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Abstract

Instance segmentation demands substantial labeling re-
sources. This has prompted increased interest to explore
the object discovery task as an unsupervised alternative. In
particular, promising results were achieved in localizing in-
stances using motion supervision only. However, the mo-
tion signal introduces complexities due to its inherent noise
and sparsity, which constrains the effectiveness of current
methodologies. In the present paper we propose DIOD
(self DIstillation meets Object Discovery), the first method
that places the motion-guided object discovery within a
framework of continuous improvement through knowledge
distillation, providing solutions to existing limitations (i)
DIOD robustly eliminates the noise present in the ex-
ploited motion maps providing accurate motion-supervision
(ii) DIOD leverages the discovered objects within an it-
erative pseudo-labeling framework, enriching the initial
motion-supervision with static objects, which results in a
cost-efficient increase in performance. Through experi-
ments on synthetic and real-world datasets, we demon-
strate the benefits of bridging the gap between object dis-
covery and distillation, by significantly improving the state-
of-the-art. This enhancement is also sustained across other
demanding metrics so far reserved for supervised tasks.
https://github.com/CEA-LIST/DIOD

1. Introduction

Successful supervised deep learning methods assume the
availability of large annotated datasets. However, acquiring
human annotations can be costly and time-consuming, es-
pecially for dense tasks such as segmentation. This has mo-
tivated researchers to propose alternative tasks to supervised
approaches, aimed at reducing dependency on annotated
data. These methods range from the use of easier-to-get
annotations, also known as weak supervision [8, 16], to un-
supervised methods leveraging self-supervised pre-training
[37, 44], or low-level signals that could be acquired auto-

matically [9, 21].

Input image Bao et al. [2]

BMOD [18] DIOD (ours)

Figure 1. Qualitative comparison of DIOD with previous meth-
ods. The illustration shows several difficult cases (small or/and
static objects) that are correctly segmented in DIOD only. Other
improvements such as precise object boundaries, noise suppres-
sion in non-object regions, can also be seen from the visualization.

Among these tasks, object discovery focuses on the lo-
calization, without human annotations, of objects present in
the scene. The ambition to resolve this task in the image
modality was challenged by the lack of a clear definition
of objects [19, 41]. The transition to video data was then
presented as a way of overcoming this problem by spec-
ifying the nature of the targeted objects: objects capable
of moving [2]. Efforts were focused within this modality,
and all aligned to explore the slot-attention paradigm [29],
originally presented as the deep-learning based version of
the k-means clustering algorithm [28]. The slot-attention
architecture operates as an auto-encoder, utilizing attention
mechanisms in the latent space to decompose input images
into distinct components. These components aim to repre-
sent objects within the scene, encapsulated by embedding
vectors called slots.

Variants of the slot-attention have subsequently emerged.
These include scaling the model’s capacity to adapt to in-
creasing complexity [2, 21], and reconstructing low-level
signals closer to the targeted segmentation [9]. Recently,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3975



authors in [2, 3] demonstrated that a more explicit use of
motion information to guide slots’ learning is the key to
successful real-world object discovery, which opens an in-
teresting research direction, namely motion guided object
discovery (MGOD). The motion guidance signal in MGOD
takes the form of masks of moving objects, produced by
mapping optical flow maps to mobile instances on a syn-
thetic dataset [32]. This process leads to a challenging noisy
supervision: incomplete or merged objects and random seg-
ments within the background regions due to camera motion.

In parallel, learning from noisy/sparse labels (LNL) has
been investigated in various vision tasks [26, 30, 47], with a
recent focus on object detection and localization [5, 39, 43].

Thus, the objectives of the two previous tasks (LNL
and object discovery) are increasingly converging: motion-
guided object discovery also utilizes noisy and sparse mo-
tion masks. Inspired by the previous observation, we pro-
pose in this work bridging the gap between the two tasks.
Our insight is that such unification will yield valuable bene-
fits: formulating MGOD as learning from noisy labels al-
lows not only for the filtering of noise arising from op-
tical flow maps (merged objects, noisy segments due to
camera motion etc), but also for the recovery of captured
objects, especially static ones. Indeed, the slot attention
architecture, mostly used in MGOD, offers flexibility via
empty slots, enabling the model’s attention to extend to-
wards static objects. However, this generalization is limited
by its sole reliance on semantic resemblance (between mo-
bile and static objects). In this paper, we argue that the lack
of static objects in the supervision signal makes their detec-
tion more challenging. To address this issue, we propose
a method that continuously incorporates discovered objects
into the supervision set.

