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Abstract

Diffusion models currently dominate the field of data-
driven image synthesis with their unparalleled scaling to
large datasets. In this paper, we identify and rectify several
causes for uneven and ineffective training in the popular
ADM diffusion model architecture, without altering its high-
level structure. Observing uncontrolled magnitude changes
and imbalances in both the network activations and weights
over the course of training, we redesign the network layers
to preserve activation, weight, and update magnitudes on ex-
pectation. We find that systematic application of this philoso-
phy eliminates the observed drifts and imbalances, resulting
in considerably better networks at equal computational com-
plexity. Our modifications improve the previous record FID
of 2.41 in ImageNet-512 synthesis to 1.81, achieved using
fast deterministic sampling.

As an independent contribution, we present a method for
setting the exponential moving average (EMA) parameters
post-hoc, i.e., after completing the training run. This allows
precise tuning of EMA length without the cost of performing
several training runs, and reveals its surprising interactions
with network architecture, training time, and guidance.

1. Introduction

High-quality image synthesis based on text prompts, ex-
ample images, or other forms of input has become widely
popular thanks to advances in denoising diffusion mod-
els [21, 46, 62–65, 70]. Diffusion-based approaches pro-
duce high-quality images while offering versatile controls
[8, 17, 20, 44, 75] and convenient ways to introduce novel
subjects [12, 56], and they also extend to other modalities
such as audio [38, 51], video [5, 22, 24], and 3D shapes
[42, 50, 52, 61]. A recent survey of methods and applica-
tions is given by Yang et al. [71].

On a high level, diffusion models convert an image of
pure noise to a novel generated image through repeated
application of image denoising. Mathematically, each de-
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Figure 1. Our contributions significantly improve the quality of
results w.r.t. model complexity, surpassing the previous state-of-the-
art with a 5× smaller model. In this plot, we use gigaflops per single
model evaluation as a measure of a model’s intrinsic computational
complexity; a similar advantage holds in terms of parameter count,
as well as training and sampling cost (see Appendix A).

noising step can be understood through the lens of score
matching [26], and it is typically implemented using a U-Net
[21, 55] equipped with self-attention [69] layers. Since we
do not contribute to the theory behind diffusion models, we
refer the interested reader to the seminal works of Sohl-
Dickstein et al. [62], Song and Ermon [64], and Ho et al.
[21], as well as to Karras et al. [33], who frame various
mathematical frameworks in a common context.

Despite the seemingly frictionless scaling to very large
datasets and models, the training dynamics of diffusion mod-
els remain challenging due to the highly stochastic loss func-
tion. The final image quality is dictated by faint image
details predicted throughout the sampling chain, and small
mistakes at intermediate steps can have snowball effects in
subsequent iterations. The network must accurately estimate
the average clean image across a vast range of noise levels,
Gaussian noise realizations, and conditioning inputs. Learn-
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ing to do so is difficult given the chaotic training signal that
is randomized over all of these aspects.

To learn efficiently in such a noisy training environment,
the network should ideally have a predictable and even re-
sponse to parameter updates. We argue that this ideal is not
met in current state-of-the-art designs, hurting the quality
of the models and making it difficult to improve them due
to complex interactions between hyperparameters, network
design, and training setups.

Our overarching goal is to understand the sometimes sub-
tle ways in which the training dynamics of the score network
can become imbalanced by unintended phenomena, and to
remove these effects one by one. At the heart of our approach
are the expected magnitudes of weights, activations, gradi-
ents, and weight updates, all of which have been identified as
important factors in previous work (e.g., [1, 3, 6, 7, 9, 37, 39–
41, 59, 73, 74]). Our approach is, roughly speaking, to stan-
dardize all magnitudes through a clean set of design choices
that address their interdependencies in a unified manner.

Concretely, we present a series of modifications to the
ADM [11] U-Net architecture without changing its overall
structure, and show considerable quality improvement along
the way (Section 2). The final network is a drop-in replace-
ment for ADM. It sets new record FIDs of 1.81 and 1.91 for
ImageNet-512 image synthesis with and without guidance,
respectively, where the previous state-of-the-art FIDs were
2.41 and 2.99. It performs particularly well with respect
to model complexity (Figure 1), and achieves these results
using fast deterministic sampling instead of the much slower
stochastic sampling used in previous methods.

