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Figure 1. We present Marigold, a diffusion model and associated fine-tuning protocol for monocular depth estimation. Its core
principle is to leverage the rich visual knowledge stored in modern generative image models. Our model, derived from Stable Diffusion and
fine-tuned with synthetic data, can zero-shot transfer to unseen datasets, offering state-of-the-art monocular depth estimation results.

Abstract

Monocular depth estimation is a fundamental computer
vision task. Recovering 3D depth from a single image is
geometrically ill-posed and requires scene understanding,
so it is not surprising that the rise of deep learning has led to
a breakthrough. The impressive progress of monocular depth
estimators has mirrored the growth in model capacity, from
relatively modest CNNs to large Transformer architectures.
Still, monocular depth estimators tend to struggle when pre-
sented with images with unfamiliar content and layout, since
their knowledge of the visual world is restricted by the data
seen during training, and challenged by zero-shot general-
ization to new domains. This motivates us to explore whether
the extensive priors captured in recent generative diffusion
models can enable better, more generalizable depth estima-
tion. We introduce Marigold, a method for affine-invariant

monocular depth estimation that is derived from Stable Dif-
fusion and retains its rich prior knowledge. The estimator
can be fine-tuned in a couple of days on a single GPU us-
ing only synthetic training data. It delivers state-of-the-art
performance across a wide range of datasets, including over
20% performance gains in specific cases. Project page:
https://marigoldmonodepth.github.io.

1. Introduction

Monocular depth estimation aims to transform a photo-
graphic image into a depth map, i.e., regress a range value for
every pixel. The task arises whenever the 3D scene structure
is needed, and no direct range or stereo measurements are
available. Clearly, undoing the projection from the 3D world
to a 2D image is a geometrically ill-posed problem and can
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only be solved with the help of prior knowledge, such as typ-
ical object shapes and sizes, likely scene layouts, occlusion
patterns, etc. In other words, monocular depth implicitly re-
quires scene understanding, and it is no coincidence that the
advent of deep learning brought about a leap in performance.
Depth estimation is nowadays cast as neural image-to-image
translation and learned in a supervised (or semi-supervised)
fashion using collections of paired, aligned RGB images
and depth maps. Early methods of this type were limited
to a narrow domain defined by their training data, often in-
door [47] or driving [18] scenes. More recently, there has
been a quest to train generic depth estimators that can be
either used off-the-shelf across a broad range of scenes or
fine-tuned to a specific application scenario with a small
amount of data. These models generally follow the strategy
first employed by MiDAS [35] to achieve generality, namely
to train a high-capacity model with data sampled from many
different RGB-D datasets (respectively, domains). The latest
developments include moving from convolutional encoder-
decoder networks [35] to increasingly large and powerful
vision transformers [36], and training on more and more
data and with additional surrogate tasks [13] to amass even
more knowledge about the visual world, and consequently
to produce better depth maps. Importantly, visual cues for
depth depend not only on the scene content but also on the
(generally unknown) camera intrinsics [58]. For general in-
the-wild depth estimation, it is often preferred to estimate
affine-invariant depth (i.e., depth values up to a global offset
and scale), which can also be determined without objects of
known sizes that could serve as “scale bars”.

The intuition behind our work is the following: Modern
image diffusion models have been trained on internet-scale
image collections specifically to generate high-quality im-
ages across a wide array of domains [3, 38, 41]. If the
cornerstone of monocular depth estimation is indeed a com-
prehensive, encyclopedic representation of the visual world,
then it should be possible to derive a broadly applicable
depth estimator from a pretrained image diffusion model.
In this paper, we set out to explore this option and develop
Marigold, a latent diffusion model (LDM) based on Stable
Diffusion [38], along with a fine-tuning protocol to adapt the
model for depth estimation. The key to unlocking the poten-
tial of a pretrained diffusion model is to keep its latent space
intact. We find this can be done efficiently by modifying and
fine-tuning only the denoising U-Net. Turning Stable Diffu-
sion into Marigold requires only synthetic RGB-D data (in
our case, the Hypersim [37] and Virtual KITTI [7] datasets)
and a few GPU days on a single consumer graphics card.
Empowered by the underlying diffusion prior of natural im-
ages, Marigold exhibits excellent zero-shot generalization:
Without ever having seen real depth maps, it attains state-of-
the-art performance on several real datasets. To summarize,
our contributions are:

