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Abstract

An important and unsolved problem in computer vi-
sion is to ensure that the algorithms are robust to changes
in image domains. We address this problem in the sce-
nario where we only have access to images from the tar-
get domains. Motivated by the challenges of the OOD-
CV [45] benchmark where we encounter real world Out-
of-Domain (OOD) nuisances and occlusion, we introduce
a novel Bayesian approach to OOD robustness for object
classification. Our work extends Compositional Neural
Networks (CompNets), which have been shown to be ro-
bust to occlusion but degrade badly when tested on OOD
data. We exploit the fact that CompNets contain a gener-
ative head defined over feature vectors represented by von
Mises-Fisher (vMF) kernels, which correspond roughly to
object parts, and can be learned without supervision. We
obverse that some vMF kernels are similar between differ-
ent domains, while others are not. This enables us to learn a
transitional dictionary of vMF kernels that are intermediate
between the source and target domains and train the gener-
ative model on this dictionary using the annotations on the
source domain, followed by iterative refinement. This ap-
proach, termed Unsupervised Generative Transition (UGT),
performs very well in OOD scenarios even when occlusion
is present. UGT is evaluated on different OOD benchmarks
including the OOD-CV dataset, several popular datasets
(e.g., ImageNet-C [9]), artificial image corruptions (includ-
ing adding occluders), and synthetic-to-real domain trans-
fer, and does well in all scenarios.

1. Introduction
In recent years, machine learning algorithms have been ex-
tremely successful for tasks like object classification when
evaluated on benchmarked datasets like ImageNet. But
these successes require that the training and test data (or
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the source domain and the target domain data) be identi-
cally and independently distributed (IID) from some under-
lying source. However, in practice, it is important to en-
sure that the algorithms generalize to data that differ from
the training data. For example, in real-world applications,
an algorithm for car detection may encounter cars with un-
usual shapes and textures (Fig. 3), which did not occur in
the training set.

Existing OOD methods [9–12, 28] have shown success
in dealing with robustness issues when evaluated on early
robustness datasets, such as Imagenet-C [9], Imagenet-
R [11], and Imagenet-A [12], where the domain differences
are due to synthetic corruptions, adversarial images, ren-
dered images, and similar factors [45]. But these algo-
rithms performed less well on a newer benchmark, OOD-
CV [45], which focuses on systematic analysis of real-world
nuisances, e.g. changes in texture, 3D pose, weather, shape,
and context. From a related perspective, OOD-CV stud-
ies the causal factors that result in the domain gap [4]. In
addition, previous works have rarely been evaluated for ro-
bustness to occlusion, an important OOD robustness metric.

In this work, we address OOD robustness on OOD-CV,
and related datasets, focusing on real-world domain differ-
ences and occlusion. We build on a class of Bayesian neu-
ral models called Compositional Neural Networks (Comp-
Nets), as they have been shown to be robust to partial oc-
clusion [20, 21, 36, 42]. This is achieved by replacing the
discriminative head of a CNN with a generative model of
the feature vectors based on the objects’ spatial geometry.
However, CompNets are fully supervised and are not ro-
bust to OOD nuisances. In this work, we develop an un-
supervised approach, Unsupervised Generative Transition
(UGT), which generalizes CompNets to OOD scenarios.

UGT relies on intuition that in OOD scenarios, the ap-
pearance of object parts is highly variable (due to changes
like texture or weather), while the spatial geometry of ob-
jects is often fairly similar between domains. We analyze
CompNets and modify them to take advantage of the intu-
ition mentioned above. By introducing a transitional dic-
tionary of von Mises-Fisher [17] kernels (Fig. 1), which
shares the properties of both domains, we can intuitively
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Figure 1. Illustration of the key principle underlying our Bayesian approach. Related work has shown that clusters of feature vectors
learned in an unsupervised manner resemble part-like patterns [21, 39]. We observe that some feature clusters (represented here on a vMF
manifold) are very similar in both IID and OOD data (illustrated in blue and red boxes), whereas for other feature clusters there is no
corresponding equivalent in the other domain. Our Bayesian approach exploits this property by first learning a generative model of feature
clusters and their spatial combinations on the IID data and subsequently adapting the model to OOD data via an unsupervised adaptation
of the vMF cluster dictionary, while retaining the spatial relations between clusters.

learn the spatial geometry of the source and transfer it to the
target domain. UGT leverages the property that the hierar-
chical structure of generative models like CompNets can be
learned in a two-stage manner. 1) An unsupervised learn-
ing stage of a dictionary of neural network features, called
vMF kernels, using clustering in both source and target do-
mains. The vMF kernels intuitively represent local object
part structures. 2) A supervised learning stage of the spatial
relations of the vMF kernels on the source domain.
We primarily evaluate UGT on the OOD-CV bench-
mark [45]. In addition, to challenge UGT, we add occlud-
ers to OOD-CV and create a new dataset called Occluded-
OOD-CV (Sec. 4.1). We also test UGT on Imagenet-C
corruptions and Synthetic-to-Real domain robustness. Our
studies show that UGT performs well on all these tasks and
significantly outperforms the SOTA baselines.

