Figure 4. Generated motions by MAS compared to ElePose [37],
MotionBert [48], and an adaptation of DreamFusion [25] to un-
conditioned motion generation. We observe that MotionBert and
DreamFusion produce dull motions with limited movement and
ElePose predictions are jittery and often include invalid poses (Red
rectangles).

to alleviate the out-of-distribution problem but do not fun-
damentally solve it. Furthermore, most SDS-based meth-
ods sample xt independently in each iteration, which may
lead to a high variance in the correction signal. Contrarily,
using ancestral sampling has, by definition, a large corre-
lation between xt and xt−1, which leads to a more stable
process and expressive results. Since MAS is sampling-
based, it naturally models the diversity of the distribution,
while optimization-based methods often experience mode-
collapse or divergence, as addressed by [25]. It is worth

noting that SDS is a clever design for cases where ancestral
sampling cannot be used.

Multi-view stability. MAS simultaneously samples
multiple views that share the same timestep at each denois-
ing step. SDS-based methods typically use a single view in
each optimization step, forcing them to make concessions
such as small and partial corrections to prevent ruining the
3D object from other views. This also leads to a state where
it is unknown which timestep to choose, since only partial
denoising steps were applied (also shown by [13]). MAS
avoids such problems since the multiview denoising steps
are applied simultaneously. It allows us to apply full op-
timization during the triangulation process. Hence, by the
end of the i’th iteration, each view follows the model’s dis-
tribution at timestep T − i. This alleviates the need for
timestep scheduling and avoids out-of-distribution samples.

3D noise consistency. MAS’s usage of a multiview-
consistent noise distribution, critically boosts multiview-
consistency in the model’s predictions and greatly benefits
the quality and diversity of the generated motions. SDS-
based methods sample uncorrelated noise in different views,
which leads to inconsistent corrections, that can result in a
lack of 3D consistency, slower convergence or even diver-
gence.

6. Experiments

6.1. Data Collection

In order to demonstrate the merits of our method, we ap-
ply MAS on three different 2D motion datasets. Each
dataset addresses a different motion aspect that is under-
represented in existing 3D motion datasets (See Table 1).
(1) The NBA players’ performance dataset demonstrates
motion generation in domains of human motions that are
poorly covered by existing datasets. (2) The horse show-
jumping contests dataset shows generation in a domain that
has almost no 3D data at all and has a completely different
topology. Finally, (3) the rhythmic-ball gymnastics dataset
shows that our method opens the possibility to model inter-
actions with dynamic objects. All datasets include motions
from diverse views, which is crucial for the success of our
method. We detail the data collection process in the Supp.

In addition, we evaluate MAS on the 3D motion dataset,
Human3.6M [14], by projecting the motions to random 2D
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Ours vs.
MotionBERT

88.9%Quality
83.3%Diversity

86.1%Precision

Ours vs.
ElePose

93.9%Quality
75.8%Diversity

90.9%Precision

Ours vs.
DreamFusion

100.0%Quality
100.0%Diversity
100.0%Precision

Figure 5. NBA Dataset User study. We asked 22 unique users
to compare 15 randomly generated motions by each of the models
to MAS generations in 3 aspects - precision (i.e. what samples
best depict Basketball moves), Overall Quality and Diversity. The
dashed line marks 50%. MAS outperforms the lifting methods and
the DreamFusion adaptation.

cameras.
All motions are represented as x ∈ RL×J×2 as was de-

tailed in Section 3, where NBA is using the AlphaPose body
model with 16 joint, horses represented according to APT-
36K with 17 joints and the gymnastics dataset is represented
with the COCO body model [20] with 17 joints plus addi-
tional joint for the ball. All 2D pose predictions are accom-
panied by confidence predictions per joint per frame which
are used in the diffusion training process.

