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Figure 1. RAVE is a lightweight and fast video editing method that enhances temporal consistency in video edits, utilizing pre-trained
text-to-image diffusion models. It is capable of modifying local attributes, like changing a person’s jacket (bottom right), and can also
handle complex shape transformations, such as turning a wolf into a dinosaur (bottom left).

Abstract

Recent advancements in diffusion-based models have
demonstrated significant success in generating images from
text. However, video editing models have not yet reached
the same level of visual quality and user control. To address
this, we introduce RAVE, a zero-shot video editing method
that leverages pre-trained text-to-image diffusion models
without additional training. RAVE takes an input video and
a text prompt to produce high-quality videos while preserv-
ing the original motion and semantic structure. It employs
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a novel noise shuffling strategy, leveraging spatio-temporal
interactions between frames, to produce temporally consis-
tent videos faster than existing methods. It is also efficient in
terms of memory requirements, allowing it to handle longer
videos. RAVE is capable of a wide range of edits, from local
attribute modifications to shape transformations. In order
to demonstrate the versatility of RAVE, we create a com-
prehensive video evaluation dataset ranging from object-
focused scenes to complex human activities like dancing
and typing, and dynamic scenes featuring swimming fish
and boats. Our qualitative and quantitative experiments
highlight the effectiveness of RAVE in diverse video editing
scenarios compared to existing methods. Our code, dataset
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and videos can be found in our project webpage.

1. Introduction
Diffusion-based generative models [16, 43] demonstrate
outstanding capabilities in generating and editing diverse
and high-quality images [36, 37, 40] guided by text
prompts. Existing diffusion-based editing methods [6, 7,
12, 15, 29, 32, 39, 46] have predominantly addressed image-
related tasks, and offer a wide range of functionalities such
as object editing [15], image inpainting [6], personalized
generation [39], and image-to-image translation [29]. These
methods perform editing on images through a determin-
istic DDIM inversion process [44]. This involves con-
ducting image-to-noise inversion and subsequently gener-
ating edited images from the noise based on the target text
prompt. This new paradigm of interactive image editing
and generation through textual prompts not only represents
an exciting advancement but also lays the groundwork for
a diverse spectrum of possibilities for content creation by
nontechnical users.

Unfortunately, advances in image editing have not been
translated into comparable success in video editing. Prior
research has been focused on text-to-video (T2V) genera-
tion [17, 18, 42] by utilizing extensive text-video datasets
such as WebVid-10M [8]. However, these methods are
prohibitively expensive and therefore unsuitable for broad
use in content creation. Another line of research employs
conventional video editing methods [9, 23, 26] such as
keyframe selection [22] or atlas editing [9, 23]. However,
these methods are hampered by their dependence on time
consuming processes like atlas learning [9, 23, 26], accu-
rate keyframe selection [22], and prompt-dependent tun-
ing [9, 26]. More recent works have focused on leverag-
ing pre-trained text-to-image (T2I) diffusion models [9, 10,
34, 50, 51]. However, adapting pre-trained T2I models for
video editing poses a significant challenge, as it is essential
to ensure the temporal consistency within the edited video.
While existing methods exhibit potential, they face multiple
limitations: difficulty in editing long videos [10, 34], chal-
lenges with complex edits such as shape [14, 25, 51], quality
degradation in the presence of substantial motion [25], de-
mands significant processing time [34, 50], or requires ad-
ditional training [27, 50]. In this paper, we present RAVE,
a novel text-guided zero-shot video editing approach that
performs style, attribute, and shape editing on videos. It
is compatible with any pre-trained T2I diffusion model,
such as Stable Diffusion (SD) [37], eliminating the need for
training for every target prompt [9, 23, 26], or user-specific
masks [6, 7], and also incorporates spatial guidance through
ControlNet [52]. Notably, RAVE is lightweight and effi-
cient, achieving video edits at a rate ∼25% faster than ex-
isting methods.

Figure 2. Comparison with existing attention modules. The first
row shows the frames of the input video, followed by subsequent
rows presenting the edited frames under various attention settings,
with our approach in the last row. The column on the right pro-
vides zoomed-in crops of mountains (from the 1st and 3rd frames)
and the car’s bumper (from the 2nd and 4th frames).