We make several important contributions in this paper.
1. We model objects by a generative model on feature vec-

tors. Our method, UGT, extends CompNets [21] by de-
coupling the learning into unsupervised learning of vMF
kernels and supervised learning of the spatial geometry
enabling us to learn transitional dictionaries.

2. UGT achieves state-of-the-art results on the real-world
OOD robustness problem on the OOD-CV dataset [45]
and demonstrates exceptional performance on generaliz-
ing under the synthetic corruptions of Imagenet-C.

3. UGT also achieves strong results for the Synthetic-to-
Real scenario (UDAParts [24] to Pascal3d+) dataset.

4. We introduce the Occluded-OOD-CV dataset by adding
occluders to OOD-CV and show that UGT is robust to
this compounded problem of occlusion and nuisance.

2. Related Works

OOD robustness can be considered a subset of the larger
unsupervised domain adaptation problem and is closely re-

lated to domain generalization and transfer learning. Al-
though related to both, our work focuses on OOD robust-
ness. Our aim is to generalize well to an unlabelled target
domain which is parameterized by real world nuisance fac-
tors like weather, shape, pose, texture changes and partial
occlusion - which often leads to drastic changes to visual
scenes and objects not found in the source dataset.

In the past few years, there has been an increase in the
number of works [9–12, 28] that characterize model per-
formance on OOD data and treat this as a measure of ro-
bustness. The common idea that underlies most works is
to leverage a property of the unlabeled target domain to al-
low generalization of a model trained on the source domain.
There have been successful efforts to use feature statistics
to adapt to the new domain; e.g., Sun et al. [35] try to mini-
mize domain shift by aligning the second-order statistics of
source and target distributions; Bug et al. [1] employ fea-
ture aware normalization with gating elements from Long
Short-Term Memory units for normalization among differ-
ent spatial regions of interest. Some methods employ tech-
niques based on adaptive batch normalization and weight
normalisation [32]. Other methods include self-learning
using entropy minimization [38], adaptive pseudo-labeling
techniques [5, 14, 33, 34] and robust lost functions [6, 44].

Although, current works have been successful at deal-
ing with robustness problems when evaluated on earlier ro-
bustness datasets [9, 11, 12] they have been shown to strug-
gle with real world nuisances (OOD-CV [45]) and occlu-
sion [16, 21]. Few generative Bayesian methods such as
CompNets [21, 36, 39] have shown their relative robustness
to occlusion, but still struggle with other OOD nuisances.

3. Method

We address OOD robustness from a Bayesian perspective
which, to the best of our knowledge, is novel. Our starting
point is a class of generative models, described in Sec. 3.1,
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Figure 2. Rough illustration of our Bayesian method. (99K,99K) A DCNN backbone is used to extract the source (IID) FS and target
(OOD) features FR. The source feature vectors FS are then used to learn the source vMF kernels that are then adapted to the transitional
vMF kernels using target domain features FR and the adaptation coefficients ψk in an unsupervised manner. (→) Transitional Spatial
coefficients (AR) are then learned using the transitional vMF likelihood LR i.e. non-linear activation applied to a convolution of FS and
transitional kernels using source labels. (→) These spatial coefficients are then finetuned (AR′

) using pseudo-scores {ŝ} generated
using the transitional mixture likelihood ER of target domain features FR. (→) shows the final feedforward pipeline during inference.

which have been shown to be robust to occlusion [21] when
not dealing with other OOD nuisances. We describe method
motivation in Sec. 3.2 and the technical details in Sec. 3.3.

3.1. Bayesian Neural Architecture

Our base architecture is similar to CompNets [21] and is
explained in this section to help readers unfamiliar with
them. Our method extends this class of neural models by
non-trivially modifying the training methodology to enable
OOD robustness along with occlusion robustness.