Concretely, the recovery of the discovered objects is
achieved by placing the slot attention mechanism into a
knowledge distillation scheme. In the proposed teacher-
student architecture, we train a first motion-guided slot at-
tention model (student) to activate objects instances within
its attention maps. Simultaneously, a second model
(teacher) computed as the moving average of the student,
is used for inference only. The attentions of the two mod-
els are connected so as to enrich the attention of the student
with the regions activated by its more stable variant: the
teacher. Our contributions are summarized below:
• We formulate the motion-guided object discovery task as

learning from noisy and sparse labels, investigating the
under-studied connection between the two tasks: object
discovery and LNL. Specifically, we propose for the first
time, integrating the slot attention mechanism in a knowl-
edge distillation scheme, and demonstrate the benefits of
re-using the discovered objects to direct the model’s at-
tention.

• We demonstrate that our method robustly handles the

noise arising from the exploited optical flow maps,
through the computation of instance-wise metrics that ac-
count for both precision and recall properties, so far re-
served for supervised tasks.

• Experiments conducted on synthetic and real-world
datasets show that our method yields a substantial im-
provement over the existing state-of-the-art, both on ex-
isting evaluation protocols and on new, more quality-
demanding metrics.

2. Related work
2.1. Unsupervised object discovery

First explored in the image modality, object discovery aims
to localize objects without human supervision. Notable ap-
proaches include object proposal selection based on inter-
image similarities [41, 42], graph-based decomposition of
self-supervised features from vision transformers [37, 44],
and more recently, compositional generative models which
encourage image decomposition into interpretable compo-
nents, via part-based generation [4, 12, 17]. The preceding
approaches all agree on the challenging aspect of discover-
ing objects in the image modality, given the lack of a clear
definition of what an object is.

This ambiguity is addressed by shifting to video data,
supported by motion information: video-based methods
aim to discover objects capable of moving [2, 3, 18]. In
this category, the slot-attention paradigm has been very suc-
cessful. Originally proposed for images, this auto-encoder
architecture was first scaled to sequential data [21]. Its ap-
plicability to real scenes was improved by increasing the ca-
pacity of the encoder [2] and the decoder [38], while other
variants investigated new reconstruction spaces [9, 20, 21].
Some recent works [2, 3] demonstrated the benefit of ex-
ploiting motion signal to direct the model’s attention to-
wards object instances, but come with the limitation that
objects cannot be differentiated from background segments.
This problem was addressed in BMOD [18] which proposed
a baseline for controlling the noisy segments, arising in non-
object regions. However, as BMOD operates in a single
round with all the noisy labels treated equally, it results in a
trade-off between capturing objects and attenuating noise.

In contrast, we propose in DIOD a robust handling of
different types of noise encountered in motion supervision,
inside a distillation process. This also enables the comple-
tion of the initial motion supervision with a category that
was totally missing in previous MGOD: static objects.

2.2. Learning with noisy labels (LNL)

Studies on learning noise-resistant models are prevalent in
the classification task [14, 22, 30]. A notable approach is
to simultaneously train two models, with low-loss labels
from one model considered as clean and used for training
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the second model [14, 48]. Simply discarding noisy data
in previous methods, instead of rectifying the labels is a
significant drawback as it can lead to a substantial reduc-
tion in the dataset size. Some approaches tackled this by
re-annotating the noisy labels during training, following a
semi-supervised scheme [23, 31]. An extension to object
detection was proposed in [6] by adapting the co-teaching
strategy to the dense task, where the loss is evaluated for
each object separately. [24] then suggested the benefit of
disentangling the two sub-tasks of object detection, namely
classification and localization, and sequentially refined both
labels. Some alternative approaches leverage a small subset
of cleanly labeled data to refine noisy labels [46].