Maintaining temporal consistency is crucial in video
editing to ensure consistency across frames and to preserve
the seamless movement of objects. Unlike previous studies
[10, 34, 50] that depend on explicitly using multiple frames
with attention methods like spatio-temporal attention or
sparse causal attention for consistency [10, 50], RAVE em-
ploys a novel noise shuffling strategy that efficiently utilizes
spatio-temporal interactions between frames. Our noise
shuffling strategy inherently directs the model to perform
spatio-temporal attention in a fraction of the usual time
and memory requirements while still maintaining tempo-
ral consistency. Fig. 2 illustrates common attention strate-
gies in video editing methods, highlighting their shortcom-
ings and emphasizing the effectiveness of our noise shuf-
fling approach. Using solely spatial self-attention can lever-
age pixel locations in feature maps to capture similar corre-
lations, while cross-attention manages the correspondence
between pixels and text prompts (see Fig. 2 (a)). However,
as shown by the results, while the generated frames align
with the text prompt in terms of motion and color style,
they lack consistency due to the neglect of temporal con-
text as seen in the inconsistencies in the background and
the car’s bumper. A straightforward approach would be
to expand the self-attention module to include all frames,
but this presents a substantial computational challenge [50].
Processing all video frames simultaneously becomes im-
practical, especially for videos with a high frame count.
Alternative spatio-temporal attention methods often use a
sparse form of the mechanism, known as sparse-causal at-
tention [50] where the attention matrices are calculated be-
tween the initial frame and preceding frames, or among se-
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lected keyframes [10, 19, 34, 50]. Although this method
produces more consistent frames with reduced time com-
plexity, its performance tends to decline in longer videos
due to the diminishing temporal awareness. This decline is
evident in Fig. 2 (b), as shown by the changes in the hood
and the contrast in the mountains. In contrast, our strat-
egy leverages the power of global spatio-temporal attention
throughout all frames, ensuring frame consistency even in
long videos by performing a novel noise-shuffling operation
at every diffusion step during sampling (see Fig. 2 (c)). This
results in maintaining the reduced time complexity when
editing long videos without sacrificing the quality or speed
of image editing. To summarize, our main contributions are
as follows:
• We present RAVE, a novel, training-free, zero-shot video

editing framework that integrates with pre-trained T2I
diffusion models, such as Stable Diffusion [37]. RAVE
incorporates spatial guidance with ControlNet [52] to per-
form video style, attribute, and shape editing.

• Our novel noise shuffling method harnesses spatio-
temporal interactions between frames efficiently, result-
ing in temporally consistent videos ∼25% faster than ex-
isting methods.

• We propose a novel video evaluation dataset that includes
a diverse range of videos, from object-centric scenes to
complex human motions like dancing and typing, as well
as dynamic scenes featuring swimming fish and boats.
Moreover, we share our source code publicly, hoping to
promote further research.

2. Related Works
Text-driven image editing Methods such as Dream-
Booth [39] and Textual Inversion [13] demonstrate diverse
image generation through fine-tuning in a few-shot man-
ner. UniTune [47] and Imagic [24], both based on the
Imagen [40] model, exhibit strong editing performances.
Recent training-free methods like Prompt-to-Prompt [15],
DiffEdit [12], Blended Diffusion [6], and Blended Latent
Diffusion [7] achieve local and detailed editing by leverag-
ing attention properties.
Text-driven video editing with training Text-guided
video editing broadly falls into two categories. One recent
work in the first category, Video Diffusion Models [18],
uses a factorized space-time U-Net compatible with joint
image-video training as its architecture. Dreamix [31] ex-
tends this with a mixed fine-tuning approach. In contrast,
Make-A-Video [42] reduces T2V training cost by eliminat-
ing the need for paired text-video data. MagicEdit [27] in-
troduces a different learning setting, separating the learning
of structure, motion, and content. However, these meth-
ods require extensive training on a large dataset, limiting
scalability and generalizability. Tune-A-Video [50] pro-
poses tailored spatio-temporal attention as an extension to