This class of models differs from conventional Deep
Networks by replacing the discriminative head by a gen-
erative model of feature vectors. For each object y we
learn a generative model P (F |y) for the feature vectors F .
This model is formulated as a mixture model P (F |y) =∑

m P (F |y,m) where the mixture variable m roughly cor-
responds to the viewpoint of the object. The conditional
distributions P (F |y,m) for the features are factorizable in
terms of position so that P (F |y,m) =

∏
a∈D P (fa|y,m),

where a ∈ D specifies the position in the image. These dis-
tributions P (fa|y,m) are specified in terms of von Mises-
Fisher (vMF) dictionaries, with parameters Λ = {σk, µk}
and by spatial coefficients with parameters A = {αy,m

a,k }.
We use the following generative probability distribution for
the neural features F conditioned on an object y [20, 21]:

P (F |y)=
∑
m

P (F |y,m)=
∑
m

∏
a∈D

Pa(fa|y,m)P (m), (1)

Pa(fa|y,m)=Pa(fa|A,Λ)=
∑
k

αy,m
a,k P (fa|σk, µk), (2)

P (f |σk, µk) =
eσkµ

T
k f

Z(σk)
, ||f || = 1, ||µk|| = 1, (3)

We typically use 4 mixture components in our method and
P (m) is an uniform prior over the mixture components. As
shown in [21, 39] each vMF kernel can be qualitatively in-
terpreted as a subpart of the object (i.e., all image patches
with feature responses close to µk look like visually similar
object subparts). We use von Mises-Fisher distributions in-
stead of Gaussian distributions because the feature vectors
fa and the means µk must have a unit norm [7, 8]. The spa-
tial coefficients A = {αy,m

a,k } specify the probability that
the vMF kernel k occurs at the position a conditioned on
the object y and its mixture component m.

Inference. After learning, inference on an image with
feature vectors F is performed by a forward pass which es-
timates which object is more likely to generate the features
F of the input image, ŷ = argmaxyP (F |y) [21, 36].

Occlusion modeling. To make the model, described
above, robust to occlusion (in non-OOD data), an outlier
process is added to allow for some of the image features to
be generated by the object and others by a separate outlier
process [20, 36]. This is formalised by:

P (F |y) =
∏
a∈D

∑
m

Pa(fa|y,m)zaQ(fa)
1−zaP (m)P (za) (4)

where Q(fa) is a vMF distribution for a feature generated
by an occluder which can be estimated from non-annotated
images [19, 21, 42]. The latent variable za ∈ {0, 1} in-
dicates whether pixel a is occluded or not occluded (za =
{1, 0} respectively) and the prior P (za) indicates the prior
probability of a pixel being occluded. Note that we could
also, in theory, sum over z (we currently take a max).

Training CompNets [21, 36, 42] are trained end-to-end
to optimize the model parameters Λ,A using the standard
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supervision for object classification (e.g., the mixture com-
ponents and the vMF kernels are treated as latent variables).
In an OOD scenario the image features no longer corre-
spond well with the learned generative model and without
labels, we cannot trivially finetune the model. UGT utilizes
an insightful training strategy to solve this problem.

3.2. Motivation on Generalizing to OOD Data

UGT builds upon by the aforementioned Bayesian model
because it gives a natural way to formulate an occluder pro-
cess. These models, however, do not do well on OOD data
(Sec. 4). To solve this problem in an unsupervised manner
requires reformulation of the training process. We motivate
our solution for OOD, UGT, in following stages.

Firstly, the vMF kernel dictionaries (i.e., the subparts
of the object) can be learnt without supervision and hence
can be found on both the source (annotated) and the tar-
get (non-annotated) domains. Secondly, we observe that
some of the vMF kernels are similar between different do-
mains (intuitively some subparts are similar between both
domains). Thirdly, we can build on this observation to
learn a transitional dictionary, which encourages vMF ker-
nels in both domains to be similar if possible, and which
works well in both domains. Fourthly, we note that the
spatial coefficients capture the spatial activity pattern of the
vMF kernels and these patterns depend on the spatial struc-
ture of the objects and so are mostly invariant to the domain,
which suggests that we can learn the spatial coefficient on
the source domain (where annotations are available), pro-
vided we use the transitional dictionary of vMF kernels, and
that these spatial coefficients give a good initial estimate for
the spatial coefficients on the target domain (which can be
improved by simple pseudo-labeling).

In the first stage we learn the vMF dictionaries Λ with-
out supervision by maximum likelihood estimation (MLE)
assuming that the feature vectors {fa} of all the images
(and at all positions) in each domain are generated by
a mixture of von-Mises-Fisher distributions P (f |Λ) =∑

k πke
σkµ

T
k f/Z[σk]. This is essentially clustering simi-

lar to that used in earlier studies [21, 39]. After the Λ are
learnt, if annotations are available (i.e., we know the object
y) then we can learn the spatial coefficientsA from the data
{Fn} in the annotated (source) domain by MLE from the
distribution

∑
m

∏
a∈D

∑
k α

y,m
a,k P (fa|σk, µk).