1. A simple and resource-efficient fine-tuning protocol to
convert a pretrained LDM image generator into an image-
conditional depth estimator;

2. Marigold, a state-of-the-art, versatile monocular depth es-
timation module that offers excellent performance across
a wide variety of natural images.

2. Related Work

2.1. Monocular Depth

At the technical level, monocular depth estimation is a
dense, structured regression task. The pioneering work
of Eigen et al. [14] introduced a multi-scale network and
showed that the result can be converted to metric depth
for a dataset recorded with a single sensor. Successive im-
provements have come from various fronts, including ordinal
regression [15], planar guidance maps [24], neural condi-
tional random fields [59], vision transformers [1, 27, 54], a
piecewise planarity prior [34], first-order variational con-
straints [28] and variational autoencoders [32]. Some
authors treat depth estimation as a combined regression-
classification task, using various binning strategies like Ad-
aBins [4] or BinsFormer [26] to discretize depth range. A
notable recent trend involves training generative models,
especially diffusion models [20, 49] for monocular depth
estimation [12, 22, 43, 44]. Recently, a few works [19, 58]
have revisited absolute depth estimation, by explicitly feed-
ing camera intrinsics as additional input.

Estimating depth “in the wild” refers to methods that are
successful across a wide range of (possibly unfamiliar) set-
tings, a particularly challenging task. It has been addressed
by constructing large and diverse depth datasets and design-
ing algorithms to handle that diversity. DIW [8] was perhaps
the earliest work to introduce an uncontrolled dataset and
to predict relative (ordinal) depth for it. OASIS [9] intro-
duced relative depth and normals to better generalize across
scenes. However, relative depth predictions (depth ordering)
are of limited use for many downstream tasks, which has
led several authors to consider affine-invariant depth. In
that setting, depth is estimated up to an unknown (global)
offset and scale. It offers a viable compromise between the
ordinal and metric cases: on the one hand, it can handle
general scenes consisting of unfamiliar objects; on the other
hand, depth differences between different objects or scene
parts are still geometrically meaningful relative to each other.
MegaDepth [25] and DiverseDepth [56] utilize large internet
photo collections to train models that can adapt to unseen
data, while MiDaS [35] achieves generality by training on a
mixture of multiple datasets. The step from CNNs to vision
transformers has further boosted performance, as evidenced
by DPT [36] and Omnidata [13]. LeReS [57] proposed a
two-stage framework that first predicts affine-invariant depth,
then upgrades it to metric depth by estimating the shift and
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focal length. HDN [60] introduced multi-scale depth nor-
malization to improve the prediction details and smoothness
further. While this enables the depth estimator to handle
images captured with different known cameras, it does not
include the true in-the-wild setting, where the camera intrin-
sics of the test images are unknown. Our method addresses
affine-invariant depth estimation but does not focus on com-
piling an extensive, annotated training dataset. Rather, we
utilize the broader image priors in image LDMs and apply
fine-tuning.

2.2. Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) [20]
have emerged as a powerful class of generative models. They
learn to reverse a diffusion process that progressively de-
grades images with Gaussian noise so that they can draw sam-
ples from the data distribution by applying the reverse pro-
cess to random noise. This idea was extended to DDIMs [49],
which provide a non-Markovian shortcut for the diffusion
process. Conditional diffusion models are an extension of
DDPMs [20, 49] that ingest additional information on which
the output is then conditioned, similar to cGAN [29] and
cVAE [48]. Conditioning can take various forms, including
text [41], other images [40], or semantic maps [61].