the T2I model, termed sparse causal attention. Shape-
aware TLVE [26] suggests an atlas-learning-based approach
enabling structure-editing. Edit-A-Video [41] introduces
‘sparse-causal blending’ to reduce background inconsis-
tency, utilizing Null-Text Inversion [30], akin to Video-P2P
[28] and vid2vid-zero [48]. However, these methods are
time-consuming, requiring optimization, which limits their
real-world application capabilities.
Text-driven video editing without training Due to the
optimization requirements of previous methods, recent
studies emphasize zero-shot training-free approaches for
practical applicability. Pix2Video [10] employs sparse-
causal attention for temporal consistency along with latent
guidance, using the predictions of the original images as a
proxy at each denoising step. FateZero [34] uses attention
features during inversion for spatio-temporal preservation
and blending, claiming that those are better in preserving
motion and structure compared to that of during sampling.
Text2Video-Zero [25] synthesizes and edits videos with
cross-frame attention, initial frame integration, and back-
ground smoothing. Rerender-A-Video [51] employs hier-
archical cross-frame constraints for temporal consistency,
while TokenFlow [14] focuses on feature-level smoothing
to reduce the effects of flickering.

Nevertheless, FateZero [34], similar to Pix2Video [10],
requires source prompts as it is built on the Prompt-to-
Prompt [15] editing technique. This method necessitates
specific types of prompts on the source prompt, thereby lim-
iting editing diversity. Additionally, both are constrained
to shorter clips due to memory limitations. Text2Video-
Zero [25] and Rerender [51] heavily rely on off-the-shelf
methods and optical flow, limiting consistency over longer
videos. TokenFlow [14] faces structure editing limitations,
dependent on inversion quality, and feature-level smooth-
ing causes blurring in the edited image. As opposed to our
method, previous approaches require time-intensive opera-
tions that slow down inference speed, restricting applicabil-
ity to longer videos.

3. Methodology
Consider a video, denoted as VK = {I1, . . . , IK}, con-
sisting of K individual frames. Each frame, represented as
Ik ∈ RW×H×C corresponds to the kth position in the video
sequence where W , H , and C specify the width, height,
and color channels, respectively. Suppose we have a text
prompt P , detailing a specific edit to be made to the video.
Our goal is to generate a modified video, V∗

K , where the
original video is transformed based on the changes outlined
in P . For example, imagine a video of a monkey sitting
on the grass and eating food (refer to Fig. 6). If given a
prompt such as “a teddy bear is eating an apple”, our task
would be to transform the monkey and food into a teddy
bear and apple, while preserving its original motion and
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Figure 3. An illustration of RAVE. Our process begins by performing a DDIM inversion with the pre-trained T2I model and condition
extraction with an off-the-shelf condition preprocessor applied to the input video (VK ). These conditions are subsequently input into
ControlNet. In the RAVE video editing process, diffusion denoising is performed for T timesteps using condition grids (CL), latent grids
(Gt

L), and the target text prompt as input for ControlNet. Random shuffling is applied to the latent grids (Gt
L) and condition grids (CL) at

each denoising step. After T timesteps, the latent grids are rearranged, and the final output video (V∗
K ) is obtained.

semantic layout. As we achieve this transformation using
only publicly available T2I models combined with a single
video-text pair, we consider our approach as zero-shot text-
guided video editing.

3.1. Preliminaries

Latent diffusion models (LDMs) Denoising diffusion
probabilistic models (DDPM) are computationally intensive
due to repetitive denoising steps in pixel space. Addressing
this, LDMs [37] introduce two key extensions: (i) The dif-
fusion process operates in a lower-dimensional space by ini-
tially encoding the image using a pre-trained autoencoder,
and (ii) improved controllability is achieved through condi-
tions during training. LDMs typically employ a U-Net [38]
as the denoising model, featuring skip connections between
decoder and encoder levels. The U-Net consists of stacked
2D convolutional residual blocks and transformer blocks,
each with a spatial self-attention (S-A) layer capturing spa-
tial correlations, a cross-attention (C-A) layer interacting
with conditional inputs (e.g. tokens in the text prompt), and
a feed-forward layer processing the output for compatibility
with the subsequent block.

Denoising diffusion implicit models (DDIM) To expe-
dite the sampling process of diffusion models, DDIM [44]
generalizes the Markov structure of DDPM [16] to a non-
Markov setting and allows us to reach the clear sample with
less steps. That allows us to obtain the corresponding latent
from the original latent, z0, for each timestep t, {zt}t=T

t=1 .
For image editing, one needs to map the given image to
its inverse counterpart. Therefore, this technique is widely
utilized in various image/video editing approaches with dif-
fusion models.