Recently, [5] emphasized that the localization task in
LNL has not been as thoroughly explored as classification
and introduced a dedicated benchmark for this task.

Our work fits into this research line, but differs in two as-
pects. (i) Unlike previous methods that artificially generate
noise (e.g., shifted bounding boxes), our label noise mainly
originates from physical factors such as camera motion, re-
flecting real-world applications. (ii) Label sparsity in our
setting can not be simply considered a type of noise, as a
whole category of objects are missing (static objects), mak-
ing the addressed task more challenging. See next section.

2.3. Learning from sparse annotations

Sparsity of annotations can have different meanings de-
pending on the addressed task [25, 39]. In sparsely an-
notated object detection, which is the closest to the prob-
lem we address, sparsity means that within the same image,
certain regions are annotated while others are not. The ob-
jective is thus to differentiate objects from the background
in the non-annotated regions.

Recently, there has been a growing interest in this task,
driven by the recognition of how missing labels affect the
performance of deep learning models [45]. Inspired by
semi-supervised learning, the existing solutions leverage
teacher-student architectures and progressively augment the
labels using the most reliable predictions from the teacher.
The teacher model is computed as the moving average
(EMA) of the student, as described in [27] and the two mod-
els receive distinct views of the input image so as to reduce
confirmation bias. Notable advancements, such as the stan-
dardization of the experimental protocol presented in [39]
and the exploration of models that are insensitive to confi-
dence thresholds [43], hint at a promising future for sparsely
annotated object detection.

In our work, we draw inspiration from the previous
methods in addressing the object discovery task. While
demonstrating the benefits of DIOD for MGOD, we also
introduce the distilled slot attention as a relevant approach
to learning with sparse labels, since the noisy and sparse
motion masks we use can be substituted with pseudo-labels

from any sources. The capability to extend to missing ob-
jects, enabled by the empty slots, makes the distilled slot
attention (DIOD) particularly suited to address this task.

3. Method
Our method, illustrated in figure 2, investigates the re-
integration of objects discovered in motion-guided object
discovery (MGOD) approaches, by placing these within a
self-distillation framework. It involves a burn-in phase, fol-
lowed by training a student model through knowledge dis-
tillation from a teacher model. The core architecture of
both models is inspired by BMOD [18], the method with
state-of-the-art results in background modeling for MGOD.
However, this can be replaced with any MGOD method
with background control. We briefly introduce in section
3.1 both MGOD and BMOD to provide context for our ap-
proach, which we describe in the subsequent sections.

3.1. Context: Background-aware MGOD

Motion-guided object discovery [2] introduces the use of
motion information inside the slot attention architecture
[29]. Specifically, these methods receive as input a se-
quence of T frames and extract a video representation Ht ∈
Rh×w×DH for each frame It by cascading a feature extrac-
tor and a convGRU module. These features are duplicated
and reduced to the dimension D using two learnable lin-
ear projections k and v. Concurrently, K slots, acting as
queries, are projected using q an other learnable transfor-
mation. The slots interact with and share the features Ht

through an attention mechanism: at each time step t, the
similarity (attention) between the slots S and the features
is calculated as W = 1√

D
k(H) · q(S) ∈ RN×K , where

N = h × w. This attention is then used to calculate the
state of the slots at the next time step St+1. The attention
maps W are further directed towards capturing object pat-
terns through the use of a motion signal that takes the form
of binary masks of moving objects, extracted from the opti-
cal flow. These are used to supervise specific slots’ attention
maps among the K and the process is referred to as motion-
guided attention. In BMOD [18], authors pointed out the
consequences of the lack of a proper background modeling
in the previous methods, and proposed a baseline for back-
ground modeling. For this, they use the same motion su-
pervision as above and propose to learn the true foreground
map denoted Wfg composed of both moving and static ob-
jects. Specifically, the negative log likelihood loss is used to
activate all objects contained in the M motion masks within
the foreground map, while applying regularization to avoid
the trivial solution of activating the entire Wfg map. This
takes the form of average activation of Wfg in non-object re-
gions only. The complementary mask Wbg , which naturally
contains the background class, is placed as the attention of
one specific slot to isolate its specific pattern.
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Figure 2. Illustration of DIOD. Strong and weak views of the input sequence are provided to the student and teacher models respectively.
Both models produce attention maps that are connected in a one-to-many configuration: each teacher’s attention map W is divided into
connected regions, among which high-confidence predictions supervise many student’s attention maps W , through BCE loss. Similarly,
filtered motion-derived masks are used to regularize the learning process. Binary masks are the only fixed pseudo-labels, while colored
maps represent learnable attention maps. The background isolation process is the same as in [18].