In the realm of text-based image generation, Rombach
et al. [38] have trained a diffusion model on the large-scale
image and text dataset LAION-5B [46] and demonstrated
image synthesis with previously unattainable quality. The
cornerstone of their approach is a latent diffusion model
(LDM), where the denoising process is run in an efficient la-
tent space, drastically reducing the complexity of the learned
mapping. Such models distill internet-scale image sets into
model weights, thereby developing a rich scene understand-
ing prior, which we harness for monocular depth estimation.

2.3. Diffusion for Monocular Depth Estimation

Several methods have tried to use DDPMs for metric depth
estimation. The DDP approach [22] proposes an architec-
ture to encode the image but decode a depth map and has
obtained state-of-the-art results on the KITTI dataset. Diffu-
sionDepth [12] performs diffusion in the latent space, condi-
tioned on image features extracted with a SwinTransformer.
DepthGen [44] extends a multi-task diffusion model to met-
ric depth prediction, including handling noisy ground truth.
Its successor DDVM [43] emphasizes pretraining on syn-
thetic and real data for enhanced depth estimation. Finally,
VPD [64] employs a pretrained Stable Diffusion model as
an image feature extractor with additional text input.

Our approach advances beyond these methods, which
perform well but only in their specific training domains. We
explore the potential of pretrained LDMs for single-image
depth estimation across diverse, real-world settings.

2.4. Foundation Models

Vision foundation models (VFMs) are large neural networks
trained on internet-scale data. The extreme scaling leads to
the emergence of high-level visual understanding, such that
the model can then be used as is [52] or fine-tuned to a wide
range of downstream tasks with minimal effort [6]. Prompt
tuning methods [2, 55, 63] can efficiently adapt VFMs to-
wards dedicated scenarios by designing suitable prompts.
Feature adaptation methods [5, 16, 33, 62, 64, 65] can fur-
ther pivot VFMs towards different tasks. E.g., VPD [64]
showed the potential to extract features from a pre-trained
text-to-image model for (domain-specific) depth estimation.
Concurrently, I-LoRA [11] demonstrated the multi-modal
capabilities of pre-trained image generators. Direct tun-
ing enables more flexible adaptation, not only for few-shot
customization scenarios like DreamBooth [39] but also for
object detection, as in 3DiffTection [53].

The Marigold depth estimator proposed here can be in-
terpreted as an instance of such direct tuning, where Sta-
bleDiffusion plays the role of the foundation model. With as
few as 74k synthetic depth samples, we obtain state-of-the-
art depth estimates on real image datasets, and convincing
performance in the wild (cf . Fig. 1).

3. Method
3.1. Generative Formulation

We pose monocular depth estimation as a conditional denois-
ing diffusion generation task and train Marigold to model the
conditional distribution D(d | x) over depth d ∈ RW×H ,
where the condition x ∈ RW×H×3 is an RGB image.

In the forward process, which starts at d0 := d from the
conditional distribution, Gaussian noise is gradually added
at levels t ∈ {1, ..., T} to obtain noisy samples dt as

dt =
√
ᾱtd0 +

√
1− ᾱtϵ (1)

where ϵ ∼ N (0, I), ᾱt :=
∏t

s=1 1−βs, and {β1, . . . , βT }
is the variance schedule of a process with T steps. In the
reverse process, the conditional denoising model ϵθ(·) pa-
rameterized with learned parameters θ gradually removes
noise from dt to obtain dt−1.