ControlNet To enhance flexibility and controllability of
the video editing process, our method incorporates Con-
trolNet [52] for structural guidance. ControlNet introduces

a control mechanism for diffusion models by integrating a
weight locking strategy, allowing for additional conditions
beyond the text prompt P , such as line art, depth, pose, and
surface normals. This feature facilitates more controlled
generation, particularly in the structure of images, offering
an advantage over traditional LDMs.

3.2. Our approach

Grid trick The grid trick, also known as character sheet,
is a popular hack in SD [37] art community. It is frequently
used by enthusiasts and hackers for avatar design and image
stylization [2]. This approach allows for applying a con-
sistent style to all images in a grid using a T2I model, as
shown in Fig. S.9. The effectiveness of this simple method
in producing multiple images with consistent style lies in
how the diffusion model performs editing of a single grid.
It treats all frames collectively as a single image through its
convolution-based residual blocks and transformer blocks.
The self-attention layers in the transformer blocks are es-
pecially crucial for enhancing temporal consistency across
frames in a grid. Simultaneously, the convolution layers
within the residual block are responsible for capturing both
temporal connections and spatial correlations. Note that, to
the best of our knowledge, we are the first to systematically
utilize this trick in image/video editing research.

Grid trick for video editing A straightforward adaptation
of this trick for video editing involves transforming the in-
put video into a grid layout and then feeding this grid to
T2I editing tools such as ControlNet. Subsequently, the
modified grid can be unfolded into separate frames and se-
quenced consecutively to produce the final video. More for-
mally, assume that each frame in the video is arranged into
a N = n×m grid with n rows and m columns, denoted as
G(1,··· ,N) ∈ R(W ·m)×(H·n)×3, where H and W represent
the height and width of the frames in the video, respectively,
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Figure 4. Consistency across grids. Editing results are shown for
(a) processing grids independently, (b) adapting sparse-causal at-
tention using grids, and (c) applying RAVE. The rightmost column
features a close-up of the car’s front, highlighting temporal color
changes per approach. RAVE produces consistent patches in all
grids while other methods struggle with consistency.

and superscript (1, · · · , N) denotes the indices of frames
included in the grid. During the editing process of a sin-
gle grid G(1,··· ,N), the diffusion model processes N frames
holistically as a single image by fostering a smooth transi-
tion between the latent vectors, {z0t , . . . , znt }t=T

t=1 , zit denot-
ing the corresponding latent region of ith frame within the
grid at timestep t. This method achieves consistent frames
in short sequences as can be seen from Fig. 4 (a), where the
frames from grid 1 and grid 3 share the same style. How-
ever, it encounters challenges in maintaining this consis-
tency in longer videos, even with the same text prompt. This
limitation arises due to GPU memory constraints, restricting
the number of frames that can fit within a grid. For example,
if a GPU can only process a maximum of a 3×3 grid, equiv-
alent to 9 frames, videos exceeding 9 frames need to be di-
vided into multiple grids, each processed separately. Con-
sequently, the sampling trajectories for each grid diverge,
leading to internal consistency within each grid but notice-
able style differences between grids, as evident in Fig. 4 (a),
where the style of frames from separate grids differs.

Noise shuffling While the grid technique enables consis-
tent editing, ensuring consistency across multiple grids re-
mains a challenge. One could modify well-known attention
mechanisms, like sparse-causal attention, for the grid struc-
ture. In this adaptation, attention is shifted from focusing
on the initial frame and the previous frame to the initial grid
and the previous grid. However, this approach can still face
difficulties in maintaining consistency with longer videos.
For instance, Fig. 4 (b) demonstrates that although sparse-
causal attention works effectively for frames from grid 1
and grid 3, it encounters challenges in maintaining consis-
tency as the video progresses. In order to achieve consis-
tency across grids, we introduce a novel noise shuffling ap-
proach that ensures consistent styling across independent
grids (see Fig. 4 (c)). Consider the video2grid(·, ·) function

that accepts an input video and a grid size N = n × m,
and generates a series of grids while preserving the original
frame order. For instance, when the original video VK is
used as input, we can produce a set of L grids as:

video2grid(VK , N) = {G(1,··· ,N)
1 , . . . , G

(P,··· ,K)
L } (1)

= GL (2)

where P = K − (N + 1). In this context, L represents the
total number of grids, calculated as L = K/N , assuming
that K is divisible by N .