6.2. Implementation Details

Our 2D diffusion model is based on MDM [36], and com-
posed of a transformer encoder with 6 attention layers of
4 heads and a latent dimension of 512. This backbone
supports motions with variable length in both training and
sampling, which makes MAS support it as well. To mit-
igate some of the pose prediction errors, we mask low-
confidence joint predictions from the training loss. We used
an ADAM optimizer with 10−4 lr for training and cosine
noise scheduling. We learn 100 diffusion steps instead of
1000 which accelerate MAS 10-fold without compromising
the quality of the results. We observe that MAS performs
similarly for any V ≥ 3 and report 5 camera views across
all of our experiments. The camera views v1:V are fixed
through sampling, surrounding the character and sharing the
same elevation angle, with azimuth angles evenly spread
around [0, 2π]. Generating a 3D sample with MAS takes
less than 10 seconds on a single NVIDIA GeForce RTX
2080 Ti. Performance details can be found in the Supp.

6.3. Evaluation

Here we explore the quality of the 3D motions generated by
our method. Our experiments are conducted on the NBA

dataset to allow comparison with existing methods, which
mostly explore human motion. Usually, we would compare
the generated motions to motions sampled from the dataset.
In our case, we do not have 3D data so we must introduce
a new way to evaluate the 3D generated motions. For that
sake, we rely on the assumption that a 3D motion is of high-
quality if and only if all 2D views of it are of high-quality.
Consequently, we suggest taking random projections of the
3D motions and comparing them with our 2D data. More
specifically, we generate a set of 3D motions, with lengths
sampled from the data distribution, then sample a single an-
gle for every motion with yaw drawn from U [0, 2π] and a
constant pitch angle fitted for each dataset. We project the
3D motion to the sampled angle using perspective projec-
tion, from a constant distance (also fitted for each dataset)
and get a set of 2D motions.

Finally, we follow common evaluation metrics [26, 36]
used for assessing unconditional generative models: FID
measures Fréchet inception distance between the generated
data distribution and the test data distribution; Diversity
measures the variance of generated motion in latent space;
Precision measures the portion of the generated data that
is covered by the test data; Recall measures the portion of
the test data distribution that is covered by the measured
distribution. These metrics are predominantly calculated in
latent space. Hence, we train a VAE-based evaluator for
each dataset. We evaluate over 1K random samples and re-
peat the process 10 times to calculate the average value and
confidence intervals. Table 3 shows that MAS results are
comparable to the diffusion model in use, which marks a
performance upper bound in 2D. We show that the addition
of the multiview-consistent noise is crucial to the success of
our method and prevents mode collapse. A thorough ab-
lation study for the number of views, camera distance, and
number of diffusion steps can be found in the Supp.

We evaluate an adaptation of DreamFusion [25] to the
unconditioned motion generation domain and show that it
performs poorly. This is carried out by initializing a ran-
dom 3D motion and then performing 200 SDS iterations
using the same diffusion model we used for MAS. Each iter-
ation is comprised of: (1) Projecting the 3D motion to some
random view (view distribution is the same as in MAS).(2)
Noising the resulting 2D motion to some diffusion timestep
t ∼ U [1, T ]. (3) Letting our diffusion model predict a
cleaner version of the noised motion. (4) Updating the 3D
motion to fit the predicted motion in the sampled view us-
ing a single optimization step. The implementation of this
adaptation can be found in our published code.

We also experimented with higher iteration numbers than
200 and techniques such as timestep scheduling and opti-
mization tuning but saw no significant improvement.

We compare our method with off-the-shelf SOTA meth-
ods for supervised pose lifting - MotionBERT [48] - and
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FID↓ Diversity→ Precision↑ Recall↑
View Angles All Side All Side All Side All Side
Ground Truth 1.05±.02 8.97±.05 0.73±.01 0.73±.01

ElePose [2021] 10.76±.45 18.28±.33 9.72±.05 8.98±.06 0.28±.02 0.26±.02 0.58±.03 0.17±.01

MotionBert [2023] 30.22±.26 36.89±.40 9.57±.09 8.67±.08 0.04±4e−03 0.03±.01 0.34±.04 0.15±.04

MAS (Ours) 5.38±.06 9.47±.06 0.50±.01 0.60±.01

Table 2. Comparison with pose lifting on NBA dataset. MAS outperforms state-of-the-art unsupervised lifting methods. Furthermore,
lifting methods experience a drop in recall when evaluated from the side view (U

(
π
4
, 3π

4

)
), while MAS does not suffer from this limitation

as it is a generative approach, and not lifting-based. ‘→’ means results are better when the value is closer to the real distribution (8.97 for
Diversity); bold marks best results.