At training time, parameters θ are updated by taking a
data pair (x,d) from the training set, noising d with sam-
pled noise ϵ at a random timestep t, computing the noise
estimate ϵ̂ = ϵθ(dt,x, t) and minimizing one of the denois-
ing diffusion objective functions. The canonical standard
noise objective L is given as follows [20]:

L = Ed0,ϵ∼N (0,I),t∼U(T ) ∥ϵ− ϵ̂∥22 . (2)

At inference time, d := d0 is reconstructed starting from a
normally-distributed variable dT , by iteratively applying the
learned denoiser ϵθ(dt,x, t).
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Figure 2. Overview of the Marigold fine-tuning protocol. Start-
ing from pretrained Stable Diffusion, we encode the image x and
depth d into the latent space using the original Stable Diffusion
VAE. We fine-tune just the U-Net by optimizing the standard diffu-
sion objective relative to the depth latent code. Image conditioning
is achieved by concatenating the two latent codes before feeding
them into the U-Net. The first layer of the U-Net is modified to ac-
cept concatenated latent codes. See details in Sec. 3.2 and Sec. 3.3.

Unlike diffusion models that work directly on the data,
latent diffusion models perform diffusion steps in a low-
dimensional latent space, offering computational efficiency
and suitability for high-resolution image generation [38].
The latent space is constructed in the bottleneck of a varia-
tional autoencoder (VAE) trained independently of the de-
noiser to enable latent space compression and perceptual
alignment with the data space. To translate our formulation
into the latent space, for a given depth map d, the corre-
sponding latent code is given by the encoder E : z(d) = E(d).
Given a depth latent code, a depth map can be recovered
with the decoder D: d̂ = D(z(d)). The conditioning im-
age x is also naturally translated into the latent space as
z(x) = E(x). The denoiser is henceforth trained in the latent
space: ϵθ(z

(d)
t , z(x), t). The adapted inference procedure

involves one extra step – the decoder D reconstructing the
data d̂ from the estimated clean latent z(d)0 : d̂ = D(z

(d)
0 ).

3.2. Network Architecture

One of our main objectives is training efficiency since diffu-
sion models are often extremely resource-intensive to train.
Therefore, we base our model on a pretrained text-to-image
LDM (Stable Diffusion v2 [38]), which has learned very
good image priors from LAION-5B [46]. With minimal
changes to the model components, we turn it into an image-
conditioned depth estimator. Fig. 2 contains an overview of
the proposed fine-tuning procedure.

Depth encoder and decoder. We take the frozen VAE to
encode both the image and its corresponding depth map into
a latent space for training our conditional denoiser. Given
that the encoder, which is designed for 3-channel (RGB)
inputs, receives a single-channel depth map, we replicate the

depth map into three channels to simulate an RGB image.
At this point, the data range of the depth data plays a sig-
nificant role in enabling affine-invariance. We discuss our
normalization approach in Sec. 3.3. We verified that without
any modification of the VAE or the latent space structure,
the depth map can be reconstructed from the encoded latent
code with a negligible error, i.e., d ≈ D(E(d)). At infer-
ence time, the depth latent code is decoded once at the end
of diffusion, and the average of three channels is taken as
the predicted depth map.

Adapted denoising U-Net. To implement the conditioning
of the latent denoiser ϵθ(z

(d)
t , z(x), t) on input image x, we

concatenate the image and depth latent codes into a single
input zt = cat(z(d)t , z(x)) along the feature dimension. The
input channels of the latent denoiser are then doubled to
accommodate the expanded input zt. To prevent inflation
of activations magnitude of the first layer and keep the pre-
trained structure as faithfully as possible, we duplicate the
weight tensor of the input layer and divide its values by two.

3.3. Fine-Tuning Protocol

Affine-invariant depth normalization. For the ground
truth depth maps d, we implement a linear normalization
such that the depth primarily falls in the value range [−1, 1],
to match the designed input value range of the VAE. Such
normalization serves two purposes. First, it is the conven-
tion for working with the original Stable Diffusion VAE.
Second, it enforces a canonical affine-invariant depth rep-
resentation independent of the data statistics – any scene
must be bounded by near and far planes with extreme depth
values. The normalization is achieved through an affine
transformation computed as

d̃ =

(
d− d2

d98 − d2
− 0.5

)
× 2, (3)

where d2 and d98 correspond to the 2% and 98% per-
centiles of individual depth maps. This normalization allows
Marigold to focus on pure affine-invariant depth estimation.