As an independent contribution, we present a method
for setting the exponential moving average (EMA) param-
eters post hoc, i.e., after the training run has completed
(Section 3). Model averaging [27, 49, 57, 68, 72] is an
indispensable technique in all high-quality image synthe-
sis methods [2, 11, 23, 29, 31, 33, 46, 48, 54, 60, 63, 65].
Unfortunately, the EMA decay constant is a cumbersome
hyperparameter to tune because the effects of small changes
become apparent only when the training is nearly converged.
Our post-hoc EMA allows accurate and efficient reconstruc-
tion of networks with arbitrary EMA profiles based on pre-
integrated weight snapshots stored during training. It also
enables many kinds of exploration that have not been com-
putationally feasible before (Section 3.3).

Our implementation and pre-trained models are available
at https://github.com/NVlabs/edm2

2. Improving the training dynamics
Let us now proceed to study and eliminate effects related
to various imbalances in the training dynamics of a score
network. As our baseline, we take the ADM [11] network
as implemented in the EDM [33] framework. The architec-
ture combines a U-Net [55] with self-attention [69] layers

Training configurations, ImageNet-512 FID ↓ Mparams Gflops
A EDM baseline 8.00 295.9 110.4
B + Minor improvements 7.24 291.8 100.4
C + Architectural streamlining 6.96 277.8 100.3
D + Magnitude-preserving learned layers 3.75 277.8 101.2
E + Control effective learning rate 3.02 277.8 101.2
F + Remove group normalizations 2.71 280.2 102.1
G + Magnitude-preserving fixed-function layers 2.56 280.2 102.2

Table 1. Effect of our changes evaluated on ImageNet-512. We
report Fréchet inception distance (FID, lower is better) [18] without
guidance, computed between 50,000 randomly generated images
and the entire training set. Each number represents the minimum
of three independent evaluations using the same model.

(Figure 2a,b), and its variants have been widely adopted in
large-scale diffusion models, including Imagen [58], Sta-
ble Diffusion [54], eDiff-I [2], DALL-E 2 [47, 53], and
DALL-E 3 [4]. Our training and sampling setups are based
on the EDM formulation with constant learning rate and 32
deterministic 2nd order sampling steps.

We use the class-conditional ImageNet [10] 512×512
dataset for evaluation, and, like most high-resolution dif-
fusion models, operate in the latent space of a pre-trained
decoder [54] that performs 8× spatial upsampling. Thus,
our output is 64×64×4 prior to decoding. During explo-
ration, we use a modestly sized network configuration with
approx. 300M trainable parameters, with results for scaled-
up networks presented later in Section 4. The training is
done for 2147M (= 231) images in batches of 2048, which
is sufficient for these models to reach their optimal FID.

We will build our improved architecture and training pro-
cedure in several steps. Our exposition focuses on funda-
mental principles and the associated changes to the network.
For comprehensive details of each architectural step, along
with the related equations, see Appendix B.

Baseline (CONFIG A). As the original EDM configuration
is targeted for RGB images, we increase the output channel
count to 4 and replace the training dataset with 64×64×4
latent representations of ImageNet-512 images, standardized
globally to zero mean and standard deviation σdata = 0.5. In
this setup, we obtain a baseline FID of 8.00 (see Table 1).

2.1. Preliminary changes

Improved baseline (CONFIG B). We first tune the hyper-
parameters (learning rate, EMA length, training noise level
distribution, etc.) to optimize the performance of the baseline
model. We also disable self-attention at 32×32 resolution,
similar to many prior works [21, 25, 46].

We then address a shortcoming in the original EDM train-
ing setup: While the loss weighting in EDM standardizes
loss magnitude to 1.0 for all noise levels at initialization,
this situation no longer holds as the training progresses. The
magnitude of the gradient feedback then varies between
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(a) Overall view (b) ADM architecture blocks by Dhariwal and Nichol [11] (CONFIG B) (c) Our magnitude-preserving (MP) variant (CONFIG G)

Figure 2. The widely used ADM architecture [11] for image denoising is structured as a U-Net [55]. (a) The encoder blocks are connected
to decoder blocks using skip connections, and an auxiliary embedding network conditions the U-Net with noise level and class label. (b) The
original building blocks follow the pre-activation design of ResNets [15]. Residual blocks accumulate contributions to the main path (bold).
Explicit normalizations in the residual paths try to keep magnitudes under control, but nothing prevents them from growing in the main path.
(c) We update all of the operations (e.g., convolutions, activations, concatenation, summation) to maintain magnitudes on expectation.

noise levels, re-weighting their relative contribution in an
uncontrolled manner.