FID↓ Diversity→ Precision↑ Recall↑
Ground Truth 1.05±.02 8.97±.05 0.73±.01 0.73±.01

2D Diffusion Model 5.23±.13 9.70±.08 0.44±.02 0.78±.01

MAS (Ours) 5.38±.06 9.47±.06 0.50±.01 0.60±.01

with 2 views (120◦) 6.87±.14 9.99±.06 0.35±.01 0.80±.01

- 3d noise 17.40±.12 6.67±.07 0.93±.01 0.01±2.6e−03

DreamFusion [2022] 66.38±1.24 8.25±.16 0.33±.08 0.17±.13

Table 3. Ablations. We compare MAS to an adaptation of Dream-
Fusion [25] to the unconditional motion generation domain. Our
evaluation measures the quality of 2D projections of the 3D gener-
ated motions. Our ablations show that MAS performs best with
as few as 5 views (ours), and 3D noise is crucial for prevent-
ing mode collapse. gray indicates mode-collapse (Recall< 10%),
bold marks the best results otherwise. ‘→’ means results are bet-
ter when the value is closer to the real (train data) distribution.

unsupervised pose lifting - ElePose [37]. Although these
methods are not generative per-se, we consider lifted mo-
tions from 2D motions sampled from the training data as
generated samples. As Elepose only requires 2D data, we
train it on our NBA dataset and adjust the geometric pri-
ors to our data. MotionBert was trained on Human3.6M
[14] dataset and some in-the-wild videos, so it is applied in
a zero-shot setting. Table 2 shows that MAS outperforms
both lifting methods.

Since we sample a uniform angle around the lifted mo-
tions, we often project them to views that are similar to the
lifted view. This results in a motion that resembles the lifted
motion, which was sampled from the train data, thus boost-
ing performance. We show that when evaluating from the
side view (angle ∼ U

(
π
4 ,

3π
4

)
relative to the lifting angle)),

the lifting methods experience a clear degradation in per-
formance. MAS is unaffected as it is a generative approach
and has no ”side” view. Repeating this experiment with the
3D dataset Human3.6M, randomly projected into 2D cam-
eras shows that MAS is on par with the side-view perfor-
mance of MotionBERT, and ElePose. More details in the
Supp. Figure 4 demonstrates the quality of MAS com-
pared to DreamFusion, MotionBERT, and ElePose. Fig-
ure 5 presents a user study conducted with 22 participants
comparing 15 randomly generated 3D motions by each of
the models. An example screenshot from the study can be
found in the Supp.

7. Conclusions

In this paper, we introduced MAS, a generative method de-
signed for 3D motion synthesis using 2D data. We showed
that high-quality 3D motions can be sampled from a dif-
fusion model trained on 2D data only. The essence of our
method lies in its utilization of a multiview diffusion an-
cestral sampling process, where each denoising step con-
tributes to forging a coherent 3D motion sequence.

Our experiments show that MAS excels with in-the-
wild videos, enabling it to produce motions that are oth-
erwise exceedingly challenging to obtain through conven-
tional means.

Our method could also be employed in additional do-
mains such as multi-person interactions, hand and face mo-
tions, complex object manipulations and with recent devel-
opments in tracking of “any” object [39], we wish to push
the boundaries of data even further.

Our method does experience some failure cases: The
character occasionally folds into itself when changing direc-
tion, and the character sometimes changes its scale through-
out the motion. MAS also inherits the limitations of the 2D
data it is using and thus cannot naively predict global posi-
tion, or apply textual control. We leave extending the data
acquisition pipeline to support such features to future work.
It is also worth noting that our method requires 2D data that
captures a variety of views of similar motions. Finally, we
hope the insights introduced in this paper can also be uti-
lized in the text-to-3D field and other applications.
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