Training on synthetic data. Real depth datasets suffer from
missing depth values caused by the physical constraints of
the capture rig and the physical properties of the sensors.
Specifically, the disparity between cameras and reflective
surfaces diverting LiDAR laser beams are inevitable sources
of ground truth noise and missing pixels [21, 51]. In contrast
to prior work that utilized diverse real datasets to achieve
generalization [13, 35], we train exclusively with synthetic
depth datasets. As with the depth normalization rationale,
this decision has two objective reasons. First, synthetic
depth is inherently dense and complete, meaning that every
pixel has a valid ground truth depth value, allowing us to
feed such data into the VAE, which can not handle data
with invalid pixels. Second, synthetic depth is the cleanest
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Figure 3. Overview of the Marigold inference scheme. Given an
input image x, we encode it with the original Stable Diffusion VAE
into the latent code z(x), and concatenate with the depth latent z(d)

t

before giving it to the modified fine-tuned U-Net on every denoising
iteration. After executing the schedule of T steps, the resulting
depth latent z(d)

0 is decoded into an image, whose 3 channels are
averaged to get the final estimation d̂. See Sec. 3.4 for details.

possible form of depth, which is guaranteed by the rendering
pipeline. If our assumption about the possibility of fine-
tuning a generalizable depth estimation from a text-to-image
LDM is correct, then synthetic depth gives the cleanest set
of examples and reduces noise in gradient updates during
the short fine-tuning protocol. Thus, the remaining concern
is the sufficient diversity or domain gaps between synthetic
and real data, which sometimes limits generalization ability.
As demonstrated in our experiments, our choice of synthetic
datasets leads to impressive zero-shot transfer.

Annealed multi-resolution noise. Previous works have
explored deviations from the original DDPM formulations,
such as non-Gaussian noise [30] or non-Markovian schedule
shortcuts [49]. Our proposed setting and the fine-tuning pro-
tocol outlined above are permissive to changes to the noise
schedule at the fine-tuning stage. We identified a combina-
tion of multi-resolution noise [23] and an annealed schedule
to converge faster and substantially improve performance
over the standard DDPM formulation. The multi-resolution
noise is composed by superimposing several random Gaus-
sian noise images of different scales, all upsampled to the
U-Net input resolution. The proposed annealed schedule
interpolates between the multi-resolution noise at t = T and
standard Gaussian noise at t = 0.

3.4. Inference

Latent diffusion denoising. The overall inference pipeline
is presented in Fig. 3. We encode the input image into the
latent space, initialize depth latent as standard Gaussian
noise, and progressively denoise it with the same schedule
as during fine-tuning. We empirically find that initializing
with standard Gaussian noise gives better results than with
multi-resolution noise, although the model is trained on the
latter. We follow DDIM’s [49] approach to perform non-

Markovian sampling with re-spaced steps for accelerated
inference. The final depth map is decoded from the latent
code using the VAE decoder and postprocessed by averaging
channels.

Test-time ensembling. The stochastic nature of the infer-
ence pipeline leads to varying predictions depending on the
initialization noise in z

(d)
T . Capitalizing on that, we propose

the following test-time ensembling scheme, capable of com-
bining multiple inference passes over the same input. For
each input sample, we can run inference N times. To aggre-
gate these affine-invariant depth predictions {d̂1, . . . , d̂N},
we jointly estimate the corresponding scale ŝi and shift t̂i,
relative to some canonical scale and range, in an iterative
manner. The proposed objective minimizes the distances be-
tween each pair of scaled and shifted predictions (d̂′

i, d̂′
j),

where d̂′ = d̂ × ŝ + t̂. In each optimization step, we cal-
culate the merged depth map m by the taking pixel-wise
median m(x, y) = median(d̂′