In the second stage, we compare the vMF dictionaries
(ΛS) and (ΛT ) on the source (S) and target (T) domain re-
spectively. We observe that a subset of the dictionary vec-
tors are similar, as measured by cosine similarity in the vMF
feature space (Fig. 1). We conjecture that this is because
a subset of the vMF kernels, which correspond roughly to
object subparts [39], is invariant to the nuisance variables
which cause the differences between the domains. For ex-
ample, for an object like a car or bus, some subparts like

wheels and license plates may be very similar between the
source and target domains but others may not (Fig. 1).
These observations motivate us to learn a transitional vMF
dictionary (ΛR). This dictionary is learnt by learning the
dictionary on the target domain but adding a prior (or reg-
ularization constraint) that the dictionary elements in both
domains are similar. Finally, we learn the spatial coeffi-
cients A on the source domain, but using the transitional
dictionary (Sec. 3.3.2). This allows us to utilize object ge-
ometry knowledge from the source domain in the target do-
main. As we show in our experiments and ablation (Sec. 4,
Sec. 4.3), this model already works well on the target do-
main and can be improved by pseudo-labelling techniques.

3.3. Training UGT

Our Bayesian method, UGT, involves 3 steps - 1) primarily,
learning transitional dictionary ΛR, 2) learning transitional
spatial coefficientsAR using fS and ΛR, and lastly 3) fine-
tuning the transitional parameters (ΛR,AR) using simple
pseudo-labelling. Refer to Fig. 2 for a simple illustration.

3.3.1 Learning Transitional Dictionary

We initialize the transitional von Mises-Fisher(vMF) dic-
tionary vectors with the learnt source domain vMF dictio-
nary vectors, i.e., ΛR

initial = ΛS . The source domain vMF
dictionaries i.e., (ΛS(µ, σ)) are learnt from the features fS
in source domain by MLE as described in Sec. 3.1 using
the EM algorithm [39]. We can learn the transitional vMF
dictionary parameters ΛR from the target domain feature
vectors fR through a few ways. We can maximize the
regularized likelihood shown in Eq. (5) using the EM al-
gorithm used to calculate the source domain parameters.
Eq. (5) shows the Bayesian parameterization of our tran-
sitional model and can be seen as a penalized or regularized
form of maximum likelihood estimation. We penalize the
distance between the initialized transitional mean vectors
(which are the source parameters) and the learnt ones. This
regularization (like others) also helps in avoiding overfit-
ting. Since, we fix σk as constant to reduce computation,
the normalization term Z(σ) reduces to a constant, and we
can derive the penalized log-likelihood term as shown in
Eq. (6). ψ is a adaptation parameter discussed later.

p(fR|ΛR) =
∏
n

∑
k

αkP (fa|σk, µk)

exp (−ψk

∑
k

(||µk − µS
k ||)) (5)

l(ΛR) =

n∑
log(

k∑
πk
eσkµ

T
k fi

Z(σk)
)− ψk

n∑ k∑
(||µk − µS

k ||)

(6)
||f || = 1, ||µk|| = 1, σ = 1 =⇒ Z(σ) = const.

The Expectation step for learning the transitional parame-
ters is similar the source version. In the first step, we cal-
culate the summary statistics for the transitional parameters

22991



Algorithm 1 Unsupervised Generative Transition

1: Input: Set of source domain images IS = {IS1 , ..., ISn }, target domain images IT = {IT1 , ..., ITN}, source domain labels
y = {yS1 , ..., ySn}, deep network backbone Γ(., ζ), background images Bri=1

2: Output: Target domain model parameters T = (A,Λ), background model βr
3: procedure UGT(IS , IT , y,Γ, βr)
4: {FS}, {FR} ←− Γ(({IS}, {IT }), ζ) ▷ Extract source & target featuremaps from DCNN backbone
5: ΛS(µk)←− cluster & MLE({FS}) ▷ Initialize source vMF kernels by kmeans & learn using MLE
6: ΛR

initial(µ)←− ΛS(µk) ▷ Initialise transitional vMF kernels with source vMF kernels
7: ΛR(µ)←− MLE(FT ,∆(ψ,ΛS ,ΛR)) ▷ Learn transitional vMF features using regularized MLE with

target domain data (Sec. 3.3.1, Eq. (5)-Eq. (9))
8: {LR} ←−

∑
k πke

σkµ
T
k fS

/Z[σk](F ∗ ΛR(µk)) ▷ Compute regularized transitional vMF likelihood with
source featuremaps and transitional vMF kernels