Rather than processing each grid in GL sequentially to
produce the final video output, which gives undesirable re-
sults (as depicted in Fig. 4 (a)), our approach entails ran-
domly shuffling the order of frames at each timestep of the
sampling process and allocating frames to different grids in
a random order. More formally, starting with the input grids
generated by the video2grid(·, ·) operation, we proceed as
follows:

shuffle(GL) = {G(i,··· ,j)
1 , . . . , G

(k,··· ,l)
L } (3)

where (i, · · · , j), · · · , (k, · · · , l) ∈ {1, · · · ,K} are ran-
domly chosen non-repeating indices. In other words, this
function randomly rearranges the locations of the frames
in a given set of grids. Through the random formation of
grids from latents arranged in a random order, we encourage
spatio-temporal interaction between each frame throughout
the denoising process. This interaction involves convolu-
tional layers, which play a role in globally smoothing the
latent vectors, thereby reducing pixel shifts that can lead
to flickering. Furthermore, self-attention layers ensure that
features of each patch from every frame are influenced by
patches of other frames at each step, guaranteeing the ap-
plication of the same style globally. This enhancement con-
tributes to temporal consistency, regardless of the video size
since our approach does not require extra memory require-
ment proportional to the length of the video. The complete
structure of our approach is depicted in Fig. 3.

4. Experimentation
Baselines We conduct a thorough quantitative and qual-
itative comparison with concurrent baselines, using their
official implementations. Rerender [51] relies on optical
flow, Text2Video-Zero [25] employs random warping and
optional background smoothing, limiting its effectiveness in
videos with background motions. TokenFlow [14] applies
feature-level smoothing but has constraints in shape-aware
editing. FateZero [34] is excluded from quantitative com-
parison due to its requirement for target prompts to be in a
specific format with the source prompts, necessitating man-
ually crafted prompts. Additionally, both FateZero [34] and
Pix2Video [10] face GPU usage limits, which cannot pro-
cess videos for more than 22 and 45 frames for Pix2Video
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Figure 5. Qualitative comparison. We present a comparison of approaches on videos featuring diverse motions and objects on short and
long videos. Videos in columns (a) and (b) have a total of 36 frames, while video in (c) has 90 frames. Due to their excessive GPU
requirements, Pix2Video and FateZero are executed on shorter clips. Results are best viewed in zoomed-in. For more, please see our
project webpage.

and FateZero with their official repositories, respectively.
We use official repositories and default parameters of the
baselines and the suggested parameters provided by the au-
thors after reaching out to them and default parameters oth-
erwise. We report the results of RAVE and RAVE without
shuffling as an ablation. Please refer to the details of the
dataset used in the experiments in SM S.1.

4.1. Implementation details

We use Stable Diffusion (SD) 1.5 from the official Hug-
gingface repo for all baselines in any type of comparison.
For qualitative assessment of our approach, the Realistic
Vision V5.1 model from the CivitAI [1] repo is employed.
All approaches use 50 steps of DDIM inversion and sam-
pling along with a fixed classifier-free guidance scale of 7.5.
RAVE employs a 2× 2 grid size for videos with a length of
8 frames and a 3 × 3 grid size for the rest. In all com-
parisons, including quantitative, qualitative and user study
comparison, we applied depth-conditioned ControlNet for
our method as well as for Pix2Video, Text2Video-Zero, and
Rerender. TokenFlow utilizes Plug-and-Play [46] for im-
age editing method, therefore we use Plug-and-Play in their
method during comparison. We do not use any negative
or positive prompts in RAVE. Also for a fair comparison,
no positive prompts or negative prompts are used for other
methods as well. We run all experiments on a single A40
GPU.