In the following, we detail the integration of the previous
method into the distillation framework proposed in DIOD,
including the adjustments made for this purpose.

3.2. Burn-in stage

In the context of semi-supervised learning, burn-in refers to
the phase preceding distillation training [27]. It entails the
preparation of both the teacher and student models through
training on the annotated data only. Since no human anno-
tation is available in our unsupervised setting, both models
are initialized by training on noisy motion masks extracted
from optical flow (section A of the supplementary material
provides more details on the generation of motion masks).

During this phase, we follow the same video sequence
encoding as in MGOD methods [2, 18]. Also, we assume
M available binary motion masks for each frame It. The
attentions produced by the model are broadcasted into 2d
maps and matched with the M motion masks via a Hungar-
ian algorithm. Given a motion mask m and its associated
attention map W , motion guidance is applied via a weighted
Binary Cross Entropy (BCE) loss between the two, where
the BCE weighting is intended to take account of the small
size of the objects, relative to the size of the map [18].

Concurrently, we learn the foreground map Wfg in a
slightly different way from BMOD [18]. In BMOD, the
regularization enabling noise suppression is applied in non-
object regions only (regions that are not activated in the M
masks), to not attenuate the objects contained within the
motion masks. However, we recall that these masks are
noisy (the noise takes the form of random segments arising

in the static background). Thus, opting not to impose con-
straints on model confidence in these regions does not al-
low for robust noise suppression. The distillation proposed
in DIOD provides increased flexibility, eliminating the need
for a trade-off between noise suppression and object discov-
ery: we apply regularization to the entire map Wfg (includ-
ing regions activated in the M masks). The attenuation of
some objects may occur but is not critical in our approach,
since those will be recovered via the teacher model (refer
to section 3.3). The background modeling in our approach
is thus learned via the loss in eq.1 with α the regularization
strength, and mfg the sum of M binary motion masks.

Lfg/bg(mfg,Wfg) =
1

N

N∑
i=1

[
−mfg(i) log

(
Wfg(i)

)
+ αWfg(i)

] (1)

Finally, following [2, 18], the sum of the K slots, each
weighted by the corresponding attention map, is decoded to
reconstruct the input image. The reconstruction is learned
via the Mean Squared Error (MSE) loss between recon-
structed and input sequence.

Unlike the classic semi-supervised setting, the burn-in
phase in DIOD is applied using noisy segmentation labels.
We examine in section 5.3 the effect of the burn-in duration
under these limited label quality conditions.

3.3. Teacher-student training

3.3.1 Overview

At the end of the burn-in phase, the model is duplicated
into a student model and a teacher model. Strong and weak
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augmentations of the input sequence are forwarded to the
student and teacher models, respectively. Following the tra-
ditional distillation scheme, only the student is updated via
gradient back-propagation, while the teacher is calculated
as the exponential moving average (EMA) of the student
[27]. During the training, the aim of our method is to en-
rich the student’s attention W by retrieving objects activated
in the teacher’s attention; while filtering out the noisy seg-
ments using the teacher’s confidence. In the following, vari-
ables related to the teacher model will be denoted with an
overbar (e.g. W refers to the teacher’s attention maps).

3.3.2 Connecting the attentions of the two models

At each time step t, we retrieve the objects captured by the
teacher by applying an argmax operation across the K at-
tention maps W

t
. We denote W ′t the binarized teacher’s

attention maps (the background map W ′
bg

t
is discarded).