1(x, y), . . . , d̂′
N (x, y)). An

extra regularization term R = |min(m)|+ |1−max(m)|, is
added to prevent collapse to the trivial solution and enforce
the unit scale of m. Thus, the objective function can be
written as follows:

min
s1,...,sN
t1,...,tN

(√√√√1

b

N−1∑
i=1

N∑
j=i+1

∥d̂′
i − d̂′

j∥22 + λR

)
(4)

where the binominal coefficient b =
(
N
2

)
represents the

number of possible combinations of image pairs from N im-
ages. After the iterative optimization for spatial alignment,
the merged depth m is taken as our ensembled prediction.
Note that this ensembling step requires no ground truth for
aligning independent predictions. This scheme enables a
flexible trade-off between computation efficiency and pre-
diction quality by choosing N accordingly.

4. Experiments
4.1. Implementation

We implement Marigold using PyTorch and utilize Stable
Diffusion v2 [38] as our backbone, following the original
pre-training setup with a v-objective [42]. We disable text
conditioning and perform the steps outlined in Sec. 3.2. Dur-
ing training, we apply the DDPM noise scheduler [20] with
1000 diffusion steps. At inference time, we apply the DDIM
scheduler [49] and only sample 50 steps. For the final pre-
diction, we aggregate results from 10 inference runs with
varying starting noise. Training our method takes 18K itera-
tions using a batch size of 32. To fit one GPU, we accumulate
gradients for 16 steps. We use the Adam optimizer with a
learning rate of 3 · 10−5. Additionally, we apply random hor-
izontal flipping augmentation to the training data. Training
our method to convergence takes approximately 2.5 days on
a single Nvidia RTX 4090 GPU card.
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Table 1. Quantitative comparison of Marigold with SOTA affine-invariant depth estimators on several zero-shot benchmarks. All metrics†

are presented in percentage terms; bold numbers are the best, underscored second best. Our method outperforms other methods on both
indoor and outdoor scenes in most cases, without having seen a real depth sample.

Method # Training samples NYUv2 KITTI ETH3D ScanNet DIODE Avg. RankReal Synthetic AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑

DiverseDepth [56] 320K — 11.7 87.5 19.0 70.4 22.8 69.4 10.9 88.2 37.6 63.1 7.6
MiDaS [35] 2M — 11.1 88.5 23.6 63.0 18.4 75.2 12.1 84.6 33.2 71.5 7.3
LeReS [57] 300K 54K 9.0 91.6 14.9 78.4 17.1 77.7 9.1 91.7 27.1 76.6 5.2
Omnidata [13] 11.9M 310K 7.4 94.5 14.9 83.5 16.6 77.8 7.5 93.6 33.9 74.2 4.8
HDN [60] 300K — 6.9 94.8 11.5 86.7 12.1 83.3 8.0 93.9 24.6 78.0 3.2
DPT [36] 1.2M 188K 9.8 90.3 10.0 90.1 7.8 94.6 8.2 93.4 18.2 75.8 3.9

Ours (w/o ensemble) —∗ 74K 6.0 95.9 10.5 90.4 7.1 95.1 6.9 94.5 31.0 77.2 2.5
Ours (w/ ensemble) 5.5 96.4 9.9 91.6 6.5 96.0 6.4 95.1 30.8 77.3 1.4

† Most baselines are sourced from Metric3D [58], except for the ScanNet benchmark. For ScanNet, Metric3D used a different random split that is not publicly accessible,
therefore we re-ran all baselines on our split. For HDN [60] we show the ScanNet results from Metric3D, as no source code is available.

∗ Image-text data is used in the pretrained model.

4.2. Evaluation

Training datasets. We train Marigold on two synthetic
datasets covering both indoor and outdoor scenes. Hyper-
sim [37] is a photorealistic dataset with 461 indoor scenes.
We use the official split with around 54K samples from 365
scenes for training. Incomplete samples are filtered out.
RGB images and depth maps are resized to 480× 640 size.
Additionally, we transform the original distances relative to
the focal point into conventional depth values relative to the
focal plane. The second dataset, Virtual KITTI [7] is a
synthetic street-scene dataset featuring 5 scenes under vary-
ing conditions like weather or camera perspectives. Four
scenes containing a total of around 20K samples are used
for training. We crop the images to the KITTI benchmark
resolution [17] and set the far plane to 80 meters.