To counteract this effect, we adopt a continuous general-
ization of the multi-task loss proposed by Kendall et al. [34].
Effectively, we track the raw loss value as a function of the
noise level, and scale the training loss by its reciprocal. See
Appendix B.2 for further details and reasoning. Together,
these changes decrease the FID from 8.00 to 7.24.

Architectural streamlining (CONFIG C). To facilitate the
analysis of training dynamics, we proceed to streamline
and stabilize the architecture. To avoid having to deal with
multiple different types of trainable parameters, we remove
the additive biases from all convolutional and linear layers,
as well as from the conditioning pathway. To restore the
capability of the network to offset the data, we concatenate
an additional channel of constant 1 to the network’s input.
We further unify the initialization of all weights using He’s
uniform init [14], switch from ADM’s original positional
encoding scheme to the more standard Fourier features [67],
and simplify the group normalization layers by removing
their mean subtraction and learned scaling.

Finally, we observe that the attention maps often end up
in a brittle and spiky configuration due to magnitude growth
of the key and query vectors over the course of training.
We rectify this by switching to cosine attention [13, 43, 45]
that normalizes the vectors prior to computing the dot prod-
ucts. As a practical benefit, this allows using 16-bit floating
point math throughout the network, improving efficiency.
Together, these changes reduce the FID from 7.24 to 6.96.

2.2. Standardizing activation magnitudes

With the architecture simplified, we now turn to fixing the
first problem in training dynamics: activation magnitudes.
As illustrated in the first row of Figure 3, the activation
magnitudes grow uncontrollably in CONFIG C as training
progresses, despite the use of group normalizations within
each block. Notably, the growth shows no signs of tapering
off or stabilizing towards the end of the training run.

Looking at the architecture in Figure 2b, the growth is
perhaps not too surprising: Due to the residual structure of
encoder, decoder, and self-attention blocks, ADM networks
contain long signal paths without any normalizations. These
paths accumulate contributions from residual branches and
can amplify their activations through repeated convolutions.
We hypothesize that this unabated growth of activation mag-
nitudes is detrimental to training by keeping the network in
a perpetually unconverged and unoptimal state.

We tried introducing group normalization layers to the
main path as well, but this caused a significant deterioration
of result quality. This may be related to previous findings
regarding StyleGAN [31], where the network’s capabilities
were impaired by excessive normalization, to the extent that
the layers learned to bypass it via contrived image artifacts.
Inspired by the solutions adopted in StyleGAN2 [32] and
other works that have sought alternatives to explicit normal-
ization [1, 6, 37], we choose to modify the network so that
individual layers and pathways preserve the activation mag-
nitudes on expectation, with the goal of removing or at least
reducing the need for data-dependent normalization.
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Magnitude-preserving learned layers (CONFIG D). To
preserve expected activation magnitudes, we divide the out-
put of each layer by the expected scaling of activation magni-
tudes caused by that layer without looking at the activations
themselves. We first apply this to all learned layers (convo-
lutions and fully-connected) in every part of the model.

Given that we seek a scheme that is agnostic to the ac-
tual content of the incoming activations, we have to make
some statistical assumptions about them. For simplicity, we
will assume that the pixels and feature maps are mutually
uncorrelated and of equal standard deviation σact. Both fully
connected and convolutional layers can be thought of as con-
sisting of stacked units, one per output channel. Each unit
effectively applies a dot product of a weight vector wi ∈ Rn

on some subset of the input activations to produce each out-
put element. Under our assumptions, the standard deviation
of the output features of the ith channel becomes ∥wi∥2 σact.
To restore the input activation magnitude, we thus divide by
∥wi∥2 channel-wise.1

We can equally well think of the scalar division as apply-
ing to wi itself. As long as gradients are propagated through
the computation of the norm, this scheme is equivalent to
weight normalization [59] without the learned output scale;
we will use this term hereafter. As the overall weight magni-
tudes no longer have an effect on activations, we initialize
all weights by drawing from the unit Gaussian distribution.