4.2. Evaluation

Qualitative assessment Fig. 1 and Fig. 6 illustrate some
examples of video editing using RAVE. We demonstrate
style editing (e.g. watercolor style), complex shape editing
(e.g. transforming a car into a tractor), and both applied si-
multaneously (e.g. ‘a jeep is moving in the grassy field’).
We use videos featuring backgrounds in motion (e.g. top
right video) and different objects (e.g. turtle, human, watch-
tower) engaged in various activities (e.g. swimming, eating,
stretching). Moreover, we present a qualitative compari-
son in Fig. 5 with baseline methods. Notice that FateZero
struggles to edit non-local attributes, as evident with twin-
kling stars in Fig. 5 (b) since the quality of edit depends
on Prompt-to-Prompt [15] which heavily relies on the cho-
sen parameters and source prompt. Text2Video-Zero ap-
pears effective with videos featuring constant backgrounds,
despite a color change in the woman’s jacket Fig. 5 (c);
however, it encounters challenges when there is motion in
the background, such as the trees in Fig. 5 (a). Rerender
heavily utilizes optical flow along with keyframe propaga-
tion, however these are not enough to perform editing while
keeping style over time (observe the color change of the
car in Fig. 5 (a)). Although TokenFlow excels at maintain-
ing structural consistency over time, supported empirically
by quantitative results (WarpSSIM), it experiences overall
blurring in the entire image due to ‘feature-level smooth-
ing’ being applied. Pix2Video’s edits deviate significantly
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Figure 6. Qualitative results with RAVE. Our method is capable of performing a variety of video editing tasks, including style editing,
local attribute editing, and shape editing (top right). It can edit videos featuring moving objects, such as turtles or boats, as well as videos
with complex human movements, like a woman stretching (bottom row). Best viewed in zoomed-in. Full videos are provided in SM.

from the source video (note the woman in Fig. 5 (c) and
the bear in Fig. 5 (b)), indicating that latent guidance alone
and depth guidance solely are insufficient for consistency in
long videos. In contrast, our method preserves global con-
sistency, aligns with the text prompt, and maintains editing
quality—all accomplished in less time compared to previ-
ous approaches (see Table 1 last column).
Quantitative evaluation Following prior work [10, 14,
51], we assess the temporal consistency of editing at a
coarse level by measuring the average pairwise similari-
ties (CLIP-F) of each frame using CLIP [35] and struc-
tural consistency (WarpSSIM) by calculating the aver-
age SSIM [49] score between the warped edited video
(RAFT [45] is used to obtain the optical flow of the source
video) and the edited video. Additionally, we evaluate the
textual alignment of the editing, given a prompt, by calcu-

lating the average distance between the CLIP embedding of
the text prompt and all frames (CLIP-T). Note that these
metrics alone do not provide a comprehensive evaluation
since CLIP-T is unrelated to consistency, and WarpSSIM
and CLIP-F can yield high scores even when the video is
not edited at all. Therefore, following [11], we adopt Qedit
= WarpSSIM · CLIP-T for a more holistic assessment. The
results are shown in Table 1. Quantitative evaluation is per-
formed on our dataset, consisting of 10, 15, and 6 videos
with lengths of 8, 36, and 90 frames, respectively. Each
video is edited with 4 style and 2 shape prompts, resulting
in 186 text-video pairs. Our performance surpasses previ-
ous approaches in both frame consistency and textual align-
ment. While TokenFlow demonstrates slightly greater ef-
fectiveness for shorter frames in terms of structural con-
sistency (WarpSSIM), our superiority becomes evident for
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Table 1. Quantitative comparison. CLIP-F, WarpSSIM, CLIP-T, and Qedit metrics are reported individually on videos of 8, 36, and 90
frames. The user study section reports the frequency of each method chosen among the top two edits for General Editing (Q1 (GE)),
Temporal Consistency (Q2 (TC)), and Textual Alignment (Q3 (TA)). The last column presents video-editing runtime in ‘minutes:seconds’
format for 90 frames for the entire pipeline, including preprocessing and editing stages (parentheses indicate runtime w/o preprocessing).
’-’ denotes methods that cannot be measured due to excessive memory requirements, while ’N/A’ indicates that the value is not available.

Method CLIP-F (×10−2) ↑ WarpSSIM (×10−2) ↑ CLIP-T (×10−2) ↑ Qedit (×10−5) ↑ User Study ↑ Runtime ↓
8-frames 36-frames 90-frames 8-frames 36-frames 90-frames 8-frames 36-frames 90-frames 8-frames 36-frames 90-frames Q1 (GE) Q2 (TC) Q3 (TA) 90-frames

Text2Video-Zero 95.49 92.89 94.35 67.97 36.65 71.57 29.46 29.42 29.73 20.02 10.78 21.27 47.95% 24.87% 52.56% 5:33
Rerender 92.87 89.71 90.63 68.57 44.54 74.56 25.65 27.42 27.55 17.66 12.24 20.51 17.44% 23.33% 17.18% 5:24
TokenFlow 95.80 93.17 95.92 74.03 50.97 80.40 28.27 28.29 29.53 20.92 14.41 23.74 44.10% 68.97% 43.59% 5:24 (4.14)
Pix2Video 89.96 - - 24.78 - - 28.01 - - 5.61 - - N/A N/A N/A -