One-to-one vs. one-to-many There are two ways of con-
necting the attentions of the two models: one-to-one, or
one-to-many. The first setting means that each activated
binary mask among W ′t supervises one attention map of
the student model. We observe that, under this configura-
tion, the model progressively introduces a semantic bias: if
several instances are activated within one teacher’s atten-
tion map, they are introduced to the student as a single ob-
ject, causing the model to drift from instance segmentation
to semantic segmentation, merging in particular nearby ob-
jects. This observation is supported by the ablation study
in section 5, and suggests opting for the one-to-many con-
figuration (one teacher’s attention map to many student’s
attention maps). In this setting, each connected region (spa-
tially adjacent set of activated pixels) in W ′t is considered
an object candidate.
Pseudo-label confidence We denote C the set of all ob-
ject candidates collected from the teacher attention maps.
Among these, candidates with a high confidence score are
selected to supervise the student attentions W t. Given an
object candidate c and its source attention map W , this
score is computed as the mean activation in W at positions
where c is activated.

scorec =
1∑N

i=1 c(i)

N∑
i=1

W (i)⊙ c(i) (2)

Object candidates with scores above a predefined thresh-
old p are selected and fed to a Hungarian matching to as-
sociate them with the student’s attention maps. For an ob-
ject c selected and associated with the student’s attention
map W , the loss related to the teacher’s pseudo-labeling,
denoted LBCE,t, is defined as follows:

LBCE,t(c,W ) = − 1

N

N∑
i=1

[(
1 + scorec

)
c(i) log

(
W (i)

)
+

(
1− c(i)

)
log

(
1−W (i)

)] (3)

Input image

Motion supervision
Learned
foreground
map

Set of
motion
masks M

Filtered
motion
masks M'

Figure 3. Utilizing the learned foreground attention W fg as an ob-
jectness map to filter out noisy motion segments, during training.

3.3.3 Training with two label sources

We described in the previous section the process of re-
using the high-confidence teacher’s predictions. We note
that these predictions are constantly changing during train-
ing, with the inherent risk of leading to confirmation bias. In
this section, we focus on using the second source of pseudo-
labels - the initial set of M motion masks - as a form of
regularization for the teacher-student training. Specifically,
we propose to use this set preceded by a filtering of the
noisy labels among the M . This brings the method closer to
the successful learning schemes in sparsely-annotated ob-
ject detection: leveraging an external set of fixed labels,
along with a variable set of pseudo-labels produced by the
teacher model. As in previous motion-guided object discov-
ery methods, we assume access to a set of binary motion
masks, with no confidence information. In order to infer
this information, we propose to use the learned foreground
attention map W fg as an objectness map, i.e. a confidence
map on the presence of objects (see figure 3). A confidence
score scorem(m,W fg) is calculated for each mask m as
described in 3.3.2.

The set M of motion-masks used during the burn-in
stage is replaced by M ′, the set of motion-masks with a
confidence score above p. Each mask m′ ∈ M ′ is linked to
an attention map W of the student, and the associated loss
is:

LBCE,s(m
′,W ) = − 1

N

N∑
i=1

[(
1 + scorem′

)
m′(i) log

(
W (i)

)
+

(
1−m′(i)

)
log

(
1−W (i)

)]
(4)

In both LBCE,t and LBCE,s, we replace the weighting
based on object size, applied in the burn-in stage and in [18],
with the teacher’s confidence assigned to each object candi-
date. This score becomes more indicative and reliable at
this stage where the noise is being filtered.

The set M ′ of filtered motion masks is also used to cal-
culate the objective function responsible for modeling the
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background Lfg/bg(m
′
fg,Wfg) (refer to section 3.2 for the

definition of the objective function).
Slots decoding is performed to reconstruct the input se-

quence as in burn-in stage. The global loss at each time step,
used to optimise the teacher-student training is defined as:

Lglobal =
1

M ′

M′∑
1

LBCE,s(m
′,W ) +

1

C

C∑
1

LBCE,t(c,W )

+ Lfg/bg(m
′
fg,Wfg) + Lmse(I

t, Ît)
(5)

Note the normalization by the number of objects (varies
across frames) in the first two terms.