This modification removes any direct means the network
has for learning to change the overall activation magnitudes,
and as shown in Figure 3 (CONFIG D), the magnitude drift is
successfully eliminated. The FID also improves significantly,
from 6.96 to 3.75.

2.3. Standardizing weights and updates

With activations standardized, we turn our attention to net-
work weights and learning rate. As seen in Figure 3, there is
a clear tendency of network weights to grow in CONFIG D,
even more so than in CONFIG C. The mechanism causing
this is well known [59]: Normalization of weights before use
forces loss gradients to be perpendicular to the weight vector,
and taking a step along this direction always lands on a point
further away from the origin. Even with gradient magnitudes
standardized by the Adam optimizer, the net effect is that
the effective learning rate, i.e., the relative size of the update
to network weights, decays as the training progresses.

While it has been suggested that this decay of effective
learning rate is a desirable effect [59], we argue for explicit
control over it rather than having it drift uncontrollably and
unequally between layers. Hence, we treat this as another
imbalance in training dynamics that we seek to remedy. Note
that initializing all weights to unit Gaussian ensures uniform
effective learning rate at initialization, but not afterwards.

1The primary goal is to sever the direct link from weight to activation
magnitude; for this, the statistical assumptions do not need to hold exactly.
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Figure 3. Training-time evolution of activation and weight mag-
nitudes over different depths of the network; see Appendix A for
further details. Top: In CONFIG C, the magnitudes of both acti-
vations and weights grow without bound over training. Middle:
The magnitude-preserving design introduced in CONFIG D curbs
activation magnitude growth, but leads to even starker growth in
weights. Bottom: The forced weight normalization in CONFIG E
ensures that both activations and weights remain bounded.

Controlling effective learning rate (CONFIG E). We pro-
pose to address the weight growth with forced weight normal-
ization, where we explicitly normalize every weight vector
wi to unit variance before each training step. Importantly,
we still apply the “standard” weight normalization on top of
this during training, i.e., normalize the weight vectors upon
use. This has the effect of projecting the training gradients
onto the tangent plane of the now unit-magnitude hyper-
sphere where wi lies (see Appendix B.4 for a derivation).
This ensures that Adam’s variance estimates are computed
for the actual tangent plane steps and are not corrupted by
the to-be erased normal component of the gradient vector.
With both weight and gradient magnitudes now equalized
across the network, we have unified the effective learning
rate as well. Assuming no correlation between weights and
gradients, each Adam step now replaces an approximately
fixed proportion of the weights with the gradients. Some
optimizers [3, 39, 73] explicitly implement a similar effect
by data-dependent re-scaling of the gradient.

We now have direct control over the effective learning
rate. A constant learning rate no longer induces convergence,
and thus we introduce an inverse square root learning rate
decay schedule as advocated by Kingma and Ba [36]. Con-
cretely, we define α(t) = αref/

√
max(t/tref, 1), where t is

the current training iteration and αref and tref are hyperpa-
rameters (see Appendix D for implementation details). As
shown in Figure 3, the resulting CONFIG E successfully pre-
serves both activation and weight magnitudes throughout the
training. As a result, the FID improves from 3.75 to 3.02.
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2.4. Removing group normalizations (CONFIG F)

With activation, weight, and update magnitudes under con-
trol, we are now ready to remove the data-dependent group
normalization layers that operate across pixels with poten-
tially detrimental results [32]. Although the network trains
successfully without any normalization layers, we find that
there is still a small benefit from introducing much weaker
pixel normalization [30] layers to the encoder main path.
Our hypothesis is that pixel normalization helps by coun-
teracting correlations that violate the statistical assumptions
behind our standardization efforts in CONFIG D. We thus
remove all group normalization layers and replace them with
1/4 as many pixel normalization layers. We also remove
the second linear layer from the embedding network and
the nonlinearity from the network output, and combine the
resampling operations in the residual blocks onto the main
path. The FID improves from 3.02 to 2.71.