Evaluation datasets. We evaluate Marigold on 5 real
datasets that are not seen during training. NYUv2 [31] and
ScanNet [10] are both indoor scene datasets captured with an
RGB-D Kinect sensor. For NYUv2, we utilize the designated
test split, comprising a total of 654 images. In the case of
the ScanNet dataset, we randomly sampled 800 images from
the 312 official validation scenes for testing. KITTI [17]
is a street-scene dataset with sparse metric depth captured
by a LiDAR sensor. We employ the Eigen test split [14]
made of 652 images. ETH3D [45] and DIODE [50] are two
high-resolution datasets, both featuring depth maps derived
from LiDAR sensor measurements. For ETH3D, we incor-
porate all 454 samples with available ground truth depth
maps. For DIODE, we use the entire validation split, which
encompasses 325 indoor samples and 446 outdoor samples.

Evaluation protocol. Following the protocol of affine-
invariant depth evaluation [35], we first align the estimated
merged prediction m to the ground truth d with the least
squares fitting. This step gives us the absolute aligned
depth map a = m × s + t in the same units as the
ground truth. Next, we apply two widely recognized met-

rics [35, 36, 57, 58] for assessing quality of depth estimation.
The first is Absolute Mean Relative Error (AbsRel), calcu-
lated as: 1

M

∑M
i=1 |ai − di|/di, where M is the total num-

ber of pixels. The second metric, δ1 accuracy, measures the
proportion of pixels satisfying max(ai/di,di/ai) < 1.25.

Comparison with other methods. We compare Marigold
to six baselines, each claiming zero-shot generalization. Di-
verseDepth [56], LeReS [57] and HDN [60] estimate affine-
invariant depth maps, while MiDaS [35], DPT [36], and Om-
nidata [13] produce affine-invariant disparities. As shown
in Tab. 1, Marigold outperforms prior art in most cases and
secures the highest overall ranking. Despite being trained
solely on synthetic depth datasets, the model can well gen-
eralize to a wide range of real scenes. This successful adap-
tation of diffusion-based image generation models toward
depth estimation confirms our initial hypothesis that a com-
prehensive representation of the visual world is the corner-
stone of monocular depth estimation. It also shows that
our fine-tuning protocol was successful in adapting Stable
Diffusion for this task without unlearning such visual priors.

For a visual assessment, we present qualitative compar-
ison in Fig. 4. Additionally, in Fig. 5, we provide 3D visu-
alizations of reconstructed surface normals. Marigold not
only correctly captures the scene layout, such as the spatial
relationships between walls and furniture in the first example
in Fig. 5, but also captures fine-grained details, as indicated
by the arrows in Fig. 4. Moreover, the reconstruction of flat
surfaces, especially walls, is significantly better (see Fig. 4).
Furthermore, our method effectively models common shapes
and their layouts, once again aligning with our expectations
regarding the generative prior.

4.3. Ablation Studies

Two zero-shot validation sets are selected for the ablation
studies – the official training split of NYUv2 [31], consist-
ing of 785 samples, and a randomly selected subset of 800
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Figure 4. Qualitative comparison (depth) of monocular depth estimation methods across different datasets. Marigold excels at capturing
thin structures (e.g., chair legs) and preserving overall layout of the scene (e.g., walls in ETH3D example and chairs in DIODE example).
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Figure 5. Qualitative comparison (unprojected, colored as normals) of monocular depth estimation methods across different datasets.
Marigold stands out for its superior reconstruction of flat surfaces and detailed structures.
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Figure 6. Ablation of ensemble size. We observe a monotonic
improvement with the growth of ensemble size. This improvement
starts to diminish after 10 predictions per sample.