9: AR
ys,m ←− cluster&MLE({LR}, yS) ▷ Calculate spatial coefficients using transitional vMF likeli-

hood and source feature vectors (Sec. 3.3.2)
10: yT̂ ←− argmaxyP (F |ΛR,AR) ▷ Pseudo-label target domain data using transitional model
11: AR′

yT̂ ,m
←− cluster&MLE({LR}, yT̂ ) ▷ Finetune spatial coefficients using pseudolabelled data yT̂

12: T ←− optimize(Lgce + ψvL+ ψαL) ▷ Optionally, finetune entire model using yT̂ (Eq. (11))
13: end procedure

using the new data. For posterior probability defined as

P (k|fi,Λ) =
πkp(fi|µk, σk)∑K πkp(fi|µk, σk)

(7)

for the kth mixture and where p(f |µk, σk) is defined in
Eq. (3), we update the mixture parameters in the maximiza-
tion step in a regularized manner as follows,

π̂k = ν[ψπ
k
1

n

n∑
i=1

P (k|fi,Λ) + (1− ψπ
k )π

S
k ] (8)

µ̂k = ψµ
kEk + (1− ψµ

k )µ
S
k (9)

where, Ek is the first moment or mean of the kth mix-
ture calculated on the new data, ν is a scaling parameter
to ensure that

∑
k πk = 1 and ψk is an adaptation coef-

ficient which is defined for each parameter and mixture.
It can be defined in a data dependent manner [29], i.e.,
ψµ,π
k = ( ωk

P (k|fi,Λ) + 1)−1 where wk is an empirically set
hyperparameter which controls the adaptation emphasis be-
tween source and transitional parameters. Empirically, we
observed that the adaptation coefficient is not very sensitive
to changes to its value and therefore, we increase it mono-
tonically during the EM iterations. A ψk for a specific vMF
kernel µk at time-step t in ΛR stabilizes if the change in
its likelihood component is below a threshold value over
the previous EM iteration step t-1 and then ψk value. We
find that only using the parameter update works well. For
simpler datasets, even directly learning the transitional dic-
tionary would suffice.

3.3.2 Learning Transitional Spatial Coefficients

After learning ΛR, we use it to estimate the transitional spa-
tial coefficients (AR(α)) using the labeled source domain

features fS (using MLE). The spatial coefficients represent
the expected activation of a calculated vMF kernel µk at a
position a in the feature map for a specific class y.

Pa(fa|ys,m;AR,ΛR)=
∑
k

αys,m
a,k P (fa|ΛR(σk, µk)) (10)

We can leverage the learnt transitional vMF kernel dictio-
nary ΛR to learn spatial coefficients AR(α) which repre-
sent the spatial relationships of the vMF dictionary vectors
over the source domain data DS . As these spatial coeffi-
cients AR are conditioned on ΛR, they also correspond to
parts of target domain features even when they are learned
using fS , thus creating a transitional model with parameters
(ΛR,AR) that we can use to classify target domain data.

This combination of conditioned transitional vMF dic-
tionary (ΛR) and spatial coefficients (AR) can be leveraged
to label a subset of target domain features, especially since
we can focus on the subset of transitional vMF kernels (ΛR)
which are similar to their source counterparts. We can use
these pseudo labeled feature vectors (yT̂ ), along with ΛR

to finetune the current spatial coefficients AR which leads
to improved spatial coefficients AR′.

Finetuning spatial coefficients. Transitional spatial co-
efficients (AR) are initialized with the values describing
the expected activation of transitional vMF dictionary vec-
tors ΛR(µk) for the source data features fS at a position a
on a feature map fa. Subsequently, we finetune these spa-
tial coefficients AR using a subset of target domain images
that present high activations for the robust set of transitional
vMF dictionary vectors ΛR. Optionally, we can also fine-
tune ΛR by relearning them without any initialization and
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regularization constraints. Although our model is trained
by partitioning into two parts, it is still fully differentiable
and trainable from end to end [20, 36, 42]. We use this
model property to finetune the entire model. The loss func-
tion (Eq. (11)) consists of a generalized cross entropy [44]
term calculated using the model predictions and two regu-
larization parameters for the vMF dictionary and the spa-
tial coefficient parameters. This is to encourage the vMF
clusters to be similar to the feature vectors fa. In Eq. (11),
ζ{v,α} represent the trade-off hyperparameters of the regu-
larizing loss terms,

L = Lgce(ypred, yT̂ ) + ζvL(F,Λ) + ζαL(F,A), (11)

For a constant vMF variance σk (which also reduces the
normalisation term to a constant) and assuming hard assign-
ment of features fa to vMF dictionary clusters[21],

L(F,ΛR) = −
∑
a

max
k

log p(fa|ΛR(µk)) (12)

L(F,AR′
) = −

∑
a

(1− za) log[
∑
k

α
y
T̂
,m

a,k p(fa|ΛR(µk))] (13)

Latent variable za ∈ {0, 1} is explained in Sec. 3.1.