4. Experiments
4.1. Datasets

ParallelDomain (TRI-PD) [2] is a synthetic, photo-
realistic video dataset of driving scenarios, supplemented
with several types of 2D and 3D annotations. Its varied and
complex scenes provide a robust and challenging bench-
mark for the task of object discovery. In line with previous
works, we trained our model on 924 scenes (without anno-
tations) captured by 6 car-mounted cameras, then validated
it on a separate test set of 51 video sequences.
KITTI [11] is a real-world dataset of road scenes and a
well-known benchmark for various vision tasks. In our
study, we trained the models on all available raw data (with-
out annotations) and validated them on the instance segmen-
tation subset, which consists of 200 frames.
MOVi[13] is a series of 5 multi-object synthetic video
datasets (A-E) of increasing complexity. MOVi-E is the
subset created by simulating random linear camera move-
ments. It is composed of randomly moving rigid objects
alongside static objects . In line with previous works, we
evaluate our method on this benchmark using the standard
MOVi-E training and test splits.

4.2. Metrics

fg-ARI is a standard metric in object discovery. It quanti-
fies the similarity between predicted and ground truth clus-
terings. The fg prefix denotes that the metric is calculated
over foreground regions, which does not penalize the back-
ground over-segmentation issues observed in MGOD [18].
all-ARI was introduced in [18] to address the previous lim-
itation. This metric encompasses background regions in the
ARI computation. While this is an improvement, we believe
it remains insufficient due to another inherent bias in ARI:
being a pixel-wise metric, the ARI inherently favors accu-
rate segmentation of larger objects since correctly cluster-
ing numerous pixels from such objects disproportionately
increases the score.
F1@50 metric is the harmonic mean of precision and recall.
A predicted mask is considered a true positive if its over-

lap with a ground truth mask exceeds 50% [10]. We pro-
pose employing this metric for object discovery, motivated
by two key properties: (i) it inherently normalizes object
sizes; and (ii) it effectively penalizes the background over-
segmentation—a growing concern in recent studies—by
treating each random background segment as a false pos-
itive. This second property is lacking in metrics like mIOU,
which at most count the background mask once, with some
versions not including it in the computation.

4.3. Implementation details

The model received video sequences of length T = 5 for
TRI-PD and KITTI datasets, and T = 6 for MOVI-E. We
used a ResNet-18 [15] backbone for image encoding and the
number of slots was set to 45, 45, 24 with TRI-PD, KITTI,
and MOVI-E, respectively. The teacher model is updated
at each iteration with the EMA of the student model as de-
scribed in [27], with a keeping rate 0.996, and the teacher’s
predictions are filtered with a confidence threshold p = 0.9.
Additional implementation details are provided in section A
of the supplementary material.
Using self-supervised features from DINOv2 pre-
training [33]. We denote this test DIOD*. In this setting,
we replace the encoder with a DINOv2 pre-trained ViT-S-
14. We resize input frames to be compatible with the patch
size of 14, and utilize multi-scale features by concatenating
outputs from the encoder’s last four layers. To compen-
sate for the resolution drop due to the high patch size (14),
we up-sample the feature maps to the size yielded by the
ResNet encoder in the base setting.

4.4. Accurate segmentation over foreground regions

In this section we evaluate the performance of object lo-
calization in foreground regions, using the fg-ARI metric,
described in section 4.2. The results in table 1 and 2 show
a significant improvement achieved by DIOD over state-of-
the-art methods, especially under the challenging complex-
ity of real-world scenes (qualitative results under this setting
are presented in figures 1 and 4). The gain in performance
is explained in particular by DIOD’s capacity to re-integrate
discovered objects during training, and among them static
objects which enrich the motion guidance signal. The gap
is further widened with the use of DINOv2 self-supervised
pre-training, demonstrating the scalability of DIOD, which
benefits from an enriched feature space.

4.5. Segmentation performance on the entire image

In this section, we assess object discovery performance on
the entire image, with regard to both recall (sensitivity to the
presence of objects) and precision (absence of noisy seg-
ments). We compare DIOD with top leading MGOD meth-
ods using all-ARI and F1@50 metrics, both discussed in
section 4.2. The results in table 3 show a clear superiority
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Bao et al. [2] BMOD [18] DIOD (ours)

Figure 4. Qualitative comparison of DIOD with previous methods in real-world scenes (KITTI [11]). Each colored mask represents
the content of one slot. The green ellipse highlights difficult cases (small or/and static objects) that are correctly segmented in DIOD only.