Table 2. Ablation of training noise. Multi-resolution noise im-
proves over Gaussian noise; annealing yields further improvement.

Multi-res.
noise Annealed NYUv2 KITTI

AbsRel↓ δ1↑ AbsRel↓ δ1↑

✗ - 7.7 93.4 14.2 82.1
✓ ✗ 5.8 96.1 12.1 87.1
✓ ✓ 5.6 96.5 11.3 88.7

images from the KITTI Eigen [14] training split. Refer to
supplementary sections for extra ablations and discussion.

Training noise. We investigate the impact of three types of
noise during the training phase. As shown in Tab. 2, training
with multi-resolution noise significantly improves the depth
prediction accuracy over using standard Gaussian noise. Fur-
thermore, the gradual annealing of multi-resolution noise
yields an additional improvement. We also noticed that
training with multi-resolution noise leads to more consistent
predictions given different initial noise at inference time and
annealing further enhances this consistency.

Training data domain. To better understand the impact
of the synthetic datasets used for our fine-tuning protocol,
we ablate on a photorealistic street-scene Virtual KITTI [7],
and a more diverse and higher-quality indoor dataset Hyper-
sim [37]. The results are shown in Tab. 3. When fine-tuned
on a single synthetic dataset, the pretrained LDM can al-
ready be adapted for monocular depth estimation to a certain
degree, while the more diverse and photorealistic data leads
to better performance on both indoor and outdoor scenes.
Interestingly, adding additional training data from a differ-
ent domain not only improves the performance on the new
domain but also brings improvements in the original domain.

Test-time ensembling. We test the effectiveness of the pro-
posed test-time ensembling scheme by aggregating various
numbers of predictions. As shown in Fig. 6, a single pre-
diction of Marigold already yields reasonably good results.
Ensembling 10 predictions reduces the absolute relative error
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Figure 7. Ablation of denoising steps. The performance improves
as the number of denoising steps increases, while we observe satu-
ration after 10 steps.

Table 3. Ablation of training datasets. Hypersim [37] delivers
strong results; Virtual KITTI [7] improves outdoor performance.

Hypersim Virtual
KITTI

NYUv2 KITTI
AbsRel↓ δ1↑ AbsRel↓ δ1↑

✗ ✓ 13.9 83.4 15.4 79.3
✓ ✗ 5.7 96.3 13.7 82.5
✓ ✓ 5.6 96.5 11.3 88.7

on NYUv2 by ≈8% and ensembling 20 predictions brings
an improvement of ≈9.5%. It has been observed as a sys-
tematic effect that the performance is constantly improved
as the number of predictions increases, while the marginal
improvement diminishes with more than 10 predictions.

Number of denoising steps. We evaluate the effect of
the re-spaced inference denoising steps driven by the DDIM
scheduler [49]. The results are shown in Fig. 7. Although
trained with 1000 DDPM steps, the choice of 50 steps is
sufficient to produce accurate results during inference. As
expected, we obtain better results when using more denois-
ing steps. We observe that the elbow point of marginal
returns given more denoising steps depends on the dataset
but is always under 10 steps. This implies that one can fur-
ther reduce the denoising steps to 10 or even less to gain
efficiency while keeping comparable performance. Interest-
ingly, this threshold is smaller than what is usually required
for diffusion-based image generators [38, 49], i.e., 50 steps.

5. Conclusion
We have presented Marigold, a fine-tuning protocol for Sta-
ble Diffusion and a model for state-of-the-art affine-invariant
depth estimation. Our results confirm the importance of a de-
tailed visual scene understanding prior for depth estimation,
which we source from the pretrained text-to-image diffusion
model. Future research directions to overcome current limi-
tations include improving inference efficiency, ensuring that
similar inputs yield consistent outputs despite the model’s
generative nature, and better handling of distant scene parts.
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