4. Experiments
Our experiments evaluate robustness of vision classifica-
tion models in an extended out-of-domain setup i.e., gen-
eralizing to target domains with individual nuisance factors
and partial occlusion. This allows us to thoroughly evaluate
the efficacy of current methods which have been shown to
perform well on other OOD robustness datasets on OOD-
CV[45] (which enables a systematic analysis of nuisances
on real-world data), Occluded-OOD-CV (which allows us
to evaluate models on a combination of partial occlusion
with individual nuisances) and Imagenet-C corruptions (for
analysis of synthetic corruptions). Lastly, we also show
some initial results on Synthetic to Real OOD robustness
using the UDAParts [24] dataset.

4.1. Setup and Data

Datasets. For primary evaluation, we use the OOD-
CV [45] dataset. OOD-CV dataset consists of test subcate-
gories which vary from the training data in terms of a main
nuisance factor, namely, context, weather, texture, pose and
shape. We use L0 for the (0%) occlusion level to represent
this data setup in Tab. 1 and Supplementary Sec. B.

Occluded-OOD-CV. In addition to OOD-CV, we exper-
iment with a more complex robustness analysis setup in-
volving partial occlusion. In this setup, models that have
been adapted in an unsupervised manner to target domains
with nuisance factors are then evaluated on data with par-
tial occlusion in addition to the real-world nuisances. For
this purpose, we create a dataset named Occluded-OOD-
CV where we superimpose occluders on the OOD-CV test

images objects in order to approximate real-life occlusion.
These occluders have been cropped from the MS-COCO
dataset, similar to [20] and are superimposed on objects in
the OOD-CV test set. There are three levels of partial oc-
clusions - L1(20 − 40%), L2(40 − 60%) and L3(60 − 80%)

which allows us to diversely analyze the occlusion robust-
ness of the model (in addition to individual nuisance fac-
tors). Fig. 3 shows some example images from our dataset.
Previous works [18, 21] have shown that using cropped oc-
cluders, as done in Occluded-OOD-CV, is akin to the use
of real occluders for classification evaluation. We also use

Figure 3. Occluded-OOD-CV dataset examples. Each object cat-
egory is identified by its nuisance factor and occlusion percentage

Imagenet-C[9] corruptions in the Pascal3D+ dataset for ro-
bustness evaluation with conventionally used synthetic cor-
ruptions. We also evaluate models in a synthetic (UDA-
Parts [24]) to real data (Pascal3D+ [41]) setup.

In summary, we have 5 different real world nuisance
data subcategories (context, weather, texture, pose, shape),
at least seven synthetic corruption categories (fog, pixelate,
motion blur, etc.), one synthetic source dataset and 4 partial
occlusion levels (including no occlusion) for each experi-
ment. We also run experiments on all the combined nui-
sance subcategories (Tab. 1). So, in total we have 24 sets
of data and experiments for our (extended) OOD robustness
setup on the OOD-CV dataset alone.

Models. We compare our work with our baseline method
CompNets [21], other well known recent works [30, 32]
which have been shown to be SOTA on various robustness
datasets [9, 11, 12] as well as many well-known UDA meth-
ods [3, 13, 15, 22, 23, 25–27, 40, 43]. We focus on VGG16
and Resnet-50 backbones as they have been commonly used
in most current methods[20, 30, 32, 44].

Training Setup. All models are trained on the source
data with corresponding labels. Models can access some
unlabeled nuisance (target) data, which could be a sin-
gle nuisance (OOD-CV, Imagenet-C), combined nuisances
(Tab. 1) or real data (when source data are synthetic). Mod-
els do not have access to images with partial occlusion at
any time, and partially occluded images are only used for
inference. We also avoid using different types of data aug-
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Table 1. OOD-CV Nuisances Top-1 Classification Results. Occlusion levels greater than 0% represent Occluded-OOD-CV dataset.