2.5. Magnitude-preserving fixed-function layers
(CONFIG G)

For the sake of completeness, we note that the network still
has layers that do not preserve activation magnitudes. First,
the sine and cosine functions of the Fourier features do not
have unit variance, which we rectify by scaling them up
by

√
2. Second, the SiLU [16] nonlinearities attenuate the

expected unit-variance distribution of activations unless this
is compensated for. Accordingly, we modify them to divide
the output by Ex∼N (0,1)[ silu(x)

2 ]1/2 ≈ 0.596.
Third, we consider instances where two network branches

join, either through addition or concatenation. In previous
configurations, the contribution from each branch to the out-
put depended on uncontrolled activation magnitudes. By
now we can expect these to be standardized, and thus the bal-
ance between the branches is exposed as a meaningfully con-
trollable parameter [7]. We switch the addition operations to
weighted sums, and observe experimentally that a fixed resid-
ual path weight of 30% worked best in encoder and decoder
blocks, and 50% in the embedding. We divide the output by
the expected standard deviation of this weighted sum.

The concatenation of the U-Net skips in the decoder is
already magnitude-preserving, as we can expect similar mag-
nitudes from both branches. However, the relative contribu-
tion of the two inputs in subsequent layers is proportional
to their respective channel counts, which we consider to be
an unwanted and unintuitive dependence between encoder
and decoder hyperparameters. We remove this dependency
by scaling the inputs such that the overall magnitude of the
concatenated result remains unchanged, but the contributions
of the inputs become equal.

With the standardization completed, we identify two spe-
cific places where it is still necessary to scale activations by
a learned amount. First, we add a learned, zero-initialized
scalar gain (i.e., scaling) at the very end of the network,

as we cannot expect the desired output to always have unit
variance. Second, we apply a similar learned gain to the
conditioning signal within each residual block, so that the
conditioning is disabled at initialization and its strength in
each encoder/decoder block becomes a learned parameter.
At this point we can disable dropout [19, 66] during training
with no ill effects, which has not been previously possible.

Figure 2c illustrates our final design that is significantly
simpler and easier to reason about than the baseline. The
resulting FID of 2.56 is highly competitive with the current
state of the art, especially considering the modest computa-
tional complexity of our exploration architecture.

3. Post-hoc EMA
It is well known that exponential moving average (EMA) of
model weights plays an important role in generative image
synthesis [46, 65], and that the choice of its decay parameter
has a significant impact on results [29, 46].

Despite its known importance, little is known about the
relationships between the decay parameter and other aspects
of training and sampling. To analyze these questions, we
develop a method for choosing the EMA profile post hoc, i.e.,
without the need to specify it before the training. This allows
us to sample the length of EMA densely and plot its effect
on quality, revealing interesting interactions with network
architecture, training time, and classifier-free guidance.

Further details, derivations, and discussion on the equa-
tions and methods in this section are included in Appendix C.

3.1. Power function EMA profile

Traditional EMA maintains a running weighted average θ̂β
of the network parameters alongside the parameters θ that are
being trained. At each training step, the average is updated
by θ̂β(t) = β θ̂β(t−1) + (1−β) θ(t), where t indicates the
current training step, yielding an exponential decay profile in
the contributions of earlier training steps. The rate of decay
is determined by the constant β that is typically close to one.

For two reasons, we propose using a slightly altered aver-
aging profile based on power functions instead of exponential
decay. First, our architectural modifications tend to favor
longer averages; yet, very long exponential EMA puts non-
negligible weight on initial stages of training where network
parameters are mostly random. Second, we have observed
a clear trend that longer training runs benefit from longer
EMA decay, and thus the averaging profile should ideally
scale automatically with training time.

Both of the above requirements are fulfilled by power
functions. We define the averaged parameters at time t as

θ̂γ(t) =

∫ t

0
τγθ(τ) dτ∫ t

0
τγ dτ

=
γ + 1

tγ+1

∫ t

0

τγθ(τ) dτ , (1)

where the constant γ controls the sharpness of the profile.
With this formulation, the weight of θt=0 is always zero.
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This is desirable, as the random initialization should have no
effect in the average. The resulting averaging profile is also
scale-independent: doubling the training time automatically
stretches the profile by the same factor.