RAVE - w/o shuffle 93.98 89.90 92.49 71.78 47.26 76.58 28.78 29.49 29.71 20.66 13.94 22.76 N/A N/A N/A N/A
RAVE 95.95 93.18 95.99 71.44 48.81 80.51 29.51 29.93 29.76 21.08 14.60 23.95 90.51% 82.82% 86.67% 4:28 (3:13)

longer videos, specifically at a frame length of 90. More-
over, when assessing comprehensive editing capability with
Qedit, we outperform other methods in all video lengths. Ad-
ditionally, there is a significant increase in the CLIP-F score,
particularly in longer videos (36 and 90 frames), when com-
paring RAVE w/o shuffling and RAVE. This emphasizes the
importance of shuffling in preserving consistency.

User study While quantitative metrics offer a fair compar-
ison among prior methods, assessing edit quality and tem-
poral consistency remains challenging. Hence, we conduct
a user study, posing questions (Q1: General Editing (GE),
Q2: Temporal Consistency (TC), Q3: Textual Alignment
(TA)) to 130 anonymous participants on a crowdsourcing
platform, Prolific [5], for randomly selected 23 video-text
pairs. Our survey results demonstrate superiority over pre-
vious methods in both aspects. TokenFlow, as anticipated
due to its success in WarpSSIM score, secures the second-
best results for temporal consistency.

Runtime We conduct a runtime comparison (shown in
rightmost column in Table 1). Our results indicate that
RAVE is ∼1 minute faster than the closest competitor, To-
kenFlow, on average for editing a single video of 90 frames,
making it the preferred choice for fast video editing. Note
that both our method and TokenFlow require preprocessing
only once for a given video, regardless of the text prompt. In
contrast, Text2Video-Zero uses random noises, and Reren-
der performs inversion only on the keyframes. Runtime
without preprocessing durations are shared in Table 1, right-
most column in parenthesis.

Ablation study We conduct an ablation study by sepa-
rately ablating ‘shuffling’, ‘DDIM inversion’, and Control-
Net conditions (lineart, softedge and depth (RAVE)) in our
framework, as illustrated in Fig. 7. Applying shuffling helps
maintaining global style consistency (Fig. 7 (a)). Addition-
ally, using DDIM inversion contributes to preserving the
structure similar to the original image (Fig. 7 (b)). Further-
more, our approach proves to be adaptable to different con-
trols, such as lineart (Fig. 7 (c)) and softedge (Fig. 7 (d))
compared to depth used in RAVE (Fig. 7 (e)). Even though
there are style differences, these adjustments do not com-
promise the overall consistency.

Input

Input Prompt: "dark chocolate cake"

(a) w/o
Shuffling

(b) w/o
DDIM Inv.

(c) w/
Lineart

(d) w/
Softedge

(e) RAVE
(Depth)

Figure 7. Ablation study. We ablate the following components: (a)
shuffling, (b) DDIM inversion, and employ different conditions:
(c) lineart and (d) softedge (e) depth.

Limitations While our quantitative evaluation clearly
demonstrates our method’s effectiveness in reducing flick-
ering and achieving superior performance in comparison to
existing methods (see Table 1), our method can occasionally
leads to flickering when performing extreme shape editing
or local attribute editing tasks (please see a detailed discus-
sion in SM S.2) We attribute these issues primarily due to
DDIM inversion’s reliance on approximation, which accu-
mulates errors with classifier guidance, and the compression
phase in LDM. This leads to distortions and flickering in re-
constructed images, especially in high-frequency areas.

5. Discussion and Conclusion

In this paper, we present RAVE, a lightweight, fast method
for zero-shot text-guided video editing using T2I diffu-
sion models, leveraging spatio-temporal interaction with
reduced computational costs. Through extensive compar-
isons, RAVE outperforms previous baselines in terms of
temporal consistency, speed, and alignment with textual
editing, for video editing including longer ones. RAVE is
adaptable to various pre-trained models (e.g. inpainting dif-
fusion model, etc.), providing customizable video editing
capabilities. We also highlight its potential for applications
beyond video editing, such as consistent avatar generation
or 3D texture editing, as part of our future work. By releas-
ing our code and dataset for reproducibility, we encourage
researchers to standardize evaluation.
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