Method Combined Context Weather
Occlusion→ 0% 20-40% 40-60% 60-80% 0% 20-40% 40-60% 60-80% 0% 20-40% 40-60% 60-80%

CDAN [25]** .760 .531 .420 .380 .710 .541 .436 .397 .745 .476 .335 .299
BSP [2]** .753 .506 .401 .351 .610 .511 .419 .385 .730 .391 .266 .254
MDD [43]** .780 .551 469 .410 .761 .531 .436 .410 .802 .439 .306 .271
MCD [31]** .772 .556 .461 .403 .798 .523 .426 .374 .810 .447 .336 .286
MCC [15]** .785 .582 .492 .434 .730 .577 .454 .420 .767 .503 .376 .362
FixBi [27]** .821 .534 .478 .399 .802 .542 .445 .409 .755 .489 .358 .335
MIC [13]** .837 .540 .376 .262 .755 .602 .532 .499 .817 .612 .496 .427
ToAlign [40]** .761 .507 .411 .346 .712 .501 .393 .382 .720 .381 .252 .213
CST [23]** .840 .579 .539 .477 .687 .491 .452 .411 .813 .558 .397 .356
DUA [26]** .699 .523 .480 .403 .667 .471 .434 .401 .701 .465 .391 .210
DINE [22]** .835 .600 .493 .443 .867 .515 .418 .397 .798 .423 .290 .261
RPL [30] .664 .430 .346 .300 .675 .457 .368 .315 .642 .247 .138 .122
BNA [32] .653 .426 .343 .298 .580 .397 .342 .278 .635 .295 .179 .171
CompNet [21] .720 .506 .462 .415 .790 .517 .454 .369 .683 .434 .398 .362
UGT (Ours) .850 .620 .570 .501 .875 .624 .565 .511 .856 .600 .528 .465

Texture Pose Shape
CDAN [25]** .820 .532 .420 .364 .844 .620 .521 .450 .773 .561 .491 .441
BSP [2]** .696 .444 .384 .315 .831 .610 .510 .423 .757 .535 .485 .434
MDD [43]** .895 .518 .427 .400 .870 .611 .534 .469 .836 .541 .459 .386
MCD [31]** .896 .522 .432 .392 .865 .623 .532 .471 .834 .538 .456 .397
MCC [15]** .874 .671 .547 .495 .867 .611 .521 .460 .818 .601 .524 .460
FixBi [27]** .854 .574 .445 .369 .842 .533 .472 .446 .801 .500 .435 .373
MIC [13]** .821 .706 .631 .576 .799 .613 .509 .455 .807 .608 .565 .467
ToAlign [40]** .594 .413 .312 .273 .788 .574 .503 .418 .719 .548 .460 .391
CST [23]** .858 .657 .538 .477 .887 .617 .525 .451 .831 .617 .495 .441
DUA [26]** .918 .691 .514 .468 .755 .511 .423 .355 .695 .455 .386 .345
DINE [22]** .911 .572 .432 .401 .885 .618 .543 .448 .838 .520 .426 .360
RPL [30] .703 .371 .238 .227 .730 .493 .400 .329 .670 .426 .340 .311
BNA [32] .701 .383 .247 .239 .737 .510 .407 .355 .662 .436 .350 .311
CompNet [21] .747 .539 .462 .426 .768 .581 .538 .458 .698 .466 .451 .400
UGT (Ours) .936 .726 .665 .635 .892 .632 .555 .481 .852 .644 .601 .567

** Pretrained Imagenet Backbone used (Resnet-50) / Pretrained UDA model used.

Table 2. Imagenet-C Corruptions on Pascal3D+ dataset - Classification Results (Vgg16)

Model Elastic Transform Gaussian Blur Snow
Occlusion→ 0% 20-40% 40-60% 60-80% 0% 20-40% 40-60% 60-80% 0% 20-40% 40-60% 60-80%

RPL [30] .830 .597 .461 .371 .855 .541 .403 .320 .842 .592 .435 .408
BNA [32] .793 .601 .498 .400 .833 .618 .484 .300 .767 .627 .542 .454
CompNet [21] .268 .183 .157 .146 .732 .395 .296 .241 .529 .348 .258 .210
UGT (Ours) .872 .712 .712 .494 .909 .720 .613 .509 .890 .742 .634 .523

Motion Blur Contrast Frost
RPL [30] .862 .629 .481 .373 .901 .610 .433 .321 .850 .670 .511 .402
BNA [32] .844 .623 .481 .355 .899 .601 .401 .315 .845 .654 .501 .399
CompNet [21] .639 .362 .287 .241 .760 .472 .374 .312 .740 .481 .360 .301
UGT (Ours) .891 .763 .673 .567 .923 .701 .534 .412 .911 .782 .672 .561
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Table 3. Ablation analysis for (a) OOD-CV [45] Combined (b) OOD-CV Texture (c) Imagenet-C (Snow) Corruption