To compute θ̂γ(t) in practice, we perform an incremental
update after each training step as follows:

θ̂γ(t) = βγ(t) θ̂γ(t− 1) +
(
1− βγ(t)

)
θ(t)

where βγ(t) = (1− 1/t)γ+1.
(2)

The update is thus similar to traditional EMA, but with the
exception that β depends on the current training time.2

Finally, while parameter γ is mathematically straight-
forward, it has a somewhat unintuitive effect on the shape
of the averaging profile. Therefore, we prefer to pa-
rameterize the profile via its relative standard deviation
σrel, i.e., the “width” of its peak relative to training time:
σrel = (γ + 1)1/2(γ + 2)−1(γ + 3)−1/2. Thus, when re-
porting, say, EMA length of 10%, we refer to a profile with
σrel = 0.10 (equiv. γ ≈ 6.94).

3.2. Synthesizing novel EMA profiles after training

Our goal is to allow choosing γ, or equivalently σrel, freely
after training. To achieve this, we maintain two averaged
parameter vectors θ̂γ1

and θ̂γ2
during training, with constants

γ1 = 16.97 and γ2 = 6.94, corresponding to σrel of 0.05 and
0.10, respectively. These averaged parameter vectors are
stored periodically in snapshots saved during the training
run. In all our experiments, we store a snapshot once every
∼8 million training images, i.e., once every 4096 training
steps with batch size of 2048.

To reconstruct an approximate θ̂ corresponding to an ar-
bitrary EMA profile at any point during or after training,
we find the least-squares optimal fit between the EMA pro-
files of the stored θ̂γi

and the desired EMA profile, and take
the corresponding linear combination of the stored θ̂γi

. See
Figure 4 for an illustration.

We note that post-hoc EMA reconstruction is not limited
to power function averaging profiles, or to using the same
types of profiles for snapshots and the reconstruction. Fur-
thermore, it can be done even from a single stored θ̂ per
snapshot, albeit with much lower accuracy than with two
stored θ̂. This opens the possibility of revisiting previous
training runs that were not run with post-hoc EMA in mind,
and experimenting with novel averaging profiles, as long as
a sufficient number of training snapshots are available.

3.3. Analysis

Armed with the post-hoc EMA technique, we now analyze
the effect of different EMA lengths in various setups.

2Technically, calling this an “EMA profile” is a misnomer, as the weight
decay is not exponential. However, given that it serves the same purpose as
traditional EMA, we feel that coining a new term here would be misleading.
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Figure 4. Top: To simulate EMA with arbitrary length after train-
ing, we store a number of averaged network parameter snapshots
during training. Each shaded area corresponds to a weighted aver-
age of network parameters. Here, two averages with different power
function EMA profiles (Section 3.1) are maintained during training
and stored at 8 snapshots. Bottom: The dashed line shows an exam-
ple post-hoc EMA to be synthesized, and the purple area shows the
least-squares optimal approximation based on the stored snapshots.
With two averaged parameter vectors stored per snapshot, the mean
squared error of the reconstructed weighting profile decreases ex-
tremely rapidly as the number of snapshots n increases, experimen-
tally in the order of O(1/n4). In practice, a few dozen snapshots
is more than sufficient for a virtually perfect EMA reconstruction.

Figure 5a shows how FID varies based on EMA length
in configurations B–G of Table 1. We can see that the opti-
mal EMA length differs considerably between the configs.
Moreover, the optimum becomes narrower as we approach
the final config G, which might initially seem alarming.

However, as illustrated in Figure 5b, the narrowness of
the optimum seems to be explained by the model becoming
more uniform in terms of which EMA length is “preferred”
by each weight tensor. In this test, we first select a subset
of weight tensors from different parts of the network. Then,
separately for each chosen tensor, we perform a sweep where
only the chosen tensor’s EMA is changed, while all others
remain at the global optimum. The results, shown as one
line per tensor, reveal surprisingly large effects on FID. In-
terestingly, while it seems obvious that one weight tensor
being out-of-sync with the others can be harmful, we observe
that in CONFIG B, FID can improve as much as 10%, from
7.24 to ∼6.5. In one instance, this is achieved using a very
short per-tensor EMA, and in another, a very long one. We
hypothesize that these different preferences mean that any
global choice is an uneasy compromise. For our final CON-
FIG G, this effect disappears and the optimum is sharper: no
significant improvement in FID can be seen, and the tensors
now agree about the optimal EMA. While post-hoc EMA
allows choosing the EMA length on a per-tensor basis, we
have not explored this opportunity outside this experiment.