Guidance signal Method TRI-PD KITTI

-

SlotAttention [2, 29] 10.2 13.8
MONet [2, 4] 11.0 14.9
SCALOR [2, 17] 18.6 21.1
IODINE [2, 12] 9.8 14.4
MCG [2, 34] 25.1 40.9
STEVE [3, 38] - 11.9

optical flow
SAVI [3, 21] - 20.0
PPMP [20] - 51.9

flow + depth SAVI++ [3, 9] - 23.9

motion masks

Bao et al. [2] 50.9 47.1
MoTok [3] 55.1 64.4
BMOD [18] 53.9 54.7
DIOD 66.1 73.5
BMOD* [18] 58.5 60.8
DIOD* 69.7 72.3

Table 1. Evaluation of object discovery performance over fore-
ground regions using fg-ARI metric, on TRI-PD and KITTI test
sets. X* refers to the method X + DINOv2 pre-training [33].

Use of pre-training Method +Modality Fg-ARI

-

SAVI [21] Flow 39.2
SAVI++ [9] Sparse Depth 41.3
PPMP [20] Flow 63.1
MoToK [3] Motion Seg. 66.7
STEVE [38] - 54.1

DINO DINOSAUR[36] - 65.1
DINO VideoSAUR[49] - 78.4

- Safadoust et al.[35] GT Flow 78.3
DINOv2 SLOV[1] - 80.8
DINOv2 DIOD* Motion Seg. 82.2

Table 2. Object Discovery results on MOVi-E dataset. Methods
are separated into two categories: with and w/o use of pre-training

of DIOD in both metrics demonstrating its ability to retrieve
foreground objects, while robustly limiting the noise ob-
served in previous methods, particularly in the background
regions. This handling of false predictions is explained by
the filtering process, based on the model confidence, of the

two sources of pseudo-labels involved in training. Note that
the distillation process brings this gain in performance with-
out any additional cost of annotation. We also observe that
the two metrics exhibit distinct ranges, with all-ARI tending
to have higher values. This is related to the pixel-wise vs.
instance-wise score discussed in 4.2. Normalization by ob-
ject size in F1 gives equal weight to all objects, preventing
the largest ones from prevailing in the final score.

Guidance signal Method TRI-PD KITTI
all-ARI F1@50 all-ARI F1@50

motion masks

Bao et al. [2] 6.3 12.2 4.2 8.8
MoTok [3] 4.7 12.6 2.1 8.2
BMOD [18] 28.6 14.4 17.8 9.3
DIOD 70.3 35.4 61.6 18.0
BMOD* [18] 29.1 16.3 21.7 10.9
DIOD* 74.1 41.5 81.6 23.2

Table 3. Object discovery performance on the entire image using
F1@50 and all-ARI metrics, on TRI-PD and KITTI test sets.

5. Ablation studies and further analysis

5.1. Investigating design choices

One-to-one vs. one-to-many configurations in connecting
teacher and student attentions have been described in sec-
tion 3.3.2. We conduct this study to verify the observation
that the model shifts towards semantic segmentation in the
one-to-one configuration. Table 4 (a) (row 1) indicates that
this leads to a decrease in the F1@50 score, confirming the
superiority of the one-to-many configuration in DIOD.
The use of motion supervision during teacher-student
training is intuitive, since these are the only fixed pseudo-
labels supplied to the model and thus serve as regulariza-
tion. We conduct this study to verify the previous statement,
using only the teacher’s pseudo-labels during the distillation
phase. As shown in table 4 (a) (row 2), this results in a drop
in the F1 score, suggesting the importance of regularizing
the distillation scheme with fixed labels.
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method F1@50

one-to-one connection 30.2

DIOD (w/o motion masks) 17.8

DIOD (final setting) 35.4

(a)

method F1@50

end of burn-in 16.9

offline pseudo-labelling 26.3

DIOD 35.4

(b)

burn-in duration (epochs)
200 300 400

α

0.2 12.7 →29.3 15.5 →26.2 15.6 → 23.6
0.3 14.6 →30.7 17.2 →33.9 16.9 →35.4
0.4 15.5 →32.7 17.1 → 33.5 18.8 → 33.7

(c)

Table 4. Ablation studies and further analysis (conducted on the test set of TRI-PD [2]). (a) Investigation of DIOD’s design choices
(row 1: one-to-one vs. one-to-many, row 2: w/o use of motion masks). (b) Highlighting the continuous improvement provided by DIOD
vs. classic pseudo-labeling. (c) Joint analysis of the burn-in duration and regularization strength α: each cell displays two F1@50 scores,
the first in black is the score at the end of the burn-in stage, and the second in blue is the result after teacher-student training (500 epochs).