Occlusion→ L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3

Baseline(B) .698 .466 .451 .400 .715 .575 .475 .409 .529 .348 .258 .210
+ΛR +AR .816 .598 .524 .498 .785 .660 .559 .515 .781 .671 .582 .480
+ΛR +AR′

.852 .644 .601 .567 .843 .764 .656 .623 .885 .742 .634 .523

mentations and additional data training to have a fairer com-
parison amongst all the works. Although, our Bayesian
model does not use pretrained Imagenet backbones for
feature extraction for fairness, a number of our comparative
methods [2, 15, 25, 26, 43] perform poorly without one, so
we relax this constraint for them. Our method is still capa-
ble of surpassing them in terms of classification accuracy.
Further details are provided in Supplementary Section C.

4.2. Results

OOD robustness to individual nuisances. Tab. 1 (L0
columns) shows classification results on entire OOD-CV
test data (combined nuisances) as well as five individual
nuisances. We see that our model achieves state-of-the-art
results in all experiments. In Tab. 2, we observe that our
model also performs exceedingly well when dealing with
synthetic Imagenet-C corruptions. Refer to Supplementary
Sec.C2 and Tables 5-11 for additional Imagenet-C results.

Synthetic to Real. Tab. 4 shows our results on both nor-
mal and extended OOD robustness scenario in a synthetic
to real setup, showing that our unsupervised method can
robustly close the gap between its supervised counterpart
while outperforming other methods by large margins.

Table 4. Synthetic (UDAParts) [24] to Real (Pascal3D+) [41]
dataset - Classification Results on Resnet50

Model 0% 20-40% 40-60% 60-80%

RPL [30] .822 .432 .370 .335
BNA [32] .950 .684 .484 .356
CompNet [21] .940 .650 .475 .347
UGT (Ours) .992 .957 .861 .753

Extended OOD robustness under partial Occlusion. In
Tab. 1, Tab. 2 and Supplementary Tables 1-3, 5-11, our
model outperforms other methods by significant margins in
the extended OOD scenarios of nuisance parameters with
partial occlusion. We observe that the performance of other
models which have been adapted to the target domain data
drops drastically when encountering partial occlusion along
with nuisance factors. This underlines the increased com-
plexity of the extended OOD robustness scenario relative
to the vanilla OOD robustness setup and how our Bayesian
model is able to perform exceedingly well compared to con-
ventional methods.

4.3. Ablation Analysis

Tab. 3 and Supplementary Sec. D & Tables 12-17 show the
extensive results of the ablation study for UGT, underly-
ing how each component contributes to the overall compo-
sitional model. We can see that just calculating the transi-
tional vMF kernel dictionary (ΛR) and the transitional spa-
tial coefficients AR improves the results significantly over
the baseline method[21]. Further finetuning the spatial co-
efficients (AR′) using pseudo-labelled target domain fea-
tures boosts the performance. We ablate our hypothesis re-
garding similar vMF kernels in source and target domains
by visualizing image patches that are activated by similar
cross-domain kernels (Supplementary Figures 9-11). We
also ablate our hypothesis regarding robust spatial geometry
by visualizing images activated by the same spatial coeffi-
cient in both source and target domains (using source and
transitional vMF dictionaries) in Supp. Fig 4 and 7. Analy-
sis of adaptation coefficient is discussed in Supp. Sec. E.

5. Conclusion and Future Work

In this work, we addressed the problem of developing
object classification algorithms that are robust to OOD
factors such as weather, context and occlusion. We gen-
eralize CompNets[21] for OOD robustness by observing
that they could be learned in two uncoupled steps: (i)
unsupervised learning of a dictionary of vMF kernels
(roughly corresponding to the subparts of the object)
and (ii) supervised learning of the spatial structure of the
objects (intuitively where the subparts occur). This enabled
us to: (a) learn a transitional dictionary which captured
the feature properties of both domains, and (b) learn the
distribution of spatial structure on the source domain and
transfer it to the target. This model is very successful and
could be improved by simple pseudo-labeling techniques.
Our empirical results on the OOD-CV[45], synthetic
Imagenet-C corruptions, and the synthetic UDA-Parts
dataset display the strong and versatile SOTA performance
of our method. In addition, we developed a more challeng-
ing dataset Occluded-OOD-CV by introducing occlusion
into OOD-CV and show that our Bayesian method, UGT,
performed well in this difficult challenge. Our Bayesian
approach could be extended to other tasks such as semantic
segmentation, exploiting properties of CompNets[36, 37] .
We give a qualitative proof of concept in the Supplementary.
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