Finally, Figure 5c illustrates the evolution of the optimal
EMA length over the course of training. Even though our
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Figure 5. (a) FID vs. EMA length for our training configs on ImageNet-512. CONFIG A uses traditional EMA, and thus only a single point
is shown. The shaded regions indicate the min/max FID over 3 evaluations. (b) The orange CONFIG B is fairly insensitive to the exact EMA
length (x-axis) because the network’s weight tensors disagree about the optimal EMA length. We elucidate this by letting the EMA length
vary for one tensor at a time (faint lines), while using the globally optimal EMA length of 9% for the others. This has a strong effect on FID
and, remarkably, sometimes improves it. In the green CONFIG G, the situation is different; per-tensor sweeping has a much smaller effect,
and deviating from the common optimum of 13% is detrimental. (c) Evolution of the EMA curve for CONFIG G over the course of training.

definition of EMA length is already relative to the length of
training, we observe that the optimum slowly shifts towards
relatively longer EMA as the training progresses.

4. Results
We use ImageNet [10] in 512×512 resolution as our main
dataset. Table 2 summarizes FIDs for various model sizes
using our method, as well as several earlier techniques.

Let us first consider FID without guidance [20], where the
best previous method is VDM++ [35] with FID of 2.99. Even
our small model EDM2-S that was used for the architecture
exploration in Section 2 beats this with FID of 2.56. Scaling
our model up further improves FID to 1.91, surpassing the
previous record by a considerable margin. As shown in
Figure 1, our results are even more significant in terms of
model complexity.

We have found that enabling dropout [19, 66] improves
our results in cases that exhibit overfitting, i.e., when the
training loss continues to decrease but validation loss and
FID start increasing. We thus enable dropout in our larger
configurations (M–XXL) that show signs of overfitting,
while disabling it in the smaller configurations (XS, S) where
it is harmful.

Additional quantitative results, example images, and de-
tailed comparisons for this section are given in Appendix A.

Guidance. It is interesting to note that several earlier meth-
ods [11, 48] report competitive results only when classifier-
free guidance [20] is used. While guidance remains an in-
valuable tool for controlling the balance between the percep-
tual quality of individual result images and the coverage of
the generated distribution, it should not be necessary when

ImageNet-512 FID ↓ Model size
no CFG w/CFG Mparams Gflops NFE

ADM [11] 23.24 7.72 559 1983 250
DiT-XL/2 [48] 12.03 3.04 675 525 250
ADM-U [11] 9.96 3.85 730 2813 250
RIN [28] 3.95 – 320 415 1000
U-ViT, L [25] 3.54 3.02 2455 555∗ 256
VDM++ [35] 2.99 2.65 2455 555∗ 256
StyleGAN-XL [60] – 2.41 168∗ 2067∗ 1
EDM2-XS 3.53 2.91 125 46 63
EDM2-S 2.56 2.23 280 102 63
EDM2-M 2.25 2.01 498 181 63
EDM2-L 2.06 1.88 777 282 63
EDM2-XL 1.96 1.85 1119 406 63
EDM2-XXL 1.91 1.81 1523 552 63

Table 2. Results on ImageNet-512. “EDM2-S” is the same as
CONFIG G in Table 1. The “w/CFG” and “no CFG” columns show
the lowest FID obtained with and without classifier-free guidance,
respectively. NFE tells how many times the score function is eval-
uated when generating an image. All diffusion models above the
horizontal line use stochastic sampling, whereas our models below
the line use deterministic sampling. Whether stochastic sampling
would improve our results further is left for future work. Aster-
isks (∗) indicate values that could not be determined from primary
sources, and have been approximated to within ∼10% accuracy.

the goal is to simply match image distributions.
Figure 6 plots the FID for our small model (EDM2-S)

using a variety of guidance strengths as a function of EMA
length. The surprising takeaway is that the optimal EMA
length depends very strongly on the guidance strength. These
kinds of studies are extremely expensive without post-hoc
EMA, and we therefore postulate that the large discrepancy
between vanilla and guidance results in some prior art may
be partially an artifact of using non-optimal EMA parameters.
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Figure 6. Interaction between EMA length and guidance strength
using EDM2-S on ImageNet-512.