5.2. Distillation vs. offline pseudo-labeling

In this section, we aim to evaluate the contribution made by
DIOD, compared with an offline pseudo-labeling, i.e. using
the predictions produced at the end of the burn-in as new
supervision. To this end, we used the same noise filtering as
in DIOD, but disabled the teacher-student scheme (studying
only the effect of continuous improvement). We run the
training for the same duration of 500 epochs. The limited
results of offline pseudo-labeling compared to our distilled
slot attention (table 4 (b)) demonstrate the continuous and
efficient improvement provided by DIOD (in only one run).

5.3. Influence of regularization and burn-in

In this section, we jointly study two related hyper-
parameters of the proposed method: burn-in duration and
regularization strength α. Burn-in can be more or less ben-
eficial depending on the noise attenuation strength (α), as
shown in table 4 (c). Overall, we see that for all pairs of
tested values, the distillation phase brings a clear F1@50
score improvement, ranging from +8% to +18%. We also
note that at low regularization (row 1), the model does not
benefit from a longer burn-in; on the contrary, performance
deteriorates with increasing burn-in, due to the recovery of
noise that has been only slightly attenuated (low α). This
notably affects the precision measure included in the F1
score. By attenuating the noise more strongly (higher α,
rows 2-3), this tendency is reversed, and the model benefits
from a longer preparation time, since this enables a more
useful signal to be recovered. Finally, we note that at high
values of α (row 3), the improvement brought by distillation
saturates, and this is justified by the strong noise attenuation
that could also attenuate small or hard-to-capture objects,
affecting in this case the recall measure. Overall, α = 0.3
and a burn-in lasting 400 epochs seems to provide a good
precision-recall trade-off, reflected by the F1@50 score.

6. Limitations and future directions
The regularization value required to learn the foreground
attention map is studied as a hyper-parameter of the method.
However, the optimal value of the regularization strength is

not necessarily identical across all frames. Future research
would benefit from a dynamic regularization that adjusts
according to the content of each frame. For instance, this
adjustment could be based on the image entropy, building
on the assumption that lower entropy correlates with larger
background regions, requiring a higher regularization.
Precise confidence score for filtering teacher’s predictions
is crucial in distillation. While it is intuitive to calculate this
score as the average activation across the discovered mask,
future research would benefit from considering a more re-
fined computation that accounts for the object completeness
in addition to the semantics. Potentially by learning an In-
tersection over Union (IoU)-like score, by comparing pre-
dicted and motion-derived masks during training.

7. Conclusion

In this work, we proposed a new approach that unifies
motion-guided object discovery and learning from noisy la-
bels. This study is driven by the overlapping objectives of
these tasks, coupled with an insight into the valuable ben-
efits this may provide. Specifically, we placed the slot at-
tention mechanism, widely used in object discovery, within
a knowledge distillation framework, which we also called
distilled slot attention. The proposed approach has proved
effective for motion-guided object discovery, achieving a
significant gain in performance, both on conventional eval-
uation criteria and on more challenging instance-wise met-
rics. Beyond object discovery, distilled slot attention refines
noisy and sparse pseudo-labels into a more accurate and
fine-grained video segmentation, with proper background
separation, thus providing a relevant approach to instance
segmentation with noisy labels. Considering the highly
promising results, future research may explore a more ex-
plicit incorporation of motion maps into the training pro-
cess, enabling end-to-end motion-guided object discovery.
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[41] Huy V Vo, Patrick Pérez, and Jean Ponce. Toward unsu-
pervised, multi-object discovery in large-scale image collec-
tions. In European Conference on Computer Vision, pages
779–795. Springer, 2020. 1, 2

[42] Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez,
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