With our largest model, a modest amount of guidance (1.2)
further improves the ImageNet-512 FID from 1.91 to 1.81,
setting a new record for this dataset.

Low-cost guidance. The standard way of implementing
classifier-free guidance is to train a single model to support
both conditional and unconditional generation [20]. While
conceptually simple, this makes the implicit assumption that
a similarly complex model is needed for both tasks. However,
this does not seem to be the case: In our tests, the smallest
(XS) unconditional model was found to be sufficient for
guiding even the largest (XXL) conditional model — using a
larger unconditional model did not improve the results at all.

Our results in Table 2 are computed using an XS-sized
unconditional model for all of our configurations. Using a
small unconditional model can greatly reduce the typical 2×
computational overhead of guidance.

ImageNet-64. To demonstrate that our method is not lim-
ited to latent diffusion, we provide results for RGB-space
diffusion in ImageNet-64. Table 3 shows that our results are
superior to earlier methods that use deterministic sampling.
The previous record FID of 2.22 set by EDM [33] improves
to 1.58 at similar model complexity, and further to 1.33 via
scaling. The L-sized model is able to saturate this dataset.

This result is close to the record FID of 1.23 achieved
by RIN using stochastic sampling. Stochastic sampling can
correct for the inaccuracies of the denoising network, but
this comes at a considerable tuning effort and computational
cost (e.g., 1000 vs. 63 NFE), making stochastic sampling
unattractive for large-scale systems. It is likely that our
results could be improved further using stochastic sampling,
but we leave that as future work.

Post-hoc EMA observations. Besides the interactions dis-
cussed in preceding sections, we have made two preliminary
findings related to EMA length. We present them here as
anecdotal, and leave a detailed study for future work.

ImageNet-64 Deterministic Stochastic Model size
FID ↓ NFE FID ↓ NFE Mparams Gflops

ADM [11] – – 2.07 250 296 110
+ EDM sampling [33] 2.66 79 1.57 511 296 110
+ EDM training [33] 2.22 79 1.36 511 296 110
VDM++ [35] – – 1.43 511 296 110
RIN [28] – – 1.23 1000 281 106
EDM2-S 1.58 63 – – 280 102
EDM2-M 1.43 63 – – 498 181
EDM2-L 1.33 63 – – 777 282
EDM2-XL 1.33 63 – – 1119 406

Table 3. Results on ImageNet-64.

First, we observed that the optimal EMA length goes
down when learning rate is increased, and vice versa, roughly
according to σrel ∝ 1/(α2

ref tref). The resulting FID also re-
mains relatively stable over a perhaps 2× range of tref. In
practice, setting αref and tref within the right ballpark thus
seems to be sufficient, which reduces the need to tune these
hyperparameters carefully.

Second, we observed that the optimal EMA length tends
to go down when the model capacity is increased, and also
when the complexity of the dataset is decreased. This seems
to imply that simpler problems warrant a shorter EMA.

5. Discussion and future work

Our improved denoiser architecture was designed to be a
drop-in replacement for the widely used ADM network, and
thus we hope it will find widespread use in large-scale image
generators. With various aspects of the training now much
less entangled, it becomes easier to make local modifications
to the architecture without something breaking elsewhere.
This should allow further studies to the structure and balance
of the U-Net, among other things.

An interesting question is whether similar methodology
would be equally beneficial for other diffusion architectures
such as RIN [28] and DiT [48], as well as other application
areas besides diffusion models. It would seem this sort of
magnitude-focusing work has attracted relatively little atten-
tion outside the specific topic of ImageNet classifiers [6, 7].

We believe that post-hoc EMA will enable a range of
interesting studies that have been infeasible before. Some of
our plots would have taken a thousand GPU-years to produce
without it; they now took only a GPU-month instead. We
hope that the cheap-to-produce EMA data will enable new
breakthroughs in understanding the precise role of EMA in
diffusion models and finding principled ways to set the EMA
length — possibly on a per-layer or per-parameter